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Abstract
In this paper, a new method is given to evaluate a definite integral. This method is ob-
tained from a generalized Taylor series and using the derivatives of a integrand function
at a certain point.
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1 Introduction

There are a lot of methods that evaluate a definite integral, numerically. Some of these
methods use the end points (closed rules) of integral and some do not (open rules). Some
of them are based on using interpolating polynomial. The most popular of such methods
are Trapezoidal, Simpson, and mid-point methods which are special cases of Newton-Cots
method. There are some other methods that are based on the exact integration of poly-
nomials of increasing degree; in which no subdivision of the integration interval are used.
Basic properties of these methods can be found in many textbooks such as [1, 18]. The
ordinary Taylor’s series has been generalized by many authors. Hardy [3] introduced a new
version of the generalized Taylor’s series that uses Reimann-Liouville fractional integral
and Trujillo et al. [19] obtained a new formula that is based on Reimann-Liouville frac-
tional derivatives. For the concept of fractional derivative Odibat [14] adopted Caputo
definition which is a modification of the Reimann-Liouville definition and introduced a
generalized Taylor’s series. Zaid Odibat introduced a generalized method for solving lin-
ear partial differential equations of fractional order [12, 15] and introduced a novel method
for nonlinear fractional partial differential equations [13]. Hashemiparast et al. [6] intro-
duced a method using derivations of function for numerical integration. There are some
good textbooks in this area [11, 16], and some new works have been done on numerical
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integrations [2, 4, 5, 7, 22]. In [8] a novel method for integration of rapidly oscillatory
integrals is presented, and then some authors worked on this area [9, 10, 21]. In this

paper we introduce a new method to approximate a definite integral
∫ b
a f(x)dx by using

generalized Taylor’s series.
In Section 2 we represent some basic concepts of our work and after that use them to
approximate a definite integral in Section 3. By this method of approximation a definite
integral can be computed by using derivations of the integrand function at a certain point.
There are some examples in Section 4.

2 Preliminaries

Watanabe [20], obtained the following formula:

f(x) =

∞∑
k=−∞

(x− x0)
α+k

Γ(α+ k + 1)
(D̂α+k

γ f)(x) +Rn,m, (2.1)

with m < α, x > x0 ≥ γ and

Rn,m = (Jα+n
γ D̂α+n

γ f)(x) +
1

Γ(−α−m)

∫ x0

0
(x− t)−α−m−1(D̂α−m−1

γ f)(t)dt, (2.2)

where D̂α+n
γ is the Riemann-Liouville fractional derivative of order α + n and Jα+n

γ is
the Reimann-Liouville fractional integral of order α+ n [3, 17]. This fractional derivative
operator is defined for α > 0, γ ∈ IR, x > γ as follows :

(D̂α
γ f)(x) =

dm

dxm
[

1

Γ(m− α)

∫ x

γ

f(t)

(x− t)α+1−m
dt], (2.3)

for m− 1 < α ≤ m.

Under certain condition for f and α ∈ [0, 1], Trujillo et al. [19] introduced the following
generalized Taylor’s series:

f(x) =
n∑

j=0

cj(x− γ)(j+1)α−1

Γ((j + 1)α)
+Rn(x, γ), (2.4)

where

Rn(x, γ) =
(D̂

(n+1)α
γ f)(ξ)

Γ(nα+ α+ 1)
(x− γ)(n+1)α, γ ≤ ξ ≤ x, (2.5)

and

cj = Γ(α)[(x− γ)1−α(D̂jα
γ f)](γ), j = 0, 1, · · · , n. (2.6)

For the concept of fractional derivative we will adopt Caputo definition [14] which is
a modification of the Riemann-Liouville definition.

Definition 2.1. [14] A real function f(x > 0) is said to be in the space Cα(α ∈ IR), if it
can be written as f(x) = xpf1(x) for some p > α where f1 is continuous in (0,∞), and it

is said to be in the space C
(m)
α , if for any positive integer m we have f (m) ∈ Cα.
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Definition 2.2. The Riemann-Liouville fractional integral operator of order α ≥ 0 of a
function f ∈ Cµwith γ ≥ 0 is defined as

(Jα
γ f)(x) =

1

Γ(α)

∫ x

γ
(x− τ)α−1f(τ)dτ, x > 0, α > 0, (2.7)

also

(J0
γf)(x) = f(x). (2.8)

Properties of this operator can be found in [20].

