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Abstract
In this paper, the Sawada-Kotera equation is solved by using the Adomian’s decomposition
method, modified Adomian’s decomposition method, variational iteration method, mod-
ified variational iteration method, homotopy perturbation method, modified homotopy
perturbation method and homotopy analysis method. The approximate solution of this
equation is calculated in the form of series which its components are computed by applying
a recursive relation. The existence and uniqueness of the solution and the convergence
of the proposed methods are proved. A numerical example is studied to demonstrate the
accuracy of the presented methods.
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1 Introduction

In recent years, some works have been done in order to find the numerical solution of
the Sawada-Kotera equation. For example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In this work, we
develope the ADM, MADM, VIM, MVIM, HPM, MHPM and HAM to solve this equation
as follows:

ut + 45u2ux − 15uxuxx − 15uuxxx + uxxxxx = 0, (1.1)

with the initial condition:

u(x, 0) = f(x), (1.2)

∗Corresponding author. Email address: shadan behzadi@yahoo.com .

269



270 S. Behzadi/ IJIM Vol. 4, No. 3 (2012) 269-288

where subscripts denote the derivatives of the corresponding variable, which is widely
used in many branches of physics such as conformal field theory, two-dimensional quan-
tum gravitation canonical field theory, the conservation flow of the Liouville equation in
nonlinear science [43] , and so on. The paper is organized as follows. In section 2, the
mentioned iterative methods are introduced for solving Eq.(1.1). In section 3 we prove the
existence , uniqueness of the solution and convergence of the proposed methods. Finally,
the numerical example and computational complexity of the proposed methods are shown
in section 4. In order to obtain an approximate solution of Eq.(1.1), let us integrate one
time Eq.(1.1) with respect to t using the initial condition we obtain,

u(x, t) = (1.3)

f(x)−45
∫ t

0
F1(u(x, τ) dτ+15

∫ t

0
F2(u(x, τ)) dτ+15

∫ t

0
F3(u(x, τ)) dτ−

∫ t

0
F4(u(x, τ)) dτ,

where,
F1(u(x, t)) = u2(x, t)D(u(x, t)),
F2(u(x, t)) = D(u(x, t))D2(u(x, t)),
F3(u(x, t)) = u(x, t)D3(u(x, t)),
F4(u(x, t)) = D5(u(x, t)),

Di(u(x, t)) = ∂iu(x,t)
∂xi , i = 1, 2, 3, 5.

In Eq.(1.3), we assume f(x) is bounded for all x in J = [0, T ](T ∈ R). The terms
F1(u(x, t)), F2(u(x, t)), F3(u(x, t)), and F4(u(x, t)) are Lipschitz continuous with | F1(u)−
F1(u

∗) |≤ L1 | u− u∗ | , | F2(u)− F2(u
∗) |≤ L2 | u− u∗ |, | F3(u)− F3(u

∗) |≤ L3 | u− u∗ |
and | F4(u)− F4(u

∗) |≤ L4 | u− u∗ | .

2 The iterative methods

2.1 Description of the MADM and ADM

The Adomian decomposition method is applied to the following general nonlinear equation

Lu+Ru+Nu = g1, (2.4)

where u(x, t) is the unknown function, L is the highest order derivative operator which is
assumed to be easily invertible, R is a linear differential operator of order less than L,Nu
represents the nonlinear terms, and g1 is the source term. Applying the inverse operator
L−1 to both sides of Eq.(2.4), and using the given conditions we obtain

u(x, t) = f1(x)− L−1(Ru)− L−1(Nu), (2.5)

where the function f1(x) represents the terms arising from integrating the source term g1.
The nonlinear operator Nu = G1(u) is decomposed as

G1(u) =

∞∑
n=0

An, (2.6)

where An, n ≥ 0 are the Adomian polynomials determined formally as follows :

An =
1

n!
[
dn

dλn
[N(

∞∑
i=0

λiui)]]λ=0. (2.7)
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The first Adomian polynomials (introduced in [11, 12, 13]) are:

A0 = G1(u0),

A1 = u1G
′
1(u0),

A2 = u2G
′
1(u0) +

1

2!
u21G

′′
1(u0), (2.8)

A3 = u3G
′
1(u0) + u1u2G

′′
1(u0) +

1

3!
u31G

′′′
1 (u0), ...

2.1.1 Adomian decomposition method

The standard decomposition technique represents the solution of u(x, t) in Eq.(2.4) as the
following series,

u(x, t) =
∞∑
i=0

ui(x, t), (2.9)

where, the components u0, u1, . . . which can be determined recursively

u0 = f(x),

u1 = −45
∫ t

0
A0(x, t) dt+ 15

∫ t

0
B0(x, t) dt+ 15

∫ t

0
L0(x, t) dt−

∫ t

0
S0(x, t) dt,

...

un+1 = −45
∫ t

0
An(x, t) dt+ 15

∫ t

0
Bn(x, t) dt+ 15

∫ t

0
Ln(x, t) dt−

∫ t

0
Sn(x, t) dt n ≥ 0.

(2.10)

Substituting Eq.(2.8) into Eq.(2.10) leads to the determination of the components of u.

