
Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 9, No. 4, 2017 Article ID IJIM-00744, 9 pages

Research Article

G-frames in Hilbert Modules Over Pro-C*-algebras

N. Haddadzadeh ∗†

Received Date: 2015-08-22 Revised Date: 2016-10-29 Accepted Date: 2017-04-09

————————————————————————————————–

Abstract

G-frames are natural generalizations of frames which provide more choices on analyzing functions
from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized
on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules
over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they
share many useful properties with their corresponding notions in Hilbert spaces. We also show that,
by having a g-frame and an invertible operator in this spaces, we can produce the corresponding dual
g-frame. Finally we introduce the canonical dual g-frames and provide a reconstruction formula for
the elements of such Hilbert modules.
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1 Introduction

F
rames that are a generalization of bases in
Hilbert space, were introduced by Duffin

and Schaeffer [9] in 1952. They have many ap-
plications, such as: study and characterization
of function spaces [8], signal and image pro-
cessing, wireless communications, transceiver de-
sign, data compression and so on. we refer
to [2, 3, 6, 7, 11, 12, 21] for an introduction to
the frame theory and its applications. Diverse
applications of frame theory in science and en-
gineering, led to the theory, should be extended
to diferent forms. G-frames are natural gener-
alizations of frames in Hilbert space [20]. In this
paper, we generalize the concept of g-frame into a
general space which is called, Hilbert module over
a Pro-C*-algebra. We also introduce the g-frame
transforms and study their properties. we show
that many of the properties and the main results
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of frame theory in the Hilbert space, in this case
is also true. Finally, we introduce the canonical
dual g-frames and provide a reconstraction for-
mula of the elements of such spaces.

2 Hilbert pro-C*-modules

In this section, we recall some of the basic def-
initions and properties of pro-C*-algebras and
Hilbert modules over them from [13, 18, 19].

A pro-C*-algebra is a complete Hausdorff com-
plex topological ∗-algebra A whose topology is de-
termined by its continuous C*-seminorms in the
sense that a net {aλ} converges to 0 iff p(aλ) → 0
for any continuous C*-seminorm p on A and we
have:

1) p(ab) ≤ p(a)p(b)

2) p(a∗a) = p(a)2

for all C*-seminorm p on A and a, b ∈ A.
If the topology of a pro-C*-algebra is deter-

mined by only countably many C*-seminorms,
then it is called a σ-C*-algebra.
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Let A be a unital pro-C*-algebra with unit 1A
and let a ∈ A. Then, the spectrum sp(a) of a ∈ A
is the set {λ ∈ C : λ1A−a is not invertible}. If
A is not unital, then the spectrum is taken with
respect to its unitization Ã.

If A+ denotes the set of all positive elements
of A, then A+ is a closed convex cone such that
A+ ∩ (−A+) = 0. We denote by S(A), the set of
all continuous C*-seminorms on A. For p ∈ S(A),
we put ker(p) = {a ∈ A : p(a) = 0}; which is
a closed ideal in A. For each p ∈ S(A), Ap =
A/ker(p) is a C*-algebra in the norm induced by
p which defined as;

∥a+ ker(p)∥Ap= p(a) , p ∈ S(A).

We have A = lim←−
p

Ap (see [19]).

The canonical map from A onto Ap for p ∈
S(A), will be denoted by πp and the image of
a ∈ A under πp will be denoted by ap. Hence
l2(Ap) is a Hilbert Ap-module (see [14]), with the
norm, defined as:

∥(πp(ai))i∈N∥p= [ p(
∑
i∈N

aiai
∗)]1/2 ,

p ∈ S(A) , (πp(ai))i∈N ∈ l2(Ap).

Example 2.1 Every C*-algebra is a pro-C*-
algebra.

Example 2.2 A closed ∗-subalgebra of a pro-C*-
algebra is a pro-C*-algebra.

Example 2.3 ([19]) Let X be a locally compact
Hausdorff space and let A = C(X) denotes all
continuous complex-valued functions on X with
the topology of uniform convergence on compact
subsets of X. Then A is a pro-C*-algebra.

Example 2.4 ([19]) A product of C*-algebras
with the product topology is a pro-C*-algebra.

Remark 2.1 a ≥ 0 denotes a ∈ A+ and a ≤ b
denotes a− b ≥ 0.

