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Abstract
The economic efficiency (EE) measure in non-convex technologies requires the data of
input/output vectors and prices to be known deterministically. But as regards the data
of the production process in many real-world applications, rather than dealing with crisp
real numbers and crisp intervals, one has to deal with ”approximate” numbers or intervals
of the type that can be described as ”numbers that are close to a given real number.” For
the aforementioned reason, development of the economic efficiency models in such a way
that they can deal with imprecise data, has become an issue of great interest. To this
end, the notion of bounded data and fuzziness has been introduced. This paper develops
a procedure to compute the economic efficiency measures with non-convex technologies in
the presence of uncertain data. In this study, uncertain EE formulas are transformed into
a family of crisp EE formulas and LP models, based on comparison intervals and α−cuts.
To obtain the bounds of the membership functions of efficiencies, we propose a family of
parametric two-level programs. This pair of parametric programming problems gives the
lower and upper bounds of α − cuts corresponding to the membership function of EE.
Then, we prove that the lower bound is computed by some closed form expressions, but to
obtain the upper bound we solve a LP model. Since the efficiency measures are expressed
by membership functions rather than by crisp values, more information is provided for
the management. Moreover, two examples are provided for illustrating the proposed ap-
proaches.
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1 Introduction

In data envelopment analysis (DEA) methodology, the boundary of the production pos-
sibility set (PPS) plays a crucial role in efficiency and productivity measurement. The free
disposal hull (FDH) (see [9, 21] is a well-known approach and the closest inner approx-
imation of the true, strongly disposable (possibly non-convex) technology. Though the
non-convex technology does not dominate the convex ones, the non-convex FDH models
have some advantages from the managerial viewpoint (see [3]). The managers may want
to compare the unit under assessment with a really observed unit. Many authors have
focused on the technical aspects of the production process for use in situations where
output price and input cost vectors are not available (see [1, 5]). In most studies, at least
some information on output prices is available from theory or practical knowledge of the
industry under assessment. One source of price information can be the quality of the
products, which is assessed by customers using fuzzy linguistic terms such as excellent,
very good, good, average, poor, and very poor (see [11] for more details on linguistic
terms). Technology and cost are the wheels that drive modern enterprises; some enter-
prises have advantages in terms of technology and others in cost (see [8]). Kuosmanen and
Post [13, 14] were the first to examine cost efficiency with uncertain input prices. They
derived upper and lower bounds for overall cost efficiency, assuming incomplete price data
in the form of a convex polyhedral cone. Although they presented and proved a model for
determining the lower bound of CE, they did not utilize the model in empirical application
of their CE concepts and resorted to the Free Disposable Hull technology. In their method,
for obtaining the bounds of cost efficiency, many linear programming problems should be
solved. Thus, in large scale applications, the computational burden is increased. So, in the
current paper we modify the models for obtaining the upper and lower bounds of revenue
efficiency, which is interesting from theory and practical point of view. However, Camanho
and Dyson [4], Jahanshahloo et al. [10], and Mostafaee and Saljooghi [18] developed cost
efficiency models with convex technology in such a way that they can include uncertain
price information. They provided a pair of mathematical programming problems to obtain
the lower and upper bounds of cost efficiency. But, they did not deal with non-convex
technologies whatsoever. Briec et al. [3] developed a series of nonparametric, non-convex
technologies and cost functions with crisp data, and obtained some closed-form expres-
sions for the non-convex cost functions.
In the current study, we extend the standard EE models to include uncertain output
prices. First, we assume that the output prices are uncertain and only their lower and up-
per bounds can be estimated. In this case, the lower bound of revenue efficiency (RE) are
computed by using a enumerative processes, similar to that in Briec et al. [3], based upon
vector dominance reasoning. Also, a LP problems should be solved to obtain the upper
bound. Next, we proceed to extend the non-convex economic efficiency models in order
to include fuzzy data and linguistic terms. The basic idea is to transform the non-convex
economic efficiency formulas into a family of parametric formulas based on α−cuts, which
is given by closed and bounded intervals. Since the efficiency measures are expressed via
a crisp value additionally to it’s membership function, it provides more information to
management. In the α − cuts based approach, the fuzzy DEA model is solved by para-
metric programming by using α − cuts. Solving the model at a given α − cuts, produces
a corresponding efficiency interval for the target DMU. A number of such intervals can be
used to construct the corresponding fuzzy efficiency membership functions. More details
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on the α level based approach can be found in Meada et al. [17], Kao and Liu [12], and
Lertworasirikul [15].
The rest of this paper unfolds as follows:
In section 2, some materials, required in the following sections are provided. In section 3,
the non-convex RE models are developed to include uncertain data in the form of ranges.
Also, a parametric closed-form expression is provided to obtain the lower bound of RE
measures, but a linear programming problem should be solved to obtain the upper bound
and a numerical example is given to illustrate how the proposed method is applied to
find RE measures with various RTS assumptions of technology. Section 4 includes some
definitions and concepts which are required in the next section. In section 5, the concept
of fuzzy data is embedded in RE models; the main idea is to apply the α − cuts and
Zadeh’s extension principle [22, 23, 24] to transform the fuzzy RE formulas to a series
of conventional crisp closed-form expressions. Also, a numerical example is provided to
illustrate the proposed approach. Section 6 concludes the paper.