Definition 2.3. The Caputo fractional derivative of f of order α > 0 with γ ≥ 0 is defined
as

(Dα
γ f)(x) = (Jm−α

γ f (m))(x) =
1

Γ(m− α)
[

∫ x

γ

f (m)(t)

(x− t)α+1−m
dt], (2.9)

for m− 1 < α ≤ m,x ≥ γ, f ∈ Cm
−1, where m is a positive integer.

Definition 2.4. [14] (Generalized Taylor’s series) Suppose that Dkα
θ f ∈ C(θ, b] for k =

0, 1, ... where 0 < α ≤ 1, then we have

f(x) =

∞∑
i=0

(x− θ)iα

Γ(iα+ 1)
Diα

θ f(θ), (2.10)

with ∀x ∈ (θ, b], where

Dnα
θ = Dα

θ .D
α
θ ...D

α
θ (n− times). (2.11)

and we have generalized Taylor’s series with reminder as follows

f(x) =

n∑
i=0

(x− θ)iα

Γ(iα+ 1)
Diα

θ f(θ) +
(D

(n+1)α
θ f)(ξ)

Γ((n+ 1)α+ 1)
(x− θ)(n+1)α, (2.12)

with θ ≤ ξ ≤ x.

3 Numerical integration using derivatives of a function

In this section we introduce a new method to evaluate a definite integral, numerically,
which uses the derivatives of the integrand function at a point.

Theorem 3.1. Let xi and xi+1 be two points such that xi+1 = xi + h. Also xi =
xi+xi+1

2
and let for two positive integers r and s, we have α = r

s , such that (r, s) = 1 and s is an

odd number. For each m define Am = hmα+1

2mαΓ(mα+2) .

i) If r is an odd number, then for any even nonnegative integer p, there is an ηi ∈
(xi, xi+1), such that ∫ xi+1

xi

f(x)dx =

p∑
m = 0
m even

Am(Dmα
xi

f)(xi) +Rp+2, (3.13)
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where

Rp+2 =
h(p+2)α+1

2(p+2)αΓ(pα+ 2α+ 2)
(D

(p+2)α
xi

f)(ηi). (3.14)

ii) If r is an even number, then for any nonnegative integer p, there is a ζi ∈ (xi, xi+1),
such that ∫ xi+1

xi

f(x)dx =

p∑
m = 0
m even

Am(Dmα
xi

f)(xi) +Rp+1, (3.15)

where

Rp+1 =
h(p+1)α+1

2(p+1)αΓ(pα+ α+ 2)
(D

(p+1)α
xi

f)(ζi). (3.16)

Proof. We know that x̄i = xi +
h
2 . By using generalized Taylor’s series of f at the point

x̄i, we have ∫ xi+1

xi

f(x)dx =

∫ xi+1

xi

(

∞∑
m=0

(x− xi)
mα

Γ(mα+ 1)
(Dmα

xi
f)(xi))dx,

In the above equation we have

=
∞∑

m=0

(Dmα
xi

f)(xi)

Γ(mα+ 1)

(x− x̄i)
mα+1

(mα+ 1)

∣∣∣∣xi+1

xi

, (3.17)

(xi+1 − x̄i)
mα+1 − (xi − x̄i)

mα+1 = (
h

2
)mα+1 − (

−h

2
)mα+1 = (

h

2
)mα+1[1 + (−1)mα].

For the case (i) we have

(xi+1 − x̄i)
mα+1 − (xi − x̄i)

mα+1 =

{
2(h2 )

mα+1, m even,
0, m odd.

(3.18)

By substituting (3.18) in (3.17) we have∫ xi+1

xi

f(x)dx =
∞∑

m = 0
m even

hmα+1

2mαΓ(mα+ 2)
(Dmα

xi
f)(xi),

thus ∫ xi+1

xi

f(x)dx =

p∑
m = 0
m even

hmα+1

2mαΓ(mα+ 2)
(Dmα

xi
f)(xi) +Rp+2,

therefore

Rp+2 =

∫ xi+1

xi

f(x)dx−
p∑

m = 0
m even

Am(Dmα
xi

f)(xi) =

∞∑
m = p+ 2
m even

Am(Dmα
xi

f)(xi).
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By using generalized Taylor’s series with remainder there is an ηi ∈ (xi, xi+1) such that

Rp+2 = Ap+2(D
(p+2)α
xi

f)(ηi).

For the case (ii) we have

(xi+1 − x̄i)
mα+1 − (xi − x̄i)

mα+1 = (
h

2
)mα+1[1 + (−1)mα] = 2(

h

2
)mα+1,

so, like the above considerations, we can drive∫ xi+1

xi

f(x)dx =

p∑
m=0

Am(Dmα
xi

f)(xi) +Rp+1,

where Rp+1 = Ap+1(D
(p+1)α
xi

f)(ζi).