Proposition 2.1 ([13]) Let A be a unital pro-
C*-algebra with an identity 1A. Then for any p ∈
S(A), we have:

1. p(a) = p(a∗) for all a ∈ A

2. p(1A) = 1

3. If a, b ∈ A+ and a ≤ b , then p(a) ≤ p(b)

4. a ≤ b iff ap ≤ bp

5. If 1A ≤ b , then b is invertible and b−1 ≤ 1A

6. If a, b ∈ A+ are invertible and 0 ≤ a ≤ b ,
then 0 ≤ b−1 ≤ a−1

7. If a, b, c ∈ A and a ≤ b , then c∗ac ≤ c∗bc

8. If a, b ∈ A+ and a2 ≤ b2 , then 0 ≤ a ≤ b.

Definition 2.1 A pre-Hilbert module over pro-
C*-algebra A is a complex vector space E which
is also a left A-module compatible with the com-
plex algebra structure, equipped with an A-valued
inner product ⟨., .⟩ : E × E → A which is C-and
A-linear in its first variable and satisfies the fol-
lowing conditions:

1. ⟨x, y⟩∗ = ⟨y, x⟩

2. ⟨x, x⟩ ≥ 0

3. ⟨x, x⟩ = 0 iff x = 0

for every x, y ∈ E. We say that E is a Hilbert A-
module (or Hilbert pro-C*-module over A) if E is
complete with respect to the topology determined
by the family of seminorms

p̄E(x) =
√

p(⟨x, x⟩) x ∈ E , p ∈ S(A).

Let E be a pre-Hilbert A-module. By ([22],
Lemma 2.1), for every p ∈ S(A) and for all
x, y ∈ E, the following Cauchy-Bunyakovskii in-
equality holds

p(⟨x, y⟩)2 ≤ p(⟨x, x⟩)p(⟨y, y⟩).

Consequently, for each p ∈ S(A), we have:

p̄E(ax) ≤ p(a)p̄E(x) a ∈ A , x ∈ E.

If E is a Hilbert A-module and p ∈ S(A), then
ker(p̄E) = {x ∈ E : p(⟨x, x⟩) = 0} is a closed
submodule of E and Ep = E/ker(p̄E) is a Hilbert
Ap-module with scalar product

ap.(x+ ker(p̄E)) = ax+ ker(p̄E) , a ∈ A
, x ∈ E

and inner product

⟨ x+ ker(p̄E) , y + ker(p̄E) ⟩ = ⟨x, y⟩p ,
x, y ∈ E.
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By ([19], Proposition 4.4), we have E ∼= lim←−
p

Ep .

Example 2.5 If A is a pro-C*-algebra, then it
is a Hilbert A-module with respect to the inner
product defined by :

⟨a, b⟩ = ab∗ a, b ∈ A .

Example 2.6 (See [19], Remark 4.8) Let l2(A)
be the set of all sequences (an)n∈N of elements of a
pro-C*-algebra A such that the series

∑∞
i=1 aiai

∗

is convergent in A. Then l2(A) is a Hilbert mod-
ule over A with respect to the pointwise operations
and inner product defined by:

⟨ (ai)i∈N , (bi)i∈N ⟩ =
∑∞

i=1 aibi
∗.

Example 2.7 Let Ei for i ∈ N , be a Hilbert A-
module with the topology induced by the family of
continuous seminorms {p̄i}p∈S(A) defined as:

p̄i(x) =
√

p(⟨x, x⟩) , x ∈ Ei.

Direct sum of {Ei}i∈N is defined as follows:⊕
i∈NEi = {(xi)i∈N : xi ∈

Ei ,
∑∞

i=1⟨xi, xi⟩ is convergent in A}.

It has been shown (see [17], Example 3.2.3) that
the direct sum

⊕
i∈NEi is a Hilbert A-module with

A-valued inner product ⟨x, y⟩ =
∑∞

i=1⟨xi, yi⟩,
where x = (xi)i∈N and y = (yi)i∈N are in

⊕
i∈NEi

, pointwise operations and a topology determined
by the family of seminorms:

p̄(x) =
√

p(⟨x, x⟩) , x ∈
⊕

i∈NEi , p ∈ S(A).

The direct sum of a countable copies of a Hilbert
module E is denoted by l2(E).