2 Preliminaries

Assume that we deal with n DMUs (DMUj ; j = 1, . . . , n), which consume m homoge-
nous inputs xt

j = (x1j , x2j , , xmj)t to produce s homogenous outputs yt
j = (y1j , y2j , . . . , ysj)t.

To accommodate eventual null components, when DMUo is under evaluation, the following
notation is introduced for any input xo, o ∈ {1, 2, , n}: I(xo) = i ∈ {1, . . . , m : xio+xi > 0}.
The non-convex technologies and RE measures of DMUo with different returns to scale
assumptions of technology can be computed by solving the following model:

RENC,Φ
o (po, xo) = min{(pt

oyo)/(pt
oy) : y ∈ LNC,Φ(xo)} (2.1)

where LNC,Φ(xo) = {y : (xo, y) ∈ PPSNC,Φ},

PPSNC,Φ = {(x, y) : x >
n∑

j=1

δλjxj , 0 6 y 6
n∑

j=1

δλjyj ,
n∑

j=1

λj = 1, λj ∈ {0, 1}, δ ∈ Φ},

and Φ, depends on the RTS assumption of the reference technology,

ΦV RS = {δ : δ = 1},

ΦCRS = {δ : δ > 0},

ΦNIRS = {δ : δ > 1}.

In the following sections, an important role is played by the set Vm of all ±1-vectors in
Rm: i.e., Vm = {v ∈ Rm : |v| = e}; where e = (1, 1, . . . , n) and “|.|” indicates the absolute
value (see [11]). It is well known that the cardinality of Vm is 2m. For a given vector v,

Qv = diag(v1, v2, . . . , vm) =


v1 0 . . . 0
0 v2 . . . 0
...

...
. . .

...
0 0 . . . vm

 .
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In [18], an algorithm to generate all ±1 − vectors forming set Vm systemically is
provided. For each v ∈ Vm, we define vectors pv

o = pc
o + Qvγo, where pc

o = 1/2(pL
o + pR

o )
and γo = 1/2(pR

o − pL
o ). Then, for any such v we have

(pv
o)i = (pc

o)i + viγio =
{

pL
i if vi = −1

pR
i if vi = +1

It is clear that the set {pv
o : v ∈ Vm} forms all extreme points of the set Po = {po : pL

o 6
po 6 pR

o }. While the lower bound of RE measures with convex technologies in DEA are
computed by solving LP problems, the following Theorem shows that the lower bound
of RE measures with various non-convex technologies can be obtained, using a type of
implicit enumeration algorithm based upon vector comparison.

Theorem 2.1. The non-convex RE measure RENC,Φ
o (po, xo) can be computed as follows:

RENC,Φ
o (po, xo) =



min
j=1,...,n

{
pt

oyo

pt
oyj

: xj 6 xo

}
for Φ = V RS

min
j=1,...,n

{
max

i∈I(xo)
.

(
xij

xio

)
pt

oyo

pt
oyj

}
for Φ = CRS

min{
j : max

i=1,...,m
(xij/xio) 6 1

}{ max
i∈I(xo)

(
xij

xio

)
.
pt

oyo

pt
oyj

}
for Φ = NIRS

min
j=1,...,n

{
max

(
max

i∈I(xo)

(
xij

xio

)
, 1

)
.
pt

oyo

pt
oyj

}
for Φ = NDRS,

(2.2)

Proof: The proof can be adapted from Proposition 3 in [3] and (2.1).

In the next section, we extend the RE models with various returns to scale assumptions
of non-convex technologies to include bounded data.

3 Non-convex revenue efficiency measures with uncertain
data

As we can observe, the RE measure of DMUs can be attained when the data is exactly
known.. But in many practical applications, the data cannot be estimated accurately
enough to make good use of EE concepts, and only the lower and upper bounds of the data
can be estimated. When the data of input, output, and price vectors are uncertain and can
be expressed in the form of bounded data, the RE measure calculated from the uncertain
data should be uncertain, as well. The bounds typically give a better approximation of
true RE measures than a crisp value does. So, we propose the following model to obtain
the lower bound of the nonconvex RE measures in the presence of bounded data:
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RENC,Φ
o,LB = min

xj ∈ [xL
j , xR

j ]

yj ∈ [yL
j , yR

j ]

po ∈ [pL
o , pR

o ]

j = 1, . . . , n



min
j=1,...,n

{
pt

oyo

pt
oyj

: xj 6 xo

}
for Φ = V RS

min
j=1,...,n

{
max

i∈I(xo)

(
xij

xio

)
.
pt

oyo

pt
oyj

}
for Φ = CRS

min{
j : max

i=1,...,m
(xij/xio) 6 1

}{ max
i∈I(xo)

(
xij

xio

)
.
pt

oyo

pt
oyj

}
for Φ = NIRS

min
j=1,...,n

{
max

(
max

i∈I(xo)

(
xij

xio

)
, 1
)

.
pt

oyo

pt
oyj

}
for Φ = NDRS,

(3.3)

The inner program gives the RE measures of the unit under assessment with different
returns to scale assumptions of technology, based on the data provided by the outer
program, while the objective of the outer program is to minimize the possible RE measures.
In a similar way, we propose the following model to obtain the upper bound of RE; the only
difference being the objective function of the outer program, which is of the maximizing
type.