By considering Theorem 3.1 for α = 1, we have∫ xi+1

xi

f(x)dx =

p∑
m = 0
m even

hm+1

2m(m+ 1)!
f (m)(xi) +Rp+2, (3.19)

where Rp+2 =
hp+3

2p+2(p+3)!
f (p+2)(ηi).

Corollary 3.1. If f is a function with the property f ′′(x) = σf(x), for x ∈ [a, b], then∫ xi+1

xi

f(x)dx ≈ (

p∑
m = 0
m even

Amσ
m
2 )f(xi), (3.20)

where Am = hm+1

2m(m+1)! .

In general, in order to computing the value of
∫ b
a f(x)dx, numerically, we can consider

h = b−a
n for a positive integer n, and we use the points a = x0, x1, ..., xn = b, to evaluate

the integral, numerically.

Theorem 3.2. Let a = x0, x1, ..., xn = b are equidistance points such that xj = x0 + jh.
By considering the notations of Theorem 3.1, there is an η ∈ (a, b), such that

i) If r and s are two odd numbers, then

∫ b

a
f(x)dx =

n−1∑
i=0

p∑
m = 0
m even

Am(Dmα
xi

f)(xi) + E, (3.21)

where

E =
(b− a)

h
Ap+2(D

(p+2)α
xi

f)(η). (3.22)
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ii) If r is an even number and s is an odd number, then∫ b

a
f(x)dx =

n−1∑
i=0

p∑
m=0

Am(Dmα
xi

f)(xi) + E, (3.23)

where

E =
(b− a)

h
Ap+1(D

(p+1)α
xi

f)(η).

Proof.∫ xn

x0

f(x)dx =

n−1∑
i=0

∫ xi+1

xi

f(x)dx =

∫ x1

x0

f(x)dx+

∫ x2

x1

f(x)dx+ ...+

∫ xn

xn−1

f(x)dx

=

p∑
m = 0
m even

{
(x1 − x0)

m+1

2m(m+ 1)!
(Dmα

x0
f)(x0) + ...+

(xn − xn−1)
m+1

2m(m+ 1)!
(Dmα

xn−1
f)(xn−1)

}
+ Ep+2,

thus ∫ xn

x0

f(x)dx =
n−1∑
i=0

p∑
m = 0
m even

Am(Dmα
xi

f)(xi) + Ep+2.

We have shown that Rp+2 = Ap+2(D
(p+2)α
xi

f)(ηi), so we have

Ep+2 =
n−1∑
i=0

Ap+2(D
(p+2)α
xi

f)(ηi), ηi ∈ (xi, xi+1),

thus there is an η ∈ (a, b), such that

Ep+2 = Ap+2

n−1∑
i=0

(D
(p+2)α
xi

f)(ηi) = Ap+2n(D
(p+2)α
xi

f)(η),

so we have

Ep+2 =
(b− a)

h
Ap+2(D

(p+2)α
xi

f)(η).

Analogously, in the case of α = 1 for equidistance points we have∫ b

a
f(x)dx =

n−1∑
i=0

p∑
m = 0
m even

Amf (m)(xi) + Ep+2, (3.24)

where

Ep+2 =
(b− a)

h
Ap+2f

(p+2)(η),
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and Am = hm+1

2m(m+1)! .

Let θ be a linear convex combination of the endpoints of interval [xi, xi+1], i.e.

θ = t1xi + t2xi+1, t1 + t2 = 1; t1, t2 ≥ 0. (3.25)

We can use generalized Taylor series of f in definite integral
∫ xi+1

xi
f(x)dx on the point θ,

so ∫ xi+1

xi

f(x)dx =

∫ xi+1

xi

∞∑
i=0

(x− θ)iα

Γ(iα+ 1)
(Diα

θ f)(θ)dx,

=
∞∑
i=0

(Diα
θ f)(θ)

Γ(iα+ 1)

(x− θ)iα+1

iα+ 1

∣∣∣∣xi+1

xi

,

=

∞∑
i=0

(Diα
θ f)(θ)

Γ(iα+ 2)
[(xi+1 − θ)iα+1 − (xi − θ)iα+1].