We recall that an element a in A (x in E) is
bounded, if

∥a∥∞= sup{p(a) ; p ∈ S(A)} < ∞,

(∥x∥∞= sup{p̄E(x) ; p ∈ S(A)} < ∞).

The set of all bounded elements in A (in E) will
be denoted by b(A) (b(E)). We know that b(A) is
a C*-algebra in the C*-norm ∥.∥∞ and b(E) is a
Hilbert b(A)-module.([19], Proposition 1.11) and
([22], Theorem 2.1)

Let M ⊂ E be a closed submodule of a Hilbert
A-module E and let

M⊥ = {y ∈ E : ⟨x, y⟩ = 0 for all x ∈ M}.

Note that the inner product in a Hilbert mod-
ules is separately continuous, hence M⊥ is a
closed submodule of the Hilbert A-module E.
Also, a closed submodule M in a Hilbert A-
module E is called orthogonally complementable
if E = M ⊕ M⊥. A closed submodule M in a
Hilbert A-module E is called topologically com-
plementable if there exists a closed submodule N
in E such that M ⊕N = E , N ∩M = {0}.

Let A be a pro-C*-algebra and let E and F be
two Hilbert A-modules. An A-module map T :
E → F is said to bounded if for each p ∈ S(A),
there is Cp > 0 such that:

p̄F (Tx) ≤ Cp.p̄E(x) (x ∈ E),

where p̄E , respectively p̄F , are continuous semi-
norms on E, respectively F . A bounded A-
module map from E to F is called an operator
from E to F . We denote the set of all opera-
tors from E to F by HomA(E,F ), and we set
HomA(E,E) = EndA(E).
Let T ∈ HomA(E,F ). We say T is adjointable if
there exists an operator T ∗ ∈ HomA(F,E) such
that:

⟨Tx, y⟩ = ⟨x, T ∗y⟩

holds for all x ∈ E , y ∈ F .
We denote by Hom∗A(E,F ), the set of all
adjointable operators from E to F and
End∗A(E) = Hom∗A(E,E).

By a little modification in the proof of ([22],
Lemma 3.2), we have the following result:

Proposition 2.2 Let T : E → F and T ∗ : F →
E be two maps such that the equality

⟨x, T ∗y⟩ = ⟨Tx, y⟩

holds for all x ∈ E , y ∈ F . Then
T ∈ Hom∗A(E,F ).

It is easy to see that for any p ∈ S(A), the map
defined by:

p̂E,F (T ) = sup{ p̄F (Tx) : x ∈ E,

p̄E(x) ≤ 1} , T ∈ HomA(E,F ),

is a seminorm on HomA(E,F ). Moreover
HomA(E,F ) with the topology determined by
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the family of seminorms {p̂E,F }p∈S(A) is a com-
plete locally convex space (see [15], Proposi-
tion 3.1). Moreover using ([22], Lemma 2.2), for
each y ∈ F and p ∈ S(A), we can write:

p̄E(T
∗y) = sup{p⟨T ∗y, x⟩ : p̄E(x) ≤ 1}

= sup{p⟨Tx, y⟩ : p̄E(x) ≤ 1}
≤ sup{p̄F (Tx) : p̄E(x) ≤ 1}.p̄F (y)
= p̂(T )p̄F (y).

Thus for each p ∈ S(A), we have p̂F,E(T
∗) ≤

p̂E,F (T ) and since T ∗∗ = T , by replacing T with
T ∗, for each p ∈ S(A), we obtain:

p̂F,E(T
∗) = p̂E,F (T ). (2.1)

By ([19], Proposition 4.7), we have the canonical
isomorphism

HomA(E,F ) ∼= lim←−
p

HomAp(Ep, Fp).

Consequently, End∗A(E) is a pro-C*-algebra for
any Hilbert A-module E and its topology is ob-
tained by {p̂E}p∈S(A) ([22]). By ([22], Proposi-
tion 3.2), T is a positive element of End∗A(E) if
and only if ⟨Tx, x⟩ ≥ 0 for any x ∈ E.

Definition 2.2 Let E and F be two Hilbert mod-
ules over pro-C*-algebra A. Then the operator
T : E → F is called uniformly bounded(below), if
there exists C > 0 such that for each p ∈ S(A)
and x ∈ E,

p̄F (Tx) ≤ Cp̄E(x). (2.2)

(Cp̄E(x) ≤ p̄F (Tx)) (2.3)

The number C is called an upper bound for T
and we set:

∥T∥∞= inf{C : C is an upper bound for T}.