2.1.2 The modified Adomian decomposition method

The modified decomposition method was introduced by Wazwaz [14]. The modified forms
was established on the assumption that the function f(x) can be divided into two parts,
namely f1(x) and f2(x). Under this assumption we set

f(x, t) = f1(x) + f2(x). (2.11)

Accordingly, a slight variation was proposed only on the components u0 and u1. The
suggestion was that only the part f1 be assigned to the zeroth component u0, whereas
the remaining part f2 be combined with the other terms given in Eq.(2.11) to define u1.
Consequently, the modified recursive relation

u0 = f1(x),

u1 = f2(x)− L−1(Ru0)− L−1(A0), (2.12)

...

un+1 = −L−1(Run)− L−1(An), n ≥ 1,
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was developed. To obtain the approximation solution of Eq.(1.1), according to the MADM,
we can write the iterative formula Eq.(2.12) as follows:

u0 = f1(x),

u1 = f2(x)− 45
∫ t
0 A0(x, t) dt+ 15

∫ t
0 B0(x, t) dt+ 15

∫ t
0 L0(x, t) dt−

∫ t
0 S0(x, t)) dt,

...

un+1 = −45
∫ t
0 An(x, t) dt+ 15

∫ t
0 Bn(x, t) dt+ 15

∫ t
0 Ln(x, t) dt−

∫ t
0 Sn(x, t)) dt, n ≥ 1.

(2.13)
The operators Fi(u(x, t)) (i = 1, 2, 3, 4) are usually represented by the infinite series of the
Adomian polynomials as follows:

F1(u) =

∞∑
i=0

Ai,

F2(u) =
∞∑
i=0

Bi,

F3(u) =
∞∑
i=0

Li,

F4(u) =

∞∑
i=0

Si,

where Ai , Bi, Li and Si are the Adomian polynomials. Also, we can use the following
formula for the Adomian polynomials [15]:

An = F1(sn)−
∑n−1

i=0 Ai,

Bn = F2(sn)−
∑n−1

i=0 Bi,

Ln = F3(sn)−
∑n−1

i=0 Li,
Sn = F4(sn)−

∑∞
i=0 Si.

(2.14)

Where sn =
∑n

i=0 ui(x, t) is the partial sum.

2.2 Description of the VIM and MVIM

In the VIM [16, 17, 18, 19, 20, 35, 41, 42], it has been considered the following nonlinear
differential equation:

Lu+Nu = g1, (2.15)

where L is a linear operator, N is a nonlinear operator and g1 is a known analytical
function. In this case, the functions un may be determined recursively by

un+1(x, t) = un(x, t)+

∫ t

0
λ(x, τ){L(un(x, τ))+N(un(x, τ))−g1(x, τ)}dτ, n ≥ 0, (2.16)

where λ is a general Lagrange multiplier which can be computed using the variational
theory. Here the function un(x, τ) is a restricted variations which means δun = 0. There-
fore, we first determine the Lagrange multiplier λ that will be identified optimally via
integration by parts. The successive approximation un(x, t), n ≥ 0 of the solution u(x, t)
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will be readily obtained upon using the obtained Lagrange multiplier and by using any
selective function u0. The zeroth approximation u0 may be selected any function that just
satisfies at least the initial and boundary conditions. With λ determined, then several
approximation un(x, t), n ≥ 0 follow immediately. Consequently, the exact solution may
be obtained by using

u(x, t) = lim
n→∞

un(x, t). (2.17)

The VIM has been shown to solve effectively, easily and accurately a large class of nonlin-
ear problems with approximations converge rapidly to accurate solutions. To obtain the
approximation solution of Eq.(1.1), according to the VIM, we can write iteration formula
Eq.(2.16) as follows:

un+1(x, t) = un(x, t) + L−1
t (λ[un(x, t)− f(x) + 45

∫ t
0 F1(un(x, t)) dt

−15
∫ t
0 F2(un(x, t)) dt− 15

∫ t
0 F3(un(x, t)) dt+

∫ t
0 F4(un(x, t)) dt]), n ≥ 0.

(2.18)

Where,

L−1
t (.) =

∫ t

0
(.) dτ.

To find the optimal λ, we proceed as

δun+1(x, t) = δun(x, t) + δL−1
t (λ[un(x, t)− f(x) + 45

∫ t
0 F1(un(x, t)) dt

−15
∫ t
0 F2(un(x, t)) dt− 15

∫ t
0 F3(un(x, t)) dt+

∫ t
0 F4(un(x, t)) dt]).

(2.19)

From Eq.(2.19), the stationary conditions can be obtained as follows: λ
′
= 0 and 1+λ = 0.

Therefore, the Lagrange multipliers can be identified as λ = −1 and by substituting in
Eq.(2.18), the following iteration formula is obtained.

u0(x, t) = f(x),

un+1(x, t) = un(x, t)− L−1
t (un(x, t)− f(x) + 45

∫ t
0 F1(un(x, t)) dt

−15
∫ t
0 F2(un(x, t)) dt− 15

∫ t
0 F3(un(x, t)) dt+

∫ t
0 F4(un(x, t)) dt), n ≥ 0.