RENC,Φ
o,UB = max

xj ∈ [xL
j , xR

j ]

yj ∈ [yL
j , yR

j ]

po ∈ [pL
o , pR

o ]

j = 1, . . . , n



min
j=1,...,n

{
pt

oyo

pt
oyj

: xj 6 xo

}
for Φ = V RS

min
j=1,...,n

{
max

i∈I(xo)

(
xij

xio

)
.
pt

oyo

pt
oyj

}
for Φ = CRS

min{
j : max

i=1,...,m
(xij/xio) 6 1

}{ max
i∈I(xo)

(
xij

xio

)
.
pt

oyo

pt
oyj

}
for Φ = NIRS

min
j=1,...,n

{
max

(
max

i∈I(xo)

(
xij

xio

)
, 1
)

.
pt

oyo

pt
oyj

}
for Φ = NDRS,

(3.4)
In the two-level mathematical programming problem (3.4), the inner program calculates
the RE measure of the DMU under assessment with the data provided by the outer pro-
gram, while the outer program chooses the data that maximize the possible RE measures.
The following theorem proves that the lower bound RE measure, computed from the pes-
simistic point of view is characterized by some closed-form expressions. As we can observe,
the optimal output prices is obtained in an extreme point of the output prices. The opti-
mal output prices for the upper bound may not occur at extreme points of output prices,
but it may occur at an interior point of output ranges. So, a linear programming problem
is provided for computing the upper bound. In the next theorem the following notation
will be useful,

λoR

j = max
i∈I(xR

o )
(
xL

ij

xR
io

), λoL

j = max
i∈I(xL

o )
(
xR

ij

xL
io

)
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Theorem 3.1. We have

RENC,Φ
o,LB = min

v ∈ Vm



min

(
min

j ̸=o,j=1,...,n

{
pvt

o yL
o

pvt

o yR
j

: xL
j 6 xR

o

}
, 1

)
for Φ = V RS

min

(
min

j ̸=o,j=1,...,n

{
λoR

j

pvt

o yL
o

pvt

o yR
j

}
, 1

)
for Φ = CRS

min

 min{
j ̸= o : λoR

j 6 1
}
{

λoR

j .
pvt

o yL
o

pvt

o yR
j

}
, 1

 for Φ = NIRS

min

(
min

j ̸=o,j=1,...,n

{
max

(
λoR

j , 1
)

.
pvt

o yL
o

pvt

o yR
j

}
, 1

)
for Φ = NDRS,

(3.5)
and

RENC,Φ
o,UB =

max p̂t
oy

R
o : p̂t

oy
R
o 6 1, p̂t

oy
L
j 6 1; j ̸= o, xR

j 6 xL
o , tpL

o 6 p̂o 6 tpR
o , Φ = V RS

max p̂t
oy

R
o : p̂t

oy
R
o 6 1,

p̂t
oyL

j

λoL
j

6 1; j ̸= o, tpL
o 6 p̂o 6 tpR

o , Φ = CRS

max p̂t
oy

R
o : p̂t

oy
R
o 6 1,

p̂t
oyL

j

λoL
j

6 1; j ̸= o, λoL

j 6 1, tpL
o 6 p̂o 6 tpR

o , Φ = NIRS

max p̂t
oy

R
o : p̂t

oy
R
o 6 1,

p̂t
oyL

j

λoL
j

6 1; j ̸= o, λoL

j > 1, tpL
o 6 p̂o 6 tpR

o , Φ = NDRS

(3.6)

Proof: We only prove the theorem in the case of Φ = CRS; for the other non-convex
assumptions of technology, the proof is similar and hence removed.

a) The proof for the lower bound
First, we assume that output prices are fixed and known deterministically, and only
input/output data is imprecise and can be expressed in the form of bounded data.
If xL

ij 6 xij 6 xR
ij , yL

rj 6 yrj 6 yR
rj ; i = 1, . . . ,m, r = 1, . . . , s, j = 1, . . . , n, then we

have

max
i∈I(xo)

(
xij

xio

)
.
pt

oyo

pt
oyj

> max
i∈I(xR

o )

(
xL

ij

xR
io

)
.
pt

oy
L
o

pt
oy

R
j

; j ̸= o.

This implies that

min
j=1,...,n

{
max

i∈I(xo)

(
xij

xio

)
.
pt

oyo

pt
oyj

}
> min

(
min

j ̸=o,j=1,...,n

{
max

i∈I(xR
o )

(
xL

ij

xR
io

)
.
pt

oy
L
o

pt
oy

R
j

}
, 1

)

= min

(
min

j ̸=o,j=1,...,n

{
λoR

j .
pt

oy
L
o

pt
oy

R
j

}
, 1

)
.

Now, let po ∈ Po = {po : pL
o 6 po 6 pR

o }. To complete the proof, it is sufficient to
show that the optimal output prices occur at an extreme point of set Po. Toward this
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end, let p∗o ∈ Po be an optimal output price; hence, considering the representation
theorem (see Theorem 2.1 on p. 69 of [2]), we have

p∗o =
∑

v∈Vm

λvp
v
o,
∑

v∈Vm

λv = 1, λv > 0

By contradiction, let for each v ∈ Vm,

λoR

k .
p∗

t

o yL
o

p∗
t

o yR
k

= min
j ̸=o,j=1,...,n

{
λoR

j .
p∗

t

o yL
o

p∗
t

o yR
j

}
< min

j ̸=o,j=1,...,n

{
λoR

j .
pvt

o yL
o

pvt

o yR
j

}
6 λoR

k .
pvt

o yL
o

pvt

o yR
k

We have (pvt

o yR
k )(p∗

t

o yL
o ) < (pvt

o yL
o )(p∗

t

o yR
k ). By multiplying the both sides of the

above inequality by λv; v ∈ Vm and summation on v ∈ Vm, we have∑
v∈Vm

λvp
vt

o yR
k (p∗

t

o yL
o ) <

∑
v∈Vm

λvp
vt

o yL
o (p∗

t

o yR
k )