Clearly, in this case we have:

p̂(T ) ≤ ∥T∥∞ , ∀p ∈ S(A).

Let T be an invertible element in End∗A(E)
such that both are uniformly bounded. Then by
([1], Proposition 3.2), for each x ∈ E we have the
following inequality:

∥T−1∥−2∞ ⟨x, x⟩ ≤ ⟨Tx, Tx⟩ ≤ ∥T∥2∞⟨x, x⟩. (2.4)

The following proposition will be used in the
next section.

Proposition 2.3 Let T be an uniformly bounded
below operator in HomA(E,F ). then T is closed
and injective.

Proof. Let Tx = 0, then by (2.2) we have
p̄E(x) = 0, for all p ∈ S(A). Therefore x = 0.
It follows that T is injective.
Now we show that T is closed. Let M be a closed
subset of E and {Txα}α a net in TM such that
converges to y ∈ F and so is a Cauchy net. By
assumptions of the theorem, there exists C > 0
such that for each p ∈ S(A),

Cp̄E(xβ − xα) ≤ p̄F (Txβ − Txα).

Hence {xα}α is a Cauchy net in the closed sub-
set M and so converges to x ∈ M . Since T is
cotinuous, {Txα}α converges to Tx. But F is a
Hausdorff space and the convergent net in these
spaces has a unique limit.Thus we have y = Tx.
Therefore TM is closed in F . Consequently T is
closed.

3 G-frames in Hilbert modules

Throughout this section, A is a pro-C*-algebra,
X and Y are two Hilbert A-modules. also {Yi}i∈I
is a countable sequence of closed submodules of
Y .

Definition 3.1 A sequence Λ = {Λi ∈
Hom∗A(X,Yi)}i∈I is called a g-frame for X with
respect to {Yi}i∈I if there are two positive con-
stants C and D such that for every x ∈ X,

C⟨x, x⟩ ≤
∑
i∈I

⟨Λix,Λix⟩ ≤ D⟨x, x⟩.

The constants C andD are called g-frame bounds
for Λ. The g-frame is called tight if C = D and
called a Parseval if C = D = 1. If in the above
we only need to have the upper bound, then Λ is
called a g-Bessel sequence. Also if for each i ∈ I,
Yi = Y , we call it a g-frame for X with respect
to Y .

Example 3.1 Let {xi}i∈I be a frame for X with
bounds, C and D. Then by definition for each
x ∈ X,

C⟨x, x⟩ ≤
∑
i∈I

⟨x, xi⟩⟨xi, x⟩ ≤ D⟨x, x⟩.

Now for i ∈ I define the operator Λxi as follows:

Λxi : X → A , Λxi(x) = ⟨x, xi⟩.



N. Haddadzadeh, /IJIM Vol. 9, No. 4 (2017) 259-267 263

Clearly Λxi is a bounded operator in HomA(X,A)
and has adjoint as follows:

Λ∗xi
: A → X , Λ∗xi

(a) = axi.

Hence Λxi ∈ Hom∗A(X,A) , i ∈ I. Also for each
x ∈ X,

C⟨x, x⟩ ≤
∑
i∈I

⟨x, xi⟩⟨xi, x⟩ =
∑
i∈I

⟨Λix,Λix⟩

≤ D⟨x, x⟩.

Therefore Λ = {Λxi}i∈I is a g-frame for X with
respect to A.

Let Λ = {Λi ∈ Hom∗A(X,Yi)}i∈I be a g-frame
for X with respect to {Yi}i∈I and bounds C , D.
We define the corresponding g-frame transform
as follows:

TΛ : X →
⊕
i∈I

Yi , TΛ(x) = {Λix}i∈I .

Since Λ is a g-frame, hence for each x ∈ X we
have:

C⟨x, x⟩ ≤
∑
i∈I

⟨Λix,Λix⟩ ≤ D⟨x, x⟩ .

So TΛ is well-defined. Also for any p ∈ S(A) and
x ∈ X the following inequality is obtained:

√
C p̄X(x) ≤ p̄⊕iYi(TΛx) ≤

√
D p̄X(x) .