(2.20)

To obtain the approximation solution of Eq.(1.1), based on the MVIM [21, 22, 23], we can
write the following iteration formula:

u0(x, t) = f(x),

un+1(x, t) = un(x, t)− L−1
t (45

∫ t
0 F1(un(x, t)− un−1(x, t)) dt

−15
∫ t
0 F2(un(x, t)− un−1(x, t)) dt− 15

∫ t
0 F3(un(x, t)− un−1(x, t)) dt+∫ t

0 F4(un(x, t)− un−1(x, t)) dt), n ≥ 0.

(2.21)

Relations Eq.(2.20) and Eq.(2.21) will enable us to determine the components un(x, t)
recursively for n ≥ 0.

2.3 Description of the HAM

Consider

N [u] = 0,

where N is a nonlinear operator, u(x, t) is an unknown function and x is an independent
variable. let u0(x, t) denote an initial guess of the exact solution u(x, t), h ̸= 0 an auxiliary
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parameter, H1(x, t) ̸= 0 an auxiliary function, and L an auxiliary linear operator with the
property L[s(x, t)] = 0 when s(x, t) = 0. Then using q ∈ [0, 1] as an embedding parameter,
we construct a homotopy as follows:

(1− q)L[ϕ(x, t; q)−u0(x, t)]− qhH1(x, t)N [ϕ(x, t; q)] = Ĥ[ϕ(x, t; q);u0(x, t),H1(x, t), h, q].
(2.22)

It should be emphasized that we have great freedom to choose the initial guess u0(x, t), the
auxiliary linear operator L, the non-zero auxiliary parameter h, and the auxiliary function
H1(x, t). Enforcing the homotopy Eq.(2.22) to be zero, i.e.,

Ĥ1[ϕ(x, t; q);u0(x, t),H1(x, t), h, q] = 0, (2.23)

we have the so-called zero-order deformation equation

(1− q)L[ϕ(x, t; q)− u0(x, t)] = qhH1(x, t)N [ϕ(x, t; q)]. (2.24)

When q = 0, the zero-order deformation Eq.(2.24) becomes

ϕ(x; 0) = u0(x, t), (2.25)

and when q = 1, since h ̸= 0 and H1(x, t) ̸= 0, the zero-order deformation Eq.(2.24) is
equivalent to

ϕ(x, t; 1) = u(x, t). (2.26)

Thus, according to Eq.(2.25) and Eq.(2.26), as the embedding parameter q increases
from 0 to 1, ϕ(x, t; q) varies continuously from the initial approximation u0(x, t) to the ex-
act solution u(x, t). Such a kind of continuous variation is called deformation in homotopy
[23, 24, 25, 26, 40].

Due to Taylor’s theorem, ϕ(x, t; q) can be expanded in a power series of q as follows

ϕ(x, t; q) = u0(x, t) +

∞∑
m=1

um(x, t)qm, (2.27)

where,

um(x, t) =
1

m!

∂mϕ(x, t; q)

∂qm
|q=0 .

Let the initial guess u0(x, t), the auxiliary linear parameter L, the nonzero auxiliary
parameter h and the auxiliary function H1(x, t) be properly chosen so that the power
series Eq.(2.27) of ϕ(x, t; q) converges at q = 1, then, we have under these assumptions
the solution series

u(x, t) = ϕ(x, t; 1) = u0(x, t) +

∞∑
m=1

um(x, t). (2.28)

From Eq.(2.27), we can write Eq.(2.24) as follows

(1− q)L[ϕ(x, t, q)− u0(x, t)] = (1− q)L[
∑∞

m=1 um(x, t) qm] = q h H1(x, t)N [ϕ(x, t, q)]⇒
L[
∑∞

m=1 um(x, t) qm]− q L[
∑∞

m=1 um(x, t)qm] = q h H1(x, t)N [ϕ(x, t, q)]
(2.29)
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By differentiating Eq.(2.29) m times with respect to q, we obtain

{L[
∑∞

m=1 um(x, t) qm]− q L[
∑∞

m=1 um(x, t)qm]}(m) = {q h H1(x, t)N [ϕ(x, t, q)]}(m) =

m! L[um(x, t)− um−1(x, t)] = h H1(x, t) m
∂m−1N [ϕ(x,t;q)]

∂qm−1 |q=0 .

Therefore,

L[um(x, t)− χmum−1(x, t)] = hH1(x, t)ℜm(um−1(x, t)), (2.30)

where,

ℜm(um−1(x, t)) =
1

(m− 1)!

∂m−1N [ϕ(x, t; q)]

∂qm−1
|q=0, (2.31)

and

χm =

{
0, m ≤ 1
1, m > 1

Note that the high-order deformation Eq.(2.30) is governing the linear operator L, and
the term ℜm(um−1(x, t)) can be expressed simply by Eq.(2.31) for any nonlinear operator
N .