This implies that
(p∗

t

o yR
k )(p∗

t

o yL
o ) < (p∗

t

o yL
o )(p∗

t

o yR
k ),

but this inequality is a contradiction. Therefore, there exists a v ∈ Vm such that

min
j ̸=o,j=1,...,n

{
λoR

j .
p∗

t

o yL
o

p∗
t

o yR
j

}
= min

j ̸=o,j=1,...,n

{
λoR

j .
pvt

o yL
o

pvt

o yR
j

}
and this in turn implies that

RENC,CRS
o,LB = min

v∈Vm

min

(
min

j ̸=o,j=1,...,n

{
λoR

j .
pvt

o yL
o

pvt

o yR
j

}
, 1

)
This completes the proof for the lower bound.

b) The proof for the upper bound
If

xL
ij 6 xij 6 xR

ij , yL
rj 6 yrj 6 yR

rj ; i = 1, . . . , m, r = 1, . . . , s, j = 1, . . . , n,

then we have

max
i∈I(xo)

(
xij

xio

)
.
pt

oyo

pt
oyj

6 max
i∈I(xL

o )

(
xR

ij

xL
io

)
.
pt

oy
R
o

pt
oy

L
j

; j ̸= o.

This implies that

min
j ̸=o,j=1,...,n

{
λo

j .
pt

oyo

pt
oyj

}
6 min

j ̸=o,j=1,...,n

{
λoL

j .
pt

oy
R
o

pt
oy

L
j

}
.

So,

RENC,CRS
o,UB = maxpL

o 6po6pR
o

min
j ̸=o,j=1,...,n

{
λoL

j .
pt

oy
R
o

pt
oy

L
j

}

= maxpL
o 6po6pR

o

 pt
oy

R
o

max

{
max

j ̸=o,j=1,...,n

pt
oy

L
j

λoL

j

, pt
oy

R
o

}
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We set,

max

{
max

j ̸=o,j=1,...,n

pt
oy

L
j

λoL

j

, pt
oy

R
o

}
=

1
t
,

We have,

tpt
oy

L
j

λoL

j

6 1, j ̸= o, j = 1, . . . , n, tpt
oy

R
o 6 1, tpL

o 6 tpo 6 tpR
o .

Let p̂t
o = tpo, it implies that,

p̂t
oy

L
j

λoL

j

6 1, j ̸= o, j = 1, . . . , n, p̂t
oy

R
o 6 1, tpL

o 6 p̂o 6 tpR
o .

Therefore,

RENC,CRS
o,UB = max p̂t

oy
R
o : p̂t

oy
R
o 6 1,

p̂t
oy

L
j

λoL

j

6 1; j ̸= o, tpL
o 6 p̂o 6 tpR

o for Φ = CRS

This completes the proof.

Remark 3.1. Although, the optimal output prices for the lower bound is occurred in an
extreme point of the set po ∈ Po = {po : pL

o 6 po 6 pR
o }, but optimal output prices

for the upper bound may occur in an interior point of the set Po. Consequently, the
lower bound is obtained without solving any linear programming problems, but by a simple
implicit formula, and also a linear programming problem should be solved to obtain the
upper bound. Since in the proof of Theorem (3.1) we only made use of convexity of output
prices. The method proposed in this paper is applicable not only when the input prices are
in the form of ranges but also when they are in the form of a convex set. Specially, when
the output prices are uncertain in the form of a polyhedral convex cone, as was used in
Kuosmanen and Post [9, 10],

W = {w ∈ ℜs
+ | Aw > 0}

Where A is an l × n matrix. For obtaining the lower bound of revenue efficiency, it is
sufficient to consider the extreme points of the following normalized output prices,

Ŵ = {w ∈ ℜs
+ | Aw > 0, etw = 1}

Where et = (1, 1, . . . , 1) is an s-vector with all components equal to one.

Example 3.1. For illustrating the given formulas, we consider an example with two inputs
x1, x2, and two outputs y1, y2. We assume that the data is uncertain, and only their lower
and upper bounds can be estimated. The input, output, and output price data are listed
in Table 1. Note that when the data is precise, the lower bound is equal to the upper
bound. We obtained the bounds of RE measures with various returns to scale assumptions
of technology using models (3.5) and (3.6). Consider DMU C for instance; the lower and
upper bounds of the second input are 10.5 and 11, respectively. Also, the output prices can
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be expressed as follows: Po = {(p1, p2) | 9 6 p1 6 9.5, 3 6 p2 6 4}. The extreme points of
output prices required to calculate the bounds of RE measures are as follows:{(

9
3

)
,

(
9
4

)(
9.5
3

)
,

(
9.5
4

)}
The RE measures of the eight DMUs calculated by Models (3.5) and (3.6) are given in
Table 2. The second and third columns of Table 2 show the lower and upper bounds
of RE with variable returns to scale (VRS) assumption of technology, the bounds of RE
with constant returns to scale assumption of technology are given in columns 4 and 5,
the bounds of RE with non-increasing returns to scale (NIRS) assumption of technology
are provided in columns 6 and 7, and the eighth and ninth columns show the bounds of
RE with non-decreasing returns to scale (NDRS) assumption of technology. For instance,
the lower bound of RE of DMU G with NIRS assumption of technology is 0.433 and the
upper bound is 0.8151. The extreme points of output prices corresponding to the lower and

upper bounds are
(

8
3

)
and

(
6.8
3.75

)
, respectively. As we can observe, DMUs B and G

are inefficient with all RTS assumptions of technology, but the others are efficient when
calculated from an optimistic point of view. DMUs C and D are efficient with VRS and
NDRS assumptions of technology from both optimistic and pessimistic viewpoints, but they
are inefficient from pessimistic viewpoints with other RTS assumptions.