Hence we can show that for any nonnegative integer p there exists an η ∈ (a, b) such that∫ xi+1

xi

f(x)dx =

p∑
i=0

(Diα
θ f)(θ)

Γ(iα+ 2)
[(xi+1 − θ)iα+1 − (xi − θ)iα+1]

+
(D

(p+1)α
θ f)(η)

Γ((p+ 1)α+ 2)
[(xi+1 − θ)(p+1)α+1 − (xi − θ)(p+1)α+1]. (3.26)

Let α = 1 and t1 ̸= t2, thus we have∫ xi+1

xi

f(x)dx =

p∑
m=0

f (m)(θ)

(m+ 1)!
·
{

(xi+1 − xi)
m+1(tm+1

1 + tm+1
2 ), m even

(xi+1 − xi)
m+1(tm+1

1 − tm+1
2 ), m odd

+ E, (3.27)

where

E =
hp+2

(p+ 2)!

{
(tp+2

1 − tp+2
2 )f (p+1)(η), p even

(tp+2
1 + tp+2

2 )f (p+1)(η), p odd
(3.28)

So it is clear that if t1 ̸= t2, then the error of the above technique is O(hp+2) and this
method is exact for the set of all polynomials of degree≤ p, meanwhile for t1 = t2 =

1
2 , the

error is O(hp+3) and this method is exact for the set of all polynomials of degree≤ p+ 1.

4 Numerical examples

In this section we present some numerical examples.

Example 4.1.

We used this method for
∫ 1
0 x sinxdx with the exact value 0.301168678 by considering

α = 1
3 and we show the results in Table 1.
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p approximated value

0 0.239712769

2 0.302856617

4 0.301153170

6 0.301168751

8 0.301168678

Table 1: f(x) = x sinx on [0, 1]

p approximated value

0 0.303265329

2 0.265357163

4 0.264251508

6 0.264241166

8 0.264241117

Table 2: f(x) = xe−x on [0, 1]

Example 4.2.

In this example, the definite integral
∫ 1
0 xe−xdx with the exact value 0.264241117 is

approximated by the method with α = 1 and we show the results in Table 2.

Example 4.3.

We used this method for
∫ 0.2
0 e2xdx with the exact value 0.245912349 and compared

the proposed method by Simpson method with p + 1 points Sp, (where h = 0.2
p ). See

Table 3.

p Simpson method(Sp) proposed method

0 - 0.244280552

2 0.245914524 0.245909089

4 0.245912485 0.245912346

6 0.245912376 0.245912349

Table 3: f(x) = e2x on [0, 0.2]

Example 4.4.

We used this method for
∫ 0.2
0 sin(3x)dx with the exact value 0.05822146170 and com-

pared the proposed method by Simpson method by considering p + 1 points Sp, (where
h = 0.2

p ). See Table 4.

Example 4.5.
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p Simpson method(Sp) proposed method

0 - 0.05910404134

2 0.05822411000 0.05821748072

4 0.05822162590 0.05822147024

6 0.05822149408 0.05822146170

Table 4: f(x) = sin(3x) on [0, 0.2]

We used this method for the following integral by cosidering p = 20 and n = 15, then
compared the result by midpoint method by considering np points Mnp, (where h = 1

np):∫ 2

0

x

x3 + 1
dx.

The errors are shown in the Table 5.

Midpoint method(Mnp) proposed method

7.40658× 10−6 2.71536× 10−32

Table 5: Error of f(x) = x(x3 + 2)−1 on [−1, 1]

Example 4.6.

We use this method for the following improper integral with p = 20 and n = 10, then
compare the result by midpoint method by considering np points Mnp, (where h = 0.1

np ):∫ 0.1

0

exp(− 1
x) sin(3x)

x2
dx.

The errors are shown in the Table 6.

Midpoint method(Mnp) proposed method

−4.24748× 10−10 4.23516× 10−21

Table 6: Error of f(x) = exp(−x−1) sin(3x)x−2 on [0, 0.1]

Example 4.7.

We use this method for the following improper integral with p = 20 and n = 30, then
compare the result by midpoint method with np points Mnp, (where h = 1

np):∫ 1

0

exp( 1
x−1)

(x− 1)2
dx.

The errors are shown in the Table 7.
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Midpoint method(Mnp) proposed method

4.25786× 10−8 −5.85352× 10−15

Table 7: Error of f(x) = exp((x− 1)−1)(x− 1)−2 on [0, 1]

5 Conclusion

In this work we proposed a new method to evaluate a definite integral, numerically, by
using the generalized derivations of integrand function in one point. The most important
advantage of this method is that this method is really convenient for the functions that
their even derivatives are a constant multiply of the function.
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