To obtain the approximation solution of Eq.(1.1), according to HAM, let

N [u(x, t)] =

u(x, t)− f(x) + 45
∫ t
0 F1(u(x, t)) dt− 15

∫ t
0 F2(u(x, t)) dt− 15

∫ t
0 F3(u(x, t)) dt

+
∫ t
0 F4(u(x, t)) dt,

so,

ℜm(um−1(x, t)) =

um−1(x, t)− f(x) + 45
∫ t
0 F1(um−1(x, t)) dt− 15

∫ t
0 F2(um−1(x, t)) dt

−15
∫ t
0 F3(um−1(x, t)) dt+

∫ t
0 F4(um−1(x, t)) dt.

(2.32)

Substituting Eq.(2.32) into Eq.(2.30)

L[um(x, t)− χmum−1(x, t)] = hH1(x, t)[um−1(x, t)− f(x) + 45
∫ t
0 F1(um−1(x, t)) dt

−15
∫ t
0 F2(um−1(x, t)) dt− 15

∫ t
0 F3(um−1(x, t)) dt

+
∫ t
0 F4(um−1(x, t)) dt.+ (1− χm)f(x)(x)].

(2.33)
We take an initial guess u0(x, t) = f(x), an auxiliary linear operator Lu = u, a nonzero

auxiliary parameter h = −1, and auxiliary function H1(x, t) = 1. This is substituted into
Eq.(2.33) to give the recurrence relation

u0(x, t) = f(x),

un+1(x, t) = −45
∫ t
0 F1(un(x, t)) dt+ 15

∫ t
0 F2(un(x, t)) dt+ 15

∫ t
0 F3(un(x, t)) dt

−
∫ t
0 F4(un(x, t)) dt, n ≥ 0.

(2.34)
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Therefore, the solution u(x, t) becomes

u(x, t) =
∑∞

n=0 un(x, t) = f(x) +
∑∞

n=1( −45
∫ t
0 F1(un(x, t)) dt (2.35)

+15

∫ t

0
F2(un(x, t)) dt+ 15

∫ t

0
F3(un(x, t)) dt−

∫ t

0
F4(un(x, t)) dt).

Which is the method of successive approximations. If

| un(x, t) |< 1,

then the series solution Eq.(2.35) convergence uniformly.

2.4 Description of the HPM and MHPM

To explain HPM [27, 28, 34, 36, 37, 38, 39], we consider the following general nonlinear
differential equation:

Lu+Nu = f(u), (2.36)

with initial conditions
u(x, 0) = f(x).

According to HPM, we construct a homotopy which satisfies the following relation

H(u, p) = Lu− Lv0 + p Lv0 + p [Nu− f(u)] = 0, (2.37)

where p ∈ [0, 1] is an embedding parameter and v0 is an arbitrary initial approximation
satisfying the given initial conditions.

In HPM, the solution of Eq.(2.37) is expressed as

u(x, t) = u0(x, t) + p u1(x, t) + p2 u2(x, t) + ... (2.38)

Hence the approximate solution of Eq.(2.36) can be expressed as a series of the power of
p, i.e.

u = lim
p→1

u = u0 + u1 + u2 + ...

where,

u0(x, t) = f(x),
...

um(x, t) =
∑m−1

k=0 −45
∫ t
0 F1(um−k−1(x, t)) dt+ 15

∫ t
0 F2(um−k−1(x, t)) dt+

15
∫ t
0 F3(um−k−1(x, t)) dt−

∫ t
0 F4(um−k−1(x, t)) dt, m ≥ 1.

(2.39)

To explain MHPM [30, 31, 32], we consider Eq.(1.1) as

L(u) = u(x, t)− f(x) + 45
∫ t
0 F1(um−k−1(x, t)) dt− 15

∫ t
0 F2(um−k−1(x, t)) dt

−15
∫ t
0 F3(um−k−1(x, t)) dt+

∫ t
0 F4(um−k−1(x, t)) dt.

Where F1(u(x, t)) = g1(x)h1(t), F2(u(x, t)) = g2(x)h2(t), F3(u(x, t)) = g3(x)h3(t) and
F4(u(x, t)) = g4(x)h4(t). We can define homotopy H(u, p,m) by

H(u, 0,m) = f(u), H(u, 1,m) = L(u),
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where, m is an unknown real number and

f(u(x, t)) = u(x, t)− z(x, t).

Typically we may choose a convex homotopy by

H(u, p,m) = (1− p)f(u) + p L(u) + p (1− p)[m(g1(x) + g2(x) + g3(x))] = 0, 0 ≤ p ≤ 1.
(2.40)

Where m is called the accelerating parameters, and for m = 0 we define H(u, p, 0) =
H(u, p), which is the standard HPM.

The convex homotopy Eq.(2.40) continuously trace an implicity defined curve from a
starting pointH(u(x, t)−f(u), 0,m) to a solution functionH(u(x, t), 1,m). The embedding
parameter p monotonically increase from 0 to 1 as trivial problem f(u) = 0 is continuously
deformed to original problem L(u) = 0.

The MHPM uses the homotopy parameter p as an expanding parameter to obtain

v =

∞∑
n=0

pnun, (2.41)

when p→ 1, Eq.(2.37) corresponds to the original one and Eq.(2.41) becomes the approx-
imate solution of Eq.(1.1), i.e.,

u = lim
p→1

v =

∞∑
m=0

um.