Table 1
The input, output, and output price data
DMUs X1L X1R X2L X2R Y1L Y1R Y2L Y2R P1L P1R P2L P2R
DMU A 3 3.5 10 11 8 9 4 5 7 8 4 4
DMU B 4 4 11 13 6 7 3 3 6 7 3.5 5
DMU C 3 5 10.5 11 9 9.5 7 7 9 9.5 3 4
DMU D 2.5 2.5 7.875 8.25 6 6 3 3.25 8 8.5 3 5
DMU E 3.75 4 12.5 14 7.5 8 6.75 7 5.75 6 4 4
DMU F 3 5.5 13 15 8.5 9 3.5 3.5 9.5 9.5 2.25 2.5
DMU G 4 5 12 13 5 6.5 4 4.75 6.75 8 3 3.75
DMU H 2 3 10 11 7.5 8 5 6 8 9 4 5

Table 2
The bounds of RE with various RTS assumptions of technology
DMUs VRSL VRSU CRSL CRSU NIRSL NIRSU NDRSL NDRSU
DMU A 0.7619 1 0.7273 1 0.7273 1 0.7619 1
DMU B 0.5543 0.85 0.44773 0.85 0.4477 0.85 0.5543 0.84
DMU C 1 1 0.68533 1 0.6853 1 1 1
DMU D 1 1 0.7224 0.9245 1 1 0.7224 0.9245
DMU E 0.8471 1 0.6353 0.7037 0.6353 0.7037 0.8471 1
DMU F 0.8306 1 0.5814 1 0.5814 1 0.8306 1
DMU G 0.5361 0.8892 0.433 0.8151 0.433 0.8151 0.5361 0.8905
DMU H 0.7658 1 0.7658 1 0.7658 1 0.7658 1

4 Extension to fuzzy data

In the preceding sections, we assumed that the data is uncertain in the form of bounded
data. In an empirical study, we may encounter cases in which the quality of product is
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assessed by customers using, fuzzy linguistic terms such as excellent, very good, good,
average, poor, and very poor (see [11] for more details on linguistic terms). Though
we assume that the whole data is uncertain, the main focus of this section is on the
development of the EE models to include fuzzy price information, which is more practical,
and to take into account managerial viewpoints, which other authors have failed to deal
with conveniently. One source of price information could be the prior knowledge of the
quality of different inputs and outputs. For example, primary outputs are typically more
expensive than secondary outputs. In this case, the price information is best described
by fuzzy data rather than by other types of uncertain data. Even if the data is expressed
in the form of ordinal data or some scale rates, it is better to transform them into fuzzy
data with convenient membership functions. Consequently, there exists the opportunity
and need to embed fuzzy data into EE models, so as to better describe EE concepts.

4.1 Membership function of linguistic terms

Let the meanings of the linguistic terms excellent, very good, good, average, poor, and
very poor be defined by the following membership functions:

µV erypoor(x) =

{
1 − x, if 0 6 x 6 1

0, otherwise,
, µPoor(x) =


x, if 0 6 x 6 1

2 − x, if 1 6 x 6 2

0, otherwise,

µAverage(x) =


x, if 0 6 x 6 1

2 − x, if 1 6 x 6 2

0, otherwise,

, µGood(x) =


x − 2, if 2 6 x 6 3

3 − x, if 3 6 x 6 4

0, otherwise,

µV erygood(x) =


x − 3, if 3 6 x 6 4

5 − x, if 4 6 x 6 4

0, otherwise,

, µExcelent(x) =

{
5 − x, if 4 6 x 6 5

0, otherwise,

where the variable x is the quality or importance of a given product, with the interval [0,
5] as the universe of discourse. Figure 1 shows the membership functions for the primary
linguistic terms very poor, poor, average, good, very good, and excellent;

Fig 1. Fuzzy sets for output quality assessment
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4.2 Basic definitions

In this subsection, we summarize basic notions and definitions from fuzzy set theory that
are useful in the next section.

Definition 4.1. If X is the universe of discourse, then a fuzzy set Ã in X is a set of
ordered pairs as follows:

Ã =
{
(x, µÃ(x)) | x ∈ X

}
µÃ(x) is called the membership function (MF) or membership degree (also degree of com-
patibility or degree of truth) of x in the fuzzy set Ã. The range of the membership function
is [0, 1]. Notice that the membership function of a crisp fuzzy subset of X is equal to the
characteristic function of the corresponding set. If sup

{
µÃ(x) | x ∈ X

}
= 1, then Ã is

said to be normalized. The upper-level set of the membership function µÃ of Ã at α ∈ [0, 1]
is denoted by (Ã)α and called the α − cut or α − level set of A; that is

(Ã)α = {x ∈ X | µÃ(x) > α}.

