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Subscripts

• w Conditions on the wall.

• ∞ Free stream conditions.

1 Introduction

The experimental and theoretical studies of magneto-hydrodynamic flows for an electri-
cally conducting fluid past a porous vertical surface are important from a technological
point of view, because they have many engineering applications such as plasma studies,
petroleum industries, MHD power generators, cooling of nuclear reactors, boundary layer
control in aerodynamics, and crystal growth. In view of these applications, several in-
vestigators have made model studies on the effect of magnetic field on free convection
flows. Along with the effects of magnetic field, wall transpiration effect being an effec-
tive method of controlling the boundary layer has been considered by Kafoussias et al.
[11]. Raptis and Soundalgekar [14] investigated steady laminar free convection flow of an
electrically conducting fluid along a porous hot vertical plate in the presence of a heat
source/sink. The study of heat and mass transfer on free convective flow of a viscous
incompressible fluid past an infinite vertical porous plate in the presence of a transverse
sinusoidal suction velocity and a constant free stream velocity was presented by Ahmed [2].

Ahmed and Liu [3] analyzed the effects of mixed convection and mass transfer of a
three-dimensional oscillatory flow of a viscous incompressible fluid past an infinite vertical
porous plate in the presence of a transverse sinusoidal suction velocity oscillating with
time and a constant free stream velocity. Chamkha and Issa [7] investigated the effects
of heat generation/absorption and thermophoresis on hydromagnetic flow with heat and
mass transfer over a flat surface. Chamkha [8] investigated the chemical reaction effects
on heat and mass transfer laminar boundary layer flow in the presence of heat genera-
tion/absorption effects. Muthucumaraswamy and Kulaivel [12] presented an analytical
solution to the problem of flow past an impulsively started infinite vertical plate in the
presence of heat flux and variable mass diffusion, taking into account the presence of a
homogeneous chemical reaction of first order.

The above studies have generally been confined to very small magnetic Reynolds num-
bers, allowing magnetic induction effects to be neglected. Such effects must be considered
for relatively large values of the magnetic Reynolds number. Glauert [10] presented a sem-
inal analysis for hydromagnetic flat plate boundary layers along a magnetized plate with
uniform magnetic field in the stream direction at the plate. He obtained series expansion
solutions (for both large and small values of the electrical conductivity parameter) for the
velocity and magnetic fields, indicating that for a critical value of applied magnetic field,
boundary-layer separation arises. Recently, Bg et al. [4] have obtained local non-similarity
numerical solutions for the velocity, temperature and induced magnetic field distributions
in forced convection hydromagnetic boundary layers, over an extensive range of magnetic
Prandtl numbers and Hartmann numbers. Alom et al. [1] investigated the steady MHD
heat and mass transfer by mixed convection flow from a moving vertical porous plate with
induced magnetic, thermal diffusion, constant heat and mass fluxes.
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On the other hand, at high temperature the effects of radiation is space technology,
solar power technology, space vehicle re-entry, nuclear engineering applications and other
industrial areas are very significant. In view of these applications, England and Emery
[9] have studied the radiation effects of an optically thin gray gas bounded by a station-
ary plate. The hydromagnetic free convective flow of an optically thin gray gas in the
presence of radiation has been investigated by Bestman and Adiepong [5], Naroua et al.
[13], when the induced magnetic field is negligible. Raptis and Massalas [15] investigated
the effects of radiation on the oscillatory flow of a gray gas, absorbing-emitting in the
presence induced magnetic field. The hydrodynamic free convective flow of an optically
thin gray gas in the presence of radiation, when the induced magnetic field is taken into
account was studied by Raptis et al. [16]. Chamkha [6] considered the problem of steady,
hydromagnetic boundary layer flow over an accelerating semi-infinite porous surface in the
presence of thermal radiation, buoyancy and heat generation or absorption effects.

In spite of all these studies, the problem of steady MHD mixed convective heat and
mass transfer of a chemically reacting fluid in the presence of induced magnetic field as
well as conduction-radiation effect has received little attention. Hence, the main objective
of the present investigation is to consider the effects of radiation and chemical reaction
on steady mixed convective heat and mass transfer flow of an optically thin gray gas over
an infinite vertical porous plate with constant suction taking into account the induced
magnetic field, and viscous dissipation of energy. Such an attempt has been made in the
present work owing to applications in magnetic materials processing.