From the above, it follows that the g-frame trans-
form is an uniformly bounded below operator in
HomA(X,

⊕
i∈I Yi). Thus by Proposition 2.2, TΛ

is closed and injective.
Also, we define the synthesis operator for g-frame
Λ as follows:

T ∗Λ :
⊕
i∈I

Yi → X , T ∗Λ({yi}i) =
∑
i∈I

Λ∗i (yi)

(3.5)

where Λ∗i is the adjoint operator of Λi.

Proposition 3.1 The synthesis operator defined
by (3.5) is well-defined, uniformly bounded and
adjoint of the transform operator.

Proof. Since Λ = {Λi : i ∈ I} is a g-frame for
X with respect to {Yi}i∈I , there exist positive
constants C and D such that for any x ∈ X,

C⟨x, x⟩ ≤
∑
i∈I

⟨Λix,Λix⟩ ≤ D⟨x, x⟩ .

Let J be an arbitrary finite subset of I. Us-
ing Cauchy-Bunyakovskii inequality and ([22],
Lemma 2.2), for any p ∈ S(A) and (yi)i ∈ ⊕i∈IYi
we have:

p̄X(
∑
i∈J

Λ∗i (yi))

= sup{p⟨
∑
i∈J

Λ∗i (yi), x⟩ : x ∈ X , p̄X(x) ≤ 1}

= sup{p(
∑
i∈J

⟨yi,Λix⟩) : x ∈ X , p̄X(x) ≤ 1}

≤ sup
p̄X(x)≤1

p(
∑
i∈J

⟨yi, yi⟩)0.5p(
∑
i∈J

⟨Λix,Λix⟩)0.5

≤ sup
p̄X(x)≤1

(
√
D p̄X(x)(p

∑
i∈J

⟨yi, yi⟩)1/2
)

≤
√
D

(
p(
∑
i∈J

⟨yi, yi⟩)

)1/2

.

Now, since the series
∑

i∈I⟨yi, yi⟩ converges in A,
the above inequality shows that

∑
i∈I Λ

∗
i (yi) is

convergent. Hence T ∗Λ is well-defined. On the
other hand for any x ∈ X and (yi)i ∈ ⊕i∈IYi , we
have:

⟨TΛ(x), (yi)i⟩ = ⟨(Λix)i, (yi)i⟩

=
∑
i∈I

⟨Λix, yi⟩

=
∑
i∈I

⟨x,Λ∗i yi⟩

= ⟨x,
∑
i∈I

Λ∗i yi⟩

= ⟨x, T ∗Λ(yi)i⟩ .

Therefore by Proposition 2.2 it follows that the
synthesis operator is adjoint of the transform op-
erator. Also, for any p ∈ S(A) we have:

p̄X(T ∗Λ(y)) ≤
√
D p̄⊕i∈IYi(y) ,

y = (yi)i ∈ ⊕i∈IYi

Hence the synthesis operator is uniformly
bounded.

Let Λ = {Λi , i ∈ I} be a g-frame for X
with respect to {Yi}i∈I . Define the correspond-
ing g-frame operator SΛ as follows:

SΛ = T ∗ΛTΛ : X → X , SΛ(x) =
∑
i∈I

Λi
∗Λix

Since SΛ is a combination of two bounded oper-
ators, it is a bounded operator.
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Theorem 3.1 Let Λ = {Λi}i∈I be a g-frame for
X with respect to {Yi}i∈I and with bounds C, D.
Then SΛ is invertible positive operator. Also it is
a self-adjoint operator such that:

CIX ≤ SΛ ≤ DIX . (3.6)

Here IX is the identity function on X.

Proof. According to the definition of the trans-
form operator, for any x ∈ X we can write:

⟨TΛ(x), TΛ(x)⟩ = ⟨{Λix}i∈I , {Λix}i∈I⟩

=
∑
i∈I

⟨Λix,Λix⟩ .

Since Λ is a g-frame for X with bounds C and D,
for each x ∈ X it follows that:

C⟨x, x⟩ ≤ ⟨TΛ(x), TΛ(x)⟩ ≤ D⟨x, x⟩ .

On the other hand,

⟨SΛ(x), x⟩ = ⟨T ∗ΛTΛ(x), x⟩ = ⟨TΛ(x), TΛ(x)⟩
= ⟨x, T ∗ΛTΛ(x)⟩ = ⟨x, SΛ(x)⟩ .

Consequently, SΛ is a self-adjoint operator. Also
for any x ∈ X, we obtain:

C⟨x, x⟩ ≤ ⟨SΛ(x), x⟩ ≤ D⟨x, x⟩ .