(i) A fuzzy set Ã is called a fuzzy interval if for each α ∈ [0, 1], (Ã)α is a nonempty and
convex subset of ℜ.

(ii) A fuzzy interval Ã is called a fuzzy number if its core is a singleton, where

Core(Ã) = {x ∈ X | µÃ(x) = 1}.

(iii) Let X = ℜ. A fuzzy number Ã is said to be nonnegative if for all x ∈ (−∞, 0), we
have µÃ(x) = 0.

5 Economic efficiency with fuzzy data

In this section, we extend the classical non-convex Farrells theoretical framework to include
linguistic terms. Toward this end, we transform the linguistic terms or ordinal data to
fuzzy data with corresponding membership functions, and then transform the non-convex
RE formulas to a family of crisp closed-form expressions based upon α − cuts concepts.
Since in the RE models, the objective function is a special fractional program with the
same coefficients in the denominator and numerator, it is too complicated to solve. To
remedy this problem, we make use of extreme points of α − level of output prices as pro-
vided in the previous sections.

Suppose that each DMUj consumes m fuzzy inputs x̃t
j = (x̃1j , x̃2j , . . . , x̃mj) to produce

s fuzzy outputs ỹt
j = (ỹ1j , ỹ2j , . . . , ỹsj). Also, we assume that output prices are uncertain

in the form of linguistic terms, and we have expressed them by fuzzy data with the mem-
bership function provided in the previous section as:p̃t

o = (p̃1o, p̃2o, . . . , p̃so). To measure
the fuzzy efficiency of DMUo with non-convex assumption of technology relative to other
DMUs, the following fuzzy DEA model is provided:

RENC,Φ
o (p̃o, x̃o) = min

{
p̃t

oỹo

p̃t
oỹ

: ỹ ∈ LNC,Φ(x̃o)
}

(5.7)
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The following notations are useful in the remaining sections. Given α ∈ [0, 1], for all i, s, j,
we denote

(x̃ij)L
α = inf {t ∈ ℜ | t ∈ (x̃ij)α} = inf(x̃ij)α, (x̃ij)R

α = sup {t ∈ ℜ | t ∈ (x̃ij)α} = sup(x̃ij)α

(ỹrj)L
α = inf {t ∈ ℜ | t ∈ (ỹrj)α} = inf(ỹrj)α, (ỹrj)R

α = sup {t ∈ ℜ | t ∈ (ỹrj)α} = sup(ỹrj)α

(ỹrj)L
α = inf {t ∈ ℜ | t ∈ (p̃ro)α} = inf(p̃ro)α, (p̃ro)R

α = sup {t ∈ ℜ | t ∈ (p̃ro)α} = sup(p̃ro)α

Let (REo)L
α and (REo)R

α denote the lower and upper bounds of the α−cut of the member-
ship function of the RE measure for the DMU under evaluation, DMUo. The approach for
constructing the membership function µ

R̃E
proposed in this article is to derive the α− cut

of µ
R̃E

.
We propose the following model to obtain the lower bound of the α − cut of the

membership function of the RE measure for DMUo.

(RENC,Φ
o )L

α = min
xj ∈ [(x̃j)

L
α, (x̃j)

R
α ]

yj ∈ [(ỹj)
L
α, (ỹj)

R
α ]

po ∈ [(p̃o)
L
α, (p̃o)

R
α ]

j = 1, . . . , n



min
j=1,...,n

{
pt

oyo

pt
oyj

: xj 6 xo

}
for Φ = V RS

min
j=1,...,n

{
max

i∈I(xo)

(
xij

xio

)
.
pt

oyo

pt
oyj

}
for Φ = CRS

min{
j : max

i=1,...,m
(xij/xio) 6 1

}{ max
i∈I(xo)

(
xij

xio

)
.
pt

oyo

pt
oyj

}
for Φ = NIRS

min
j=1,...,n

{
max

(
max

i∈I(xo)

(
xij

xio

)
, 1

)
.
pt

oyo

pt
oyj

}
for Φ = NDRS,

(5.8)

From Theorem (3.3), (RENC,Φ
o )L

α, can be computed easily as follows:

(RENC,Φ
o )L

α = min
v ∈ Vm



min

(
min

j ̸=o,j=1,...,n

{
pvt

o (ỹo)
L
α

pvt

o (ỹj)
R
α

: (x̃j)
L
α 6 (x̃o)

R
α

}
, 1

)
for Φ = V RS

min

(
min

j ̸=o,j=1,...,n

{
(λ̃j)

oR

α .
(p̃o)

vt

α (ỹo)
L
α

(p̃o)
vt

α (ỹj)
R
α

}
, 1

)
for Φ = CRS

min

 min{
j ̸= o : (λ̃j)

oR

α 6 1
}
{

max
i∈I(yo)L

α

(λ̃j)
oR

α .
(p̃o)

vt

α (ỹo)
L
α

(p̃o)
vt

α (ỹj)
R
α

}
, 1

 for Φ = NIRS

min

(
min

j=1,...,n

{
max((λ̃j)

oR

α , 1).
(p̃o)

vt

α (ỹo)
L
α

(p̃o)
vt

α (ỹj)
R
α

}
, 1

)
for Φ = NDRS

(5.9)

Where

(λ̃o
j)

R
α = max

i∈I(xR
o )

(
xL

ij

xR
io

)
.

We propose the following model for obtaining the upper bound of the α − cut of the
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membership function of the RE measure for DMUo.