Where,

u0(x, t) = f(x),
u1(x, t) =

−45
∫ t
0 F1(u0(x, t)) dt+ 15

∫ t
0 F2(u0(x, t)) dt+ 15

∫ t
0 F3(u0(x, t)) dt−

∫ t
0 F4(u0(x, t)) dt

−m(g1(x) + g2(x) + g3(x) + g4(x)),
u2(x, t) =

−45
∫ t
0 F1(u1(x, t)) dt+ 15

∫ t
0 F2(u1(x, t)) dt+ 15

∫ t
0 F3(u1(x, t)) dt−

∫ t
0 F4(u1(x, t)) dt

+m(g1(x) + g2(x) + g3(x) + g4(x)),
...

um(x, t) =
∑m−1

k=0 −45
∫ t
0 F1(um−k−1(x, t)) dt+ 15

∫ t
0 F2(um−k−1(x, t)) dt+

15
∫ t
0 F3(um−k−1(x, t)) dt−

∫ t
0 F4(um−k−1(x, t)) dt, m ≥ 3.

(2.42)

3 Existence and convergency of iterative methods

We set,

α1 := T (45L1 + 15L2 + 15L3 + L4),

β1 := 1− T (1− α1), γ1 := 1− Tα1.
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Theorem 3.1. Let 0 < α1 < 1, then Sawada-Kotera Eq.(1.1), has a unique solution.

Proof. Let u and u∗ be two different solutions of Eq.(1.3) then

| u− u∗ |=| −45
∫ t
0 [F1(u(x, t))− F1(u

∗(x, t))] dt+ 15
∫ t
0 [F2(u(x, t))− F2(u

∗(x, t))] dt

+15
∫ t
0 [F3(u(x, t))− F3(u

∗(x, t))] dt−
∫ t
0 F4(u(x, t)) dt |

≤ 45
∫ t
0 | F1(u(x, t))− F1(u

∗(x, t)) | dt+ 15
∫ t
0 | F2(u(x, t))− F2(u

∗(x, t)) | dt+

15
∫ t
0 | F3(u(x, t))− F3(u

∗(x, t)) | dt+
∫ t
0 | F4(u(x, t)) | dt

≤ T (L1 + L2 + L3 + L4) | u− u∗ |= α1 | u− u∗ | .

From which we get (1−α1) | u−u∗ |≤ 0. Since 0 < α1 < 1, then | u−u∗ |= 0. Implies
u = u∗ and completes the proof. 2

Theorem 3.2. The series solution u(x, t) =
∑∞

i=0 ui(x, t) of Eq.(1.1) using MADM con-
vergence when

0 < α1 < 1, | u1(x, t) |<∞.

Proof. Denote as (C[J ], ∥ . ∥) the Banach space of all continuous functions on J with
the norm ∥ f(t) ∥= max | f(t) |, for all t in J . Define the sequence of partial sums sn,
let sn and sm be arbitrary partial sums with n ≥ m. We are going to prove that sn is a
Cauchy sequence in this Banach space:

∥ sn − sm ∥=
max∀t∈J | sn − sm |= max∀t∈J |

∑n
i=m+1 ui(x, t) |=

max∀t∈J | −45
∫ t
0 (
∑n−1

i=mAi) dt+ 15
∫ t
0 (
∑n−1

i=mBi) dt+

15
∫ t
0 (
∑n−1

i=m Li) dt−
∫ t
0 (
∑n−1

i=m Si) dt | .

From [15], we have ∑n−1
i=mAi = F1(sn−1)− F1(sm−1),∑n−1
i=mBi = F2(sn−1)− F2(sm−1),∑n−1
i=m Li = F3(sn−1)− F3(sm−1),∑n−1
i=m Si = F4(sn−1)− F4(sm−1).

So,

∥ sn − sm ∥=
max∀t∈J | −45

∫ t
0 [F1(sn−1)− F1(sm−1)] dt+ 15

∫ t
0 [F2(sn−1)− F2(sm−1)] dt+ 15∫ t

0 [F3(sn−1)− F3(sm−1)] dt−
∫ t
0 [F4(u(x, t))− F4(u(x, t))] dt |≤

45
∫ t
0 | F1(sn−1)− F1(sm−1) | dt+ 15

∫ t
0 | F2(sn−1)− F2(sm−1) | dt

+15
∫ t
0 | F3(sn−1)− F3(sm−1) | dt+

∫ t
0 | F4(sn−1)− F4(sm−1) dt ≤ α1 ∥ sn − sm ∥ .

Let n = m+ 1, then

∥ sn − sm ∥≤ α1 ∥ sm − sm−1 ∥≤ α2
1 ∥ sm−1 − sm−2 ∥≤ ... ≤ αm

1 ∥ s1 − s0 ∥ .

From the triangle inquality we have
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∥ sn − sm ∥≤∥ sm+1 − sm ∥ + ∥ sm+2 − sm+1 ∥ +...+ ∥ sn − sn−1 ∥
≤ [αm

1 + αm+1
1 + ...+ αn−m−1

1 ] ∥ s1 − s0 ∥
≤ αm

1 [1 + α1 + α2
1 + ...+ αn−m−1

1 ] ∥ s1 − s0 ∥≤ αm
1 [

1−αn−m
1

1−α1
] ∥ u1(x, t) ∥ .

