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Abstract
In this paper, we present a new two-parameters family of iterative methods for solving
non-linear equations and prove that the order of convergence of these methods is at least
four. Per iteration of these new methods require two evaluations of the function and two
evaluations of its �rst derivative. Several numerical examples are given to illustrate the
performance of the presented methods.
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1 Introduction

Solving non-linear equations is one of the most important problems in numerical analysis.
In this paper, a family of iterative methods to �nd a simple root �, i.e., f(�) = 0 and
f 0(�) 6= 0 of a non-linear equation f(x) = 0 is presented, where f : I ! R for an open
interval I is a scalar function.

Newton's method for a non-linear equation is written as

xn+1 = xn � f(xn)
f 0(xn)

; (1.1)

this is an important and basic method, which converges quadratically.
A modi�cation of Newton's method with third-order convergence due to Weerakoom and
Fernando [6], de�ned by

xn+1 = xn � 2f(xn)
f 0(xn � f(xn)

f 0(xn)) + f 0(xn)
: (1.2)
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In this paper, (1.1) and (1.2) are used for the construction of the new iterative methods.
The organization of paper as follows:
In Section 2 the methods based on Weerakoom-Fernando's method are given then the
order of convergence is analyzed. In section 3 their better performance is also illustrated
by numerical results.

2 The methods and their analysis of convergence

The following iterative method is considered

xn+1 = zn � f(zn)
f 0(zn)

; (2.3)

zn = xn � 2f(xn)
f 0(xn � f(xn)

f 0(xn)) + f 0(xn)
: (2.4)

Our aim is to �nd a correction term for (2.3) and (2.4) that will yield a family with fourth-
order convergence. To do this, �rst consider �tting the function f(x) around the point
(xn; f(xn)) with the third-degree polynomial

g(x) = ax3 + bx2 + cx+ d: (2.5)

Using the tangency condition at the n�th iterate xn

g0(xn) = f 0(xn); (2.6)

so, from (2.5) and (2.6) we can obtain c as follows:

c = f 0(xn)� 3ax2
n � 2bxn; (2.7)

which the �rst derivative of the approximating is as follows: polynomial

g0(x) = 3ax2 + 2bx+ f 0(xn)� 3ax2
n � 2bxn: (2.8)

Now, we get f 0(zn) � g0(zn) and when zn is de�ned by (2.4), it is clear that

f 0(zn) � f 0(xn)(f 0(yn) + f 0(xn)) + 4(�� �xn)f(xn) + 4�f2(xn)
f 0(yn) + f 0(xn)

; (2.9)

where yn = xn � f(xn)
f 0(xn) and � = �b and � = 3a, then by considering (2.3) and (2.4), our

new methods are

xn+1 = zn � f(zn)(f 0(yn) + f 0(xn))
f 0(xn)(f 0(yn) + f 0(xn)) + 4(�� �xn)f(xn) + 4�f2(xn)

; (2.10)

zn = xn � 2f(xn)
f 0(yn) + f 0(xn)

; (2.11)

yn = xn � f(xn)
f 0(xn)

; (2.12)

where � 2 R and � 2 R.
For the methods de�ned by (2.10)-(2.12), we consider the following theorem:
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Theorem 2.1. Let � 2 I be a simple root of a su�ciently di�erentiable function f : I ! R
for an open interval I, then the methods de�ned by (2.10)-(2.12), have a minimum order
of convergence equal to four and it satis�es the following error equation:

en+1 = [c2c3 + 2c3
2 + (

�� ��
f 0(�)

)(2c2
2 + c3)] e4

n +O(e5
n); (2.13)

where c2 = f 00(�)
2f 0(�) , c3 = f 000(�)

6f 0(�) , � 2 R and � 2 R.

Proof: Let en = xn � �. Using Taylor expansion and taking f(�) = 0 into account

f(xn) = f 0(�)[en + c2e2
n + c3e3

n + c4e4
n + � � � ]; (2.14)

f 0(xn) = f 0(�)[1 + 2c2en + 3c3e2
n + 4c4e3

n + 5c5e4
n + � � � ]; (2.15)

where ck = f (k)(�)
k! f 0(�) ; k = 2; 3; � � � . Dividing (2.14) by (2.15) gives

f(xn)
f 0(xn)

= en � c2e2
n + (2c2

2 � 2c3)e3
n + � � � : (2.16)

Now, by using f 0(x) = f 0(�)[1 + 2c2(x� �) + 3c3(x� �)2 + � � � ] and (2.16), we get

f 0(yn) = f 0(�)[1 + 2c2
2e

2
n + 4(c2c3 � c32)e3

n + � � � ]; (2.17)

then

f 0(yn) + f 0(xn) = f 0(�)[2 + 2c2en + (2c2
2 + 3c3)e2

n + 4(c2c3 � c3
2 + c4)e3

n + � � � ]; (2.18)

and
1

f 0(yn) + f 0(xn)
=

1
2f 0(�)

[1� c2en � 3
2
c3e2

n + (c2c3 + 3c3
2 � 2c4)e3

n + � � � ]: (2.19)

From (2.14) and (2.19) we obtain the following expansion

2f(xn)
f 0(yn) + f 0(xn)