(RENC,Φ
o )R

α = max
xj ∈ [(x̃j)

L
α, (x̃j)

R
α ]

yj ∈ [(ỹj)
L
α, (ỹj)

R
α ]

po ∈ [(p̃o)
L
α, (p̃o)

R
α ]

j = 1, . . . , n



min
j=1,...,n

{
pt

oyo

pt
oyj

: xj 6 xo

}
for Φ = V RS

min
j=1,...,n

{
max

i∈I(xo)

(
xij

xio

)
pt

oyo

pt
oyj

}
for Φ = CRS

min{
j : max

i=1,...,m
(xij/xio) 6 1

}{ max
i∈I(xo)

(
xij

xio

)
pt

oyo

pt
oyj

}
for Φ = NIRS

min
j=1,...,n

{
max

(
max

i∈I(xo)

(
xij

xio

)
, 1

)
pt

oyo

pt
oyj

}
for Φ = NDRS,

(5.10)

From Theorem (3.3), (RENC,Φ
o )R

α can be computed by the following model,

(RENC,Φ
o )R

α =

max p̂t
o(ỹo)

R
α : p̂t

o(ỹo)
R
α 6 1, p̂t

o(ỹj)
L
α 6 1; j ̸= o, (x̃j)

R
α 6 (x̃o)

L
α, t(p̃o)

L
α 6 p̂o 6 t(p̃o)

R
α Φ = V RS

max p̂t
o(ỹo)

R
α : p̂t

o(ỹo)
R
α 6 1,

p̂t
o(ỹj)L

α

(λ̃j)oL
α

6 1; j ̸= o, t(p̃o)
L
α 6 p̂o 6 t(p̃o)

R
α Φ = CRS

max p̂t
o(ỹo)

R
α : p̂t

o(ỹo)
R
α 6 1,

p̂t
o(ỹj)L

α

(λ̃j)oL
α

6 1; j ̸= o, (λ̃j)
oL

α 6 1, t(p̃o)
L
α 6 p̂o 6 t(p̃o)

R
α Φ = NIRS

max p̂t
o(ỹo)

R
α : p̂t

o(ỹo)
R
α 6 1,

p̂t
o(ỹj)L

α

(λ̃j)oL
α

6 1; j ̸= o, (λ̃j)
oL

α > 1, t(p̃o)
L
α 6 p̂o 6 t(p̃o)

R
α Φ = NDRS

(5.11)

where (λ̃j)oL

α = max
i∈I(xL

o )

(
(x̃ij)R

α

(x̃io)L
α

)
.

The family of intervals [(RENC,Φ
o )R

α , (RENC,Φ
o )R

α ]; α ∈ [0, 1] reveals the shape of µR̃E ,
although the exact function form is not known explicitly. After the RE scores of all DMUs
are obtained, a subsequent task is to rank the DMUs to determine the better ones. One
can refer to [6, 7, 12, 16, 17, 19, 20], for example, for ranking methods of DMUs.

Example 5.1. In order to illustrate how the proposed method is employed to find RE
measures, consider eight DMUs with input, output, and output price data as given in Table
3. We assume that the output prices are expressed in linguistic terms. Also, for simplicity,
we assume that the input and output data are symmetric triangular fuzzy numbers.

Since an analytical solution is not attainable in this example, we obtain the bounds of
RE with different values of α: 0, 0.2, 0.4, 0.6, 0.8, 1. Figure 2 shows the rough shape
of the membership function of DMU F with various RTS assumptions of technology con-
structed by these α values. If we obtain the α − cuts of the membership functions of RE
with more values of α, the shape of the membership functions will be closer to the real
shape.
Though the data consists of symmetric triangular fuzzy numbers, Figure 2 shows that the
RE measure is not triangular. Also, the efficiency measure of DMU H is a crisp value,
despite the fact that the whole data includes fuzzy numbers.
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Table 3
The fuzzy inputs, outputs, and output prices.
DMUs x1 x2 y1 y2 p1 p2 p1f p2f
DMU A (4, 0.5) (2.1,0.2) (2.6,0.3) (4.1,0.3) Good Average (3,1) (2,1)
DMU B (2.9,0.1) (1.5,0.1) (2.2,0) (3.5,0.2) Very Good Good (4,1) (3,1)
DMU C (4.9,0.5) (2.6,0.4) (3.2,0.5) (5.1,0.8) Poor Average (1,1) (2,1)
DMU D (4.1, 0.7) (2.3,0.1) (2.9,0.4) (5.7,0.2) Excellent Average (5,1) (2,1)
DMU E (6.5,0.6) (4.1,0.5) (5.1,0.7) (7.4,0.9) Good Good (3,1) (3,1)
DMU F (3, 0.5) (2,0.4) (2.5,0.2) (5.5,0.4) Very Poor Good (4,1) (1,1)
DMU G (4,0.3) (3,0.1) (5,0.3) (6,0.5) Excellent Good (1,1) (3,1)
DMU H (2,0.1) (3,0.4) (2,0.2) (5,0.8) Poor Average (1,1) (2,1)