Since 0 < α1 < 1, we have (1− αn−m
1 ) < 1, then

∥ sn − sm ∥≤
αm
1

1− α1
max∀t∈J | u1(x, t) | . (3.43)

But | u1(x, t) |< ∞ , so, as m → ∞, then ∥ sn − sm ∥→ 0. We conclude that sn is
a Cauchy sequence in C[J ], therefore the series is convergence and the proof is complete.
2

Theorem 3.3. The maximum absolute truncation error of the series solution u(x, t) =∑∞
i=0 ui(x, t)to Eq.(1.1) by using MADM is estimated to be

max | u(x, t)−
m∑
i=0

ui(x, t) |≤
kαm

1

1− α1
. (3.44)

Proof. From inequality Eq.(3.44), when n→∞, then sn → u and

max | u1(x, t) |
≤ T (45max∀t∈J | F1(u0(x, t)) | +
15max∀t∈J | F2(u0(x, t)) | +15max∀t∈J | F3(u0(x, t)) | +max∀t∈J | F4(u0(x, t)) |).

Therefore,

∥ u(x, t)− sm ∥≤
αm
1

1−α1
T (45max∀t∈J | F1(u0(x, t)) | +

15max∀t∈J | F2(u0(x, t)) | +15max∀t∈J | F3(u0(x, t)) | +max∀t∈J | F4(u0(x, t)) |).

Finally the maximum absolute truncation error in the interval J is obtained by Eq.(3.45).

Theorem 3.4. The solution un(x, t) obtained from the relation Eq.(2.20) using VIM
converges to the exact solution of the Eq.(1.1) when 0 < α1 < 1 and 0 < β1 < 1.

Proof.

un+1(x, t) = un(x, t)− L−1
t ([un(x, t)− f(x) + 45

∫ t
0 F1(un(x, t)) dt− 15

∫ t
0 F2(un(x, t)) dt

−15
∫ t
0 F3(un(x, t))) dt+

∫ t
0 F4(un(x, t)) dt])

(3.45)

u(x, t) = u(x, t)− L−1
t ([u(x, t)− f(x) + 45

∫ t
0 F1(u(x, t)) dt− 15

∫ t
0 F2(u(x, t)) dt

−15
∫ t
0 F3(u(x, t))) dt+

∫ t
0 F4(u(x, t)) dt])

(3.46)

By subtracting relation Eq.(3.45) from Eq.(3.46),
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un+1(x, t)− u(x, t) = un(x, t)− u(x, t)− L−1
t (un(x, t)− u(x, t)

+45
∫ t
0 [F1(un(x, t))− F1(u(x, t))] dt− 15

∫ t
0 [F2(un(x, t))− F2(u(x, t))] dt−

15
∫ t
0 [F3(un(x, t))− F3(u(x, t))] dt+

∫ t
0 [F4(un(x, t))− F4(un(x, t)) dt),

if we set, en+1(x, t) = un+1(x, t) − un(x, t), en(x, t) = un(x, t) − u(x, t),| en(x, t∗) |=
maxt | en(x, t) | then since en is a decreasing function with respect to t from the mean
value theorem we can write,

en+1(x, t) = en(x, t) + L−1
t (−en(x, t)− 45

∫ t
0 [F1(un(x, t))− F1(u(x, t))] dt

+15
∫ t
0 [F2(un(x, t))− F2(u(x, t))] dt+ 15

∫ t
0 [F3(un(x, t))− F3(u(x, t))] dt−∫ t

0 [F4(un(x, t))− F4(u(x, t))] dt)

≤ en(x, t) + L−1
t [−en(x, t) + L−1

t | en(x, t) | (T (45L1 + 15L2 + 15L3 + L4)]

≤ en(x, t)− Ten(x, η) + T (45L1 + 15L2 + 15L3 + L4)L
−1
t L−1

t | en(x, t) |
≤ (1− T (1− α1) | en(x, t∗) |,

where 0 ≤ η ≤ t. Hence, en+1(x, t) ≤ β1 | en(x, t∗) | .
Therefore,

∥en+1∥ = max∀t∈J | en+1 |≤ β1 max∀t∈J | en |≤ β1∥en∥.
Since 0 < β1 < 1, then ∥en∥ → 0. So, the series converges and the proof is complete.
2

Theorem 3.5. The solution un(x, t) obtained from the Eq.(2.22) using MVIM for the
Eq.(1.1) converges when 0 < α1 < 1 , 0 < γ1 < 1.

Proof. The Proof is similar to the previous theorem.

Theorem 3.6. The maximum absolute truncation error of the series solution u(x, t) =∑∞
i=0 ui(x, t)to Eq.(1.1) by using VIM is estimated to be

∥en∥ ≤
βn
1 k

′

1− β1
, k

′
= max | u1(x, t) | .