From the above, it follows that the g-frame
operator is positive and (3.6) is obtained too.
Moreover by Proposition it follows that SΛ is
invertible.

By previous discussions, we have the following
useful result.

Remark 3.1 According to (3.6) and Proposition
2.1. it follows that:

D−1IX ≤ S−1Λ ≤ C−1IX .

Hence the g-frame operator and its inverse belong
to End∗A(X)

Now we are able to generalize ([4], Theorem 3.2),
to g-frames in Hilbert modules.

Theorem 3.2 For each i ∈ I let Λi ∈
Hom∗A(X,Yi) and {xij : j ∈ Ji} be a frame in
Yi with frame bounds Ci and Di. Suppose that:

0 < C = inf
i
Ci ≤ D = sup

i
Di < ∞

Then the following conditions are equivalent.

1. {Λ∗ixij : j ∈ Ji, i ∈ I} is a frame for X.

2. {Λi : i ∈ I} is a g-frame for X with respect
to {Yi}i∈I .

Proof. Since for each i ∈ I, {xij : j ∈ Ji} is a
frame for Yi with bounds Ci and Di , we obtain:

Ci⟨Λix,Λix⟩ ≤
∑
j∈Ji

⟨Λix, xij⟩⟨xij ,Λix⟩

≤ Di⟨Λix,Λix⟩ .

Therefore for each x ∈ X we have:

C
∑
i∈I

⟨Λix,Λix⟩ ≤
∑
i∈I

Ci⟨Λix,Λix⟩

≤
∑
i∈I

∑
j∈Ji

⟨Λix, xij⟩⟨xij ,Λix⟩

≤
∑
i∈I

Di⟨Λix,Λix⟩

≤ D
∑
i∈I

⟨Λix,Λix⟩ .

Since each Λi is adjointable, the above inequality
can be summarized as follows:

C
∑
i∈I

⟨Λix,Λix⟩ ≤
∑
i∈I

∑
j∈Ji

⟨x,Λ∗ixij⟩⟨Λ∗ixij , x⟩

(3.7)

≤ D
∑
i∈I

⟨Λix,Λix⟩ , (3.8)

which shows that {Λ∗ixij : j ∈ Ji, i ∈ I} is a frame
for X if and only if {Λi : i ∈ I} is a g-frame for X.
Our next result is analog to ([20], Theorem 3.1).

Corollary 3.1 For each i ∈ I let Λi ∈
Hom∗A(X,Yi) and {xij : j ∈ Ji} be a Parseval
frame for Yi . Then we have the followings:

1. {Λi : i ∈ I} is a g-frame (resp. g-Bessel se-
quence, tight g-frame) for X iff̃ {Λ∗ixij : j ∈
Ji, i ∈ I} is a frame (resp. Bessel sequence,
tight frame) for X.

2. The g-frame operator of Λ = {Λi : i ∈ I}
is the frame operator of F = {Λ∗ixij : j ∈
Ji, i ∈ I}.

Proof. In the previous Theorem, let Ci = Di =
1. Then (3.8) will be as follows,∑

i∈I

∑
j∈Ji

⟨x,Λ∗ixij⟩⟨Λ∗ixij , x⟩ =
∑
i∈I

⟨Λix,Λix⟩ .
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From this, we conclude the first result. For the
second result, let SΛ and SF be the frame opera-
tors for Λ and F respectively. Then by definition,
for any x ∈ X,

SΛ(x) =
∑
i∈I

Λ∗iΛix ,

SF (x) =
∑
i∈I

∑
j∈Ji

⟨x,Λ∗ixij⟩Λ∗ixij .

On the other hand for any i ∈ I and x ∈ X we
have:

Λix =
∑
j∈Ji

⟨Λix, xij⟩xij ,

because Λix ∈ Yi and the above equality is the
recostruction formula for Λix with respect to Par-
seval frame {xij : j ∈ Ji}. So for each x ∈ X,

SF (x) =
∑
i∈I

∑
j∈Ji

⟨x,Λ∗ixij⟩Λ∗ixij

=
∑
i∈I

∑
j∈Ji

⟨Λix, xij⟩Λ∗ixij

=
∑
i∈I

Λ∗i

∑
j∈Ji

⟨Λix, xij⟩xij


=
∑
i∈I

Λ∗iΛix

= SΛ(x) .