Table 4
The α − cuts of the RE measures at six α values

α = 0
DMUs VRSL VRSU CRSL CRSU NIRSL NIRSU NDRSL NDRSU
DMU A 0.628019 1 0.481837 1 0.481837 1 0.591744 1
DMU B 0.385965 1 0.624606 1 0.624606 1 0.385965 0.921752
DMU C 0.567251 1 0.388701 1 0.388701 1 0.567251 1
DMU D 0.737705 1 0.618557 1 0.618557 1 0.659091 1
DMU E 0.665254 1 0.321405 1 0.321405 1 0.665254 1
DMU F 0.69697 1 0.524371 1 0.677056 1 0.524371 1
DMU G 1 1 0.662094 1 0.662094 1 0.978904 1
DMU H 1 1 0.821745 1 1 1 0.803676 1

α = 0.2
DMUs VRSL VRSU CRSL CRSU NIRSL NIRSU NDRSL NDRSU
DMU A 0.681083 1 0.537015 1 0.537015 1 0.63684 1
DMU B 1 1 0.685022 1 1 1 0.422842 0.857509
DMU C 0.607293 1 0.299968 1 0.299968 1 0.607293 1
DMU D 0.785439 1 0.6771 1 0.6771 1 0.707888 1
DMU E 0.722283 1 0.370136 1 0.370136 1 0.722283 1
DMU F 1 1 0.584169 1 0.926663 1 0.584169 1
DMU G 1 1 0.760283 1 0.760283 1 1 1
DMU H 1 1 0.907238 1 1 1 0.902578 1

α = 0.4
DMUs VRSL VRSU CRSL CRSU NIRSL NIRSU NDRSL NDRSU
DMU A 0.752587 1 0.596646 0.99689 0.596646 0.99689 0.68463 1
DMU B 1 1 0.747874 1 1 1 0.462775 0.785746
DMU C 0.803759 1 0.345089 1 0.345089 1 0.672149 1
DMU D 0.997438 1 0.743852 1 0.743852 1 0.762527 1
DMU E 0.806039 1 0.441687 1 0.441687 1 0.806039 1
DMU F 1 1 0.64559 1 0.984534 1 0.64559 1
DMU G 1 1 0.83499 1 0.83499 1 1 1
DMU H 1 1 0.998084 1 1 1 0.998084 1
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α = 0.6
DMUs VRSL VRSU CRSL CRSU NIRSL NIRSU NDRSL NDRSU
DMU A 0.788488 1 0.665513 0.942628 0.665513 0.942628 0.740872 0.962533
DMU B 1 1 0.818591 1 1 1 0.506065 0.719946
DMU C 0.84492 1 0.584721 0.991297 0.584721 0.93364 0.747268 1
DMU D 1 1 0.806097 1 0.806097 1 0.815003 1
DMU E 0.906175 1 0.529874 1 0.529874 1 0.906175 1
DMU F 1 1 0.730541 1 1 1 0.730541 1
DMU G 1 1 0.888173 1 0.888173 1 1 1
DMU H 1 1 1 1 1 1 1 1

α = 0.8
DMUs VRSL VRSU CRSL CRSU NIRSL NIRSU NDRSL NDRSU
DMU A 0.798908 1 0.716777 0.888022 0.716777 0.888022 0.797052 0.888022
DMU B 1 1 0.892311 1 1 1 0.553041 0.659554
DMU C 0.889155 0.972999 0.66835 0.872162 0.66835 0.84441 0.822413 1
DMU D 1 1 0.834421 0.972231 0.856838 1 0.834421 0.972231
DMU E 1 1 0.634905 0.925568 0.634905 0.925568 1 1
DMU F 1 1 0.804176 0.994664 1 1 0.804176 0.994664
DMU G 1 1 0.97769 1 0.97769 1 1 1
DMU H 1 1 1 1 1 1 1 1

α = 1.0
DMUs VRSL VRSU CRSL CRSU NIRSL NIRSU NDRSL NDRSU
DMU A 0.8375 0.8375 0.797619 0.797619 0.797619 0.797619 0.8375 0.8375
DMU B 1 1 0.971069 0.971069 1 1 0.604069 0.604069
DMU C 0.937063 0.937063 0.763533 0.763533 0.763533 0.763533 0.909502 0.909502
DMU D 1 1 0.913043 0.913043 0.958372 0.958372 0.913043 0.913043
DMU E 1 1 0.762195 0.762195 0.762195 0.762195 1 1
DMU F 1 1 0.894231 0.894231 1 1 0.894231 0.894231
DMU G 1 1 1 1 1 1 1 1
DMU H 1 1 1 1 1 1 1 1

Fig. 2. Membership function of µR̃E with (i)VRS, (ii)CRS,(iii)NIRS, and (iv)NDRS assumptions
of RTS

6 Conclusion

In this paper, non-convex RE models with various RTS assumptions of technology were
developed to include the bounded inputs, outputs, and output prices. A pair of simple
closed-form expressions was provided for obtaining the bounds of RE. Thus, we are able to
obtain the bounds of RE without solving any LP. In an empirical study, we may encounter
cases in which the output price information has been collected by polling, where linguistic
terms such as excellent, good, medium, and bad are used to reflect a kind of general



274 A. Mostafaee / IJIM Vol. 3, No. 4 (2011) 259-275

situation. Therefore, we extended the RE models to include fuzzy data. In order to
obtain the membership functions of RE measures, we made use of the well-known α− cut
approach, which is simple to apply. Since in EE models the objective function is in
a special fractional LP form, in which the numerator and denominator have the same
coefficient, solving the model is complicated. In this study, we proved that the optimal
output price vector occurs at an extreme point of output prices. Though we only deal
with RE measures, the proposed approach can be directly adapted to cost efficiency and
profit efficiency measures.
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