= en � (c2
2 +

c3

2
)e3
n + (�c4 � 3

2
c2c3 + 3c32)e4

n + � � � : (2.20)

Now, by using f(x) = f 0(�)[(x��) + c2(x� �)2 + c3(x� �)3 + � � � ] and above equations,
the following expansions is concluded

f(zn) = f 0(�)[(c2
2 +

c3

2
)e3
n + (c4 +

3
2
c2c3 � 3c32)e4

n + � � � ]; (2.21)

f(zn)(f 0(yn) + f 0(xn)) = f 02(�)[(2c2
2 + c3)e3

n + (4c2c3 � 4c32 + 2c4)e4
n + � � � ]; (2.22)

f 0(xn)(f 0(yn) + f 0(xn)) = f 02(�)[2 + 6c2en + (6c2
2 + 9c3)e2

n + (16c2c3+

12c4)e3
n + � � � ]; (2.23)

4(�� �xn)f(xn) = f 02(�)[4Aen + 4Be2
n + 4Ce3

n + � � � ]; (2.24)

where A = (����)
f 0(�) , B = (�c2���c2��)

f 0(�) and C = (�c3���c3��c2)
f 0(�) ,

and
4�f2(xn) = f 02(�)[4�e2

n + 8�c2e3
n + � � � ]; (2.25)
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therefore

4�f2(xn) + 4(�� �xn)f(xn) + f 0(xn)(f 0(yn) + f 0(xn)) = 2f 02(�)[1 + (2A+

3c2)en + (2�+ 2B +
9
2
c3 + 3c22)e2

n + � � � ]: (2.26)

Now, dividing (2.22) by (2.26) and equation (2.10), get the following result

en+1 = [c2c3 + 2c3
2 + (

�� ��
f 0(�)

)(2c2
2 + c3)] e4

n +O(e5
n);

and this ends the proof. �

3 Numerical Examples

All done computations by MATHEMATICA software has 120 digit 
oating point arith-
metic (Digits:=120). An approximate solution quite is accepted as exact root, depending
on the precision (�) of the computer. Criterias jxn+1� xnj < � and jf(xn+1)j < � are used
for computer programs, and so, when the stopping criterion is satis�ed, xn+1 is taken as
the exact root �. For numerical illustrations, the �xed stopping criterion � = 10�15, is
used.

In comparison the Newton's method (NM) with the well-known fourth-order Os-
trowski's method [5], (OM), de�ned by

xn+1 = xn � (1 +
f(yn)

f(xn)� 2f(yn)
)
f(xn)
f 0(xn)

; (3.27)

yn = xn � f(xn)
f 0(xn)

; (3.28)

and (CM), [2], de�ned by

xn+1 = yn � [
f(xn)

f(xn)� f(yn)
]2

f(yn)
f 0(xn)

; (3.29)

yn = xn � f(xn)
f 0(xn)

; (3.30)

the other method, (KM1), [4],

xn+1 = xn � (1 +R(xn) + 2R2(xn) + 5R3(xn) + � � � ) f(xn)
f 0(xn)

; (3.31)

R(xn) =
f(yn)
f(xn)

; (3.32)

yn = xn � f(xn)
f 0(xn)

; (3.33)

the Kou et al.'s method [3], (KM2),

xn+1 = xn � f2(xn) + f2(yn)
f 0(xn)(f(xn)� f(yn))

; (3.34)
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yn = xn � f(xn)
f 0(xn)

; (3.35)

and (AEM) de�ned by (2.10)-(2.12), in the present contribution, the same examples in
Changbum Chun [1] are used.

f1(x) = x3 + 4x2 � 10, f2(x) = x2 � ex � 3x + 2, f3(x) = xex2 � sin2 (x) + 3 cos (x) + 5,
f4(x) = sin (x)ex + ln (x2 + 1), f5(x) = (x � 1)3 � 2, f6(x) = (x + 2)ex � 1, f7(x) =
sin2 (x)� x2 + 1.
Table 1: Comparison of the number of iterations (NIT ) in (NM), (OM), (CM), (KM1),

(KM2) and (AEM) methods

NIT
f(x) NM OM CM KM1 KM2 AEM
f1(x); x0 = 1 6 4 4 4 4 4
f1(x); x0 = 2 6 4 4 4 4 4

f2(x); x0 = 1 5 3 3 3 3 4
f2(x); x0 = 3 7 4 4 4 4 5

f3(x); x0 = �1 6 4 4 5 4 4
f3(x); x0 = �2 9 5 5 5 6 6

f4(x); x0 = �2 7 4 4 4 5 4
f4(x); x0 = 5 7 5 5 5 5 5

f5(x); x0 = 3 7 4 4 4 4 4
f5(x); x0 = 4 8 5 5 5 5 5

f6(x); x0 = 2 9 5 5 5 6 6
f6(x); x0 = 4 12 6 7 7 7 8

f7(x); x0 = 1 7 4 4 5 5 4
f7(x); x0 = 2:5 7 4 4 4 4 4

4 Conclusion

In this paper, a family of new iterative methods were de�ned and analyzed for solving non-
linear equations and also it was proved that the order of convergence of these methods is
at least four.
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