The proof is complete.

The next result is a generalization of ([16], The-
orem 3.5), to Hilbert Pro-C*-modules.

Theorem 3.3 Let Λ = {Λi ∈ Hom∗A(X,Yi)}i∈I
be a g-frame for X with bounds C, D and g-frame
operator SΛ. If T ∈ End∗A(X) is an invertible op-
erator such that both are uniformly bounded then
{ΛiT : i ∈ I} is also a g-frame for X with respect
to {Yi : i ∈ I} and with g-frame operator T ∗SΛT .

Proof. Note that ΛiT ∈ Hom∗A(X,Yi). Also by
(2.4), for each x ∈ X we have:

∥T−1∥−2∞ ⟨x, x⟩ ≤ ⟨Tx, Tx⟩ ≤ ∥T∥2∞⟨x, x⟩ .

Since {Λi : i ∈ I} is a g-frame with bounds C and
D, for each x ∈ X we can write:

C∥T−1∥−2∞ ⟨x, x⟩ ≤ C⟨Tx, Tx⟩

≤
∑
i∈I

⟨ΛiTx,ΛiTx⟩

≤ D⟨Tx, Tx⟩
≤ D∥T∥2∞⟨x, x⟩ .

Therefore the sequence {ΛiT : i ∈ I} is a g-frame
for X with respect to {Yi : i ∈ I} and bounds
C∥T−1∥−2∞ , D∥T∥2∞ . Also for any x ∈ X we
have:

T ∗SΛT (x) = T ∗
∑
i∈I

Λ∗iΛiT (x)

=
∑
i∈I

T ∗Λ∗iΛiT (x) =
∑
i∈I

(ΛiT )
∗(ΛiT )x ,

which shows that T ∗SΛT is the g-frame operator
for {ΛiT : i ∈ I}.

As a result we can introduce a reconstruction
formula for elements of a Hilbert pro-C*-module.

Corollary 3.2 Let Λ = {Λi ∈ Hom∗A(X,Yi)}i∈I
be a g-frame for X with bounds C, D and g-frame
operator SΛ. For each i ∈ I, let Λ̃i = ΛiS

−1
Λ .

Then Λ̃ = {Λ̃i : i ∈ I} is a g-frame for X with
respect to {Yi : i ∈ I} and bounds C/D2 , D/C2

and g-frame operator S−1Λ . Also for each x ∈ X
we have the following reconstruction formula:

x =
∑
i∈I

(Λ̃i)
∗Λix =

∑
i∈I

Λ∗i Λ̃ix .

Λ̃ is called the canonical dual g-frame of Λ.

Proof. In the theorem 3.3 let T = S−1Λ . So we

conclude that {Λ̃i = ΛiS
−1
Λ : i ∈ I} is a g-frame

for X with respect to {Yi : i ∈ I} and g-frame
operator as follows:

T ∗SΛT = S−1Λ SΛS
−1
Λ = S−1Λ .

Moreover by Remark 3.1. we have:

D−1IX ≤ S−1Λ ≤ C−1IX .

Here IX is the identity operator on X. Hence we
obtain:

D−2IX ≤ S−2Λ ≤ C−2IX .

According to this and that Λ is a g-frame, for
each x ∈ X we have:∑

i∈I
⟨Λ̃ix, Λ̃ix⟩ =

∑
i∈I

⟨ΛiS
−1
Λ x,ΛiS

−1
Λ x⟩

≤ D⟨S−1Λ x, S−1Λ x⟩
≤ D⟨S−2Λ x, x⟩
≤ DC−2⟨x, x⟩ .
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Similarly, for each x ∈ X it follows:

CD−2⟨x, x⟩ ≤
∑
i∈I

⟨Λ̃ix, Λ̃ix⟩ .

Therefore C/D2 and D/C2 are the bounds for Λ̃.
Moreover for any x ∈ X we can write:

x = S−1Λ SΛx = S−1Λ

∑
i∈I

Λ∗iΛix

=
∑
i∈I

S−1Λ Λ∗iΛix =
∑
i∈I

(Λ̃i)
∗Λix ,

Similarly,

x = SΛS
−1
Λ x =

∑
i∈I

Λ∗iΛi(S
−1
Λ x) =

∑
i∈I

Λ∗i Λ̃ix

This completes the proof.
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