Proof.

un+1 − un = (un+1 − u) + (u− un) = en − en+1

→ en = en+1 − (un+1 − un)
∥en∥ = ∥en+1 − (un+1 − un)∥ ≤ ∥en+1∥+ ∥un+1 − un∥ ≤ β1∥en∥+ ∥un+1 − un∥
→ ∥en∥ ≤ ∥un+1−un∥

1−β1
≤ βn

1 k
′

1−β1
. 2

Theorem 3.7. If the series solution Eq.(2.34) of Eq.(1.1) using HAM convergent then it
converges to the exact solution of the Eq.(1.1).

Proof. We assume:

u(x, t) =
∑∞

m=0 um(x, t),

F̂1(u(x, t)) =
∑∞

m=0 F1(um(x, t)),

F̂2(u(x, t)) =
∑∞

m=0 F2(um(x, t)),

F̂3(u(x, t)) =
∑∞

m=0 F3(um(x, t)),

F̂4(u(x, t)) =
∑∞

m=0 F4(um(x, t)).
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Where,
lim

m→∞
um(x, t) = 0.

We can write,

n∑
m=1

[um(x, t)− χmum−1(x, t)] = u1 + (u2 − u1) + ...+ (un − un−1) = un(x, t). (3.47)

Hence, from Eq.(3.47),

lim
n→∞

un(x, t) = 0. (3.48)

So, using Eq.(3.48) and the definition of the linear operator L, we have

∞∑
m=1

L[um(x, t)− χmum−1(x, t)] = L[

∞∑
m=1

[um(x, t)− χmum−1(x, t)]] = 0.

therefore from , we can obtain that,

∞∑
m=1

L[um(x, t)− χmum−1(x, t)] = hH1(x, t)

∞∑
m=1

ℜm−1(um−1(x, t)) = 0.

Since h ̸= 0 and H1(x, t) ̸= 0 , we have

∞∑
m=1

ℜm−1(um−1(x, t)) = 0. (3.49)

By substituting ℜm−1(um−1(x, t)) into the relation Eq.(3.49) and simplifying it , we
have∑∞

m=1ℜm−1(um−1(x, t)) =∑∞
m=1[um−1(x, t) + 45

∫ t
0 F1(um−1(x, t)) dt

−15
∫ t
0 F2(um−1(x, t)) dt− 15

∫ t
0 F3(um−1(x, t)) dt+

∫ t
0 F3(um−1(x, t)) dt+ (1− χm)f(x)]

= u(x, t)− f(x) + 45
∫ t
0 F̂1(u(x, t)) dt−

15
∫ t
0 F̂2(u(x, t)) dt− 15

∫ t
0 F̂3(u(x, t)) dt+

∫ t
0 F̂4(u(x, t)) dt.

(3.50)
From Eq.(3.49) and Eq.(3.50), we have

u(x, t) =

f(x)− 45
∫ t
0 F̂1(u(x, t)) dt+ 15

∫ t
0 F̂2(u(x, t)) dt+ 15

∫ t
0 F̂3(u(x, t)) dt−

∫ t
0 F̂4(u(x, t)) dt.

Therefore, u(x, t) must be the exact solution. 2

Theorem 3.8. The maximum absolute truncation error of the series solution u(x, t) =∑∞
i=0 ui(x, t) to Eq.(1.1) by using HAM is estimated to be

∥en∥ ≤
αn
1k

′

1− α1
, k

′
= max | u1(x, t) | .

Proof.The Proof is similar to the 3.6 theorem
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Theorem 3.9. If | um(x, t) |≤ 1, then the series solution u(x, t) =
∑∞

i=0 ui(x, t) of Eq.(1.1)
converges to the exact solution by using HPM.

Proof. We set,

ϕn(x, t) =
n∑

i=1

ui(x, t),

ϕn+1(x, t) =

n+1∑
i=1

ui(x, t).

| ϕn+1(x, t)− ϕn(x, t) |= D(ϕn+1(x, t), ϕn(x, t)) = D(ϕn + un, ϕn)

= D(un, 0) ≤
∑m−1

k=0 45
∫ t
0 | F1(um−k−1(x, t)) | dt+ 15

∫ t
0 | F2(um−k−1(x, t)) | dt

+15
∫ t
0 | F3(um−k−1(x, t)) | dt+

∫ t
0 | F4(u(x, t)) | dt.

→
∞∑
n=0

∥ ϕn+1(x, t)− ϕn(x, t) ∥≤ mα1 | f(x) |
∞∑
n=0

(mα1)
n.

Therefore,

lim
n→∞

un(x, t) = u(x, t).

Theorem 3.10. If | um(x, t) |≤ 1, then the series solution u(x, t) =
∑∞

i=0 ui(x, t) of
Eq.(1.1) converges to the exact solution by using MHPM.

Proof.The Proof is similar to the previous theorem.

Theorem 3.11. The maximum absolute truncation error of the series solution u(x, t) =∑∞
i=0 ui(x, t)to Eq.(1.1) by using HPM is estimated to be

∥en∥ ≤
(nα1)

nnk
′

1− α1
, k

′
= max | u1(x, t) | .

Proof.The Proof is similar to the 3.6 theorem

4 Numerical example

In this section, we compute a numerical example which is solved by the ADM, MADM,
VIM, MVIM, HPM, MHPM and HAM. The program has been provided with Mathematica
6 according to the following algorithm where ε is a given positive value.

Algorithm 1:
Step 1. Set n← 0.
Step 2. Calculate the recursive relations Eq.(2.10) for ADM , Eq.(2.13) for MADM,

Eq.(2.34) for HAM, Eq.(2.39) for HPM and Eq.(2.42) for MHPM .
Step 3. If | un+1 − un |< ε then go to step 4,
else n← n+ 1 and go to step 2.
Step 4. Print u(x, t) =

∑n
i=0 ui(x, t) as the approximate of the exact solution.

Algorithm 2:
Step 1. Set n← 0.
Step 2. Calculate the recursive relations Eq.(2.20) for VIM and Eq.(2.21) for MVIM.
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Step 3. If | un+1 − un |< ε then go to step 4,
else n← n+ 1 and go to step 2.
Step 4. Print un(x, t) as the approximate of the exact solution.

Lemma 4.1. The computational complexity of the ADM and MADM are O(n3) HAM,
VIM and MVIM are O(n) , HPM and MHPM are O(n2).

Proof. The number of computations including division, production, sum and subtrac-
tion.

ADM:
In step 2,
An, Bn, Ln : n2

2 + 9
2n+ 2.

In step 3,
u1 : 15.
u2 : 35. .
. un+1 : 2n

2 + 18n+ 15, n ≥ 0.
In step 5, the total number of the computations is equal to∑n

i=0 ui(x, t) = O(n3).

MADM:
In step 2,
An, Bn, Ln : n2

2 + 9
2n+ 2.

In step 3,
u1 : 16.
u2 : 35.
.
.
un+1 : 2n

2 + 18n+ 15, n ≥ 1.
In step 5, the total number of the computations is equal to∑n

i=0 ui(x, t) = O(n3).

VIM:
In step 2,
u1 : 15. . .
un+1 : 15, n ≥ 0.
In step 4, the total number of the computations is equal to∑n

i=0 ui(x, t) = 15n+ 15 = O(n).

MVIM:
In step 2,
u1 : 17.
.
.
un+1 : 17, n ≥ 0.
In step 4, the total number of the computations is equal to∑n

i=0 ui(x, t) = 17n+ 17 = O(n).

HAM:
In step 2,
u1 : 13. .
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.
un+1 : 13, n ≥ 0.
In step 4, the total number of the computations is equal to∑n

i=0 ui(x, t) = 13n+ 13 = O(n).

HPM:
In step 2,
u1 : 13.
u2 : 26.
.
.
un+1 : 13n+ 13, n ≥ 0.
In step 4, the total number of the computations is equal to∑n

i=0 ui(x, t) = O(n2).

MHPM:
In step 2,
u1 : 18.
u2 : 18.
.
.
un+1 : 13n+ 13, n ≥ 2.
In step 4, the total number of the computations is equal to
u0 + u1 + u2 +

∑n
i=3 ui(x, t) = O(n2).

Example 4.1. Consider the Sawada-Kotera equation as follows:

ut + 45u2ux − 15uxuxx − 15uuxxx + uxxxxx = 0.

Table 1. Numerical results for Example 4.2
(x,t) Errors

ADM(n=18) MADM(n=15)VIM(n=11) MVIM(n=10)

(0.1, 0.10) 0.080623 0.072635 0.051377 0.042568
(0.2, 0.17) 0.081678 0.073413 0.052483 0.043364
(0.3, 0.23) 0.082702 0.074369 0.052797 0.043769
(0.4, 0.30) 0.082759 0.074725 0.053366 0.044216
(0.5, 0.37) 0.083788 0.075106 0.053869 0.044749
(0.7, 0.45) 0.084067 0.075563 0.054109 0.045205

(x,t) Errors

HPM(n=11) MHPM(n=9) HAM(n=7)

(0.1, 0.10) 0.061848 0.043335 0.032876
(0.20, 0.17) 0.062564 0.044059 0.033538
(0.3, 0.23) 0.063117 0.045123 0.034138
(0.4, 0.30) 0.063605 0.0457027 0.034869
(0.5, 0.37) 0.0643237 0.046034 0.0353162
(0.7, 0.45) 0.064818 0.046782 00.035784
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Table 1, shows that, approximate solution of the Sawada-Kotera equation is conver-
gence with 7 iterations by using the HAM . By comparing the results of Table 1 , we can
observe that the HAM is more rapid convergence than the ADM, MADM, VIM, MVIM,
HPM and MHPM.

5 Conclusion

The HAM has been shown to solve effectively, easily and accurately a large class of nonlin-
ear problems with the approximations which are convergent are rapidly to exact solutions.
In this work, the HAM has been successfully employed to obtain the approximate solution
to analytical solution of the Sawada-Kotera equation. For this purpose, we showed that the
HAM is more rapid convergence than the ADM, MADM, VIM, MVIM, HPM and MHPM.
Also, the number of computations in HAM is less than the number of computations in
ADM, MADM, VIM, MVIM, HPM and MHPM.
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