2 Mathematical analysis

We consider steady MHD mixed convective heat and mass transfer flow of a Newtonian,
electrically-conducting, viscous, incompressible and radiating fluid over a porous vertical
infinite plate with viscous dissipation of energy and homogeneous chemical reaction of first
order.

Fig. 1. Physical configuration and coordinate system

The following assumptions are implicit in our analysis:
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• All of the fluid properties except the density in the buoyancy force term are constant;

• The Eckert number, Ec , is small, as appropriate for viscous incompressible regimes;

• The plate is subjected to a constant suction velocity;

• The plate is non-conducting and the applied magnetic field is of uniform strength
H0 and applied transversely to the direction of the main stream taking into account
the induced magnetic field;

• There exists a homogeneous chemical reaction of first order with rate constant K
between the diffusing species and the fluid;

• The magnetic Reynolds number of the flow is not taken to be small enough so that
the induced magnetic field is not negligible;

• The concentration of the diffusing species in the binary mixture is assumed to be
very small in comparison with the other chemical species, which are present, and
hence, the Soret and Dufour effects are negligible;

• The equation of conservation of electric charge is ∇.J = 0, where J = (Jx, Jy, Jz).
The direction of propagation is considered only along the y-axis and does not have
any variation along the y-axis and so ∂Jy

∂y = 0, which gives Jy = constant. Since
the plate is electrically non-conducting, this constant is zero and hence Jy = 0
everywhere in the flow, following.

In the case of electrically conducting fluid, the flow and heat transfer are induced by
an imposed magnetic field. An e.m.f. is produced in the fluid flowing across the trans-
verse magnetic field. The resultant effect of current and magnetic fields produces a force,
resisting the fluid motion. The fluid velocity also affects the magnetic field by producing
an induced magnetic field which perturbs the original field. We introduce a coordinate
system (x, y, z) with the x-axis vertically upwards along the plate, y-axis normal to the
plate into the fluid region and z-axis along the width of the plate. Let the plate be long
enough in the x-direction for the flow to be parallel. Let (x, y, 0) be the fluid velocity
and (Hx,Hy, 0) be the magnetic induction vector at a point (x, y, z) in the fluid. Since
the plate is infinite in length in the x-direction, therefore, all of the physical quantities
except possibly the pressure are assumed to be independent of x. The wall is maintained
at constant temperature T̄w and concentration C̄w higher than the ambient temperature
T̄∞ and concentration C̄∞ respectively.

Within the frame of such assumptions and under the Oberbeck-Boussinesq’s approxi-
mation and in consistency with boundary layer theory, the governing equations relevant
to the problem are:

Conservation of Mass:

∂v
∂y = 0 which is satisfied with v = −v0 = a constant.

Gauss’s law of magnetism:
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∂Hy

∂y = 0 which holds for Hy = −H0 = a constant=strength from applied magnetic
field.

Conservation of Momentum:

−v0
∂u

∂y
= ν

∂2u

∂y2 + gβ(T − T∞) + gβ(C − C∞) +
µ0H0

ρ

∂Hx

∂y
(2.1)

Conservation of Energy:

−v0
∂T

∂y
=

1
ρCP

[
κ

∂2T

∂y2 − ∂qr

∂y

]
+

µ

CP

(
∂u

∂y

)2

(2.2)

Conservation of Magnetic Induction:

1
σµ0

∂2Hx

∂y2 + H0
∂u

∂y
+ v0

∂Hx

∂y
0 (2.3)

Conservation of Species (Mass Diffusion):

−v0
∂C

∂y
= D

∂2C

∂y2 − K
(
C − C∞

)
(2.4)

The boundary conditions are:

(ȳ = 0 :)(ū = 0), (T̄ = T̄w), (C̄ = C̄w), (H̄x = 0)

(ȳ → ∞ :)(ū → U0), (T̄ → T̄∞), (C̄ → C̄∞), (H̄x → 0) (2.5)

We now introduce the following non-dimensional quantities into the equations (2.1) to
(2.4):

(y =
v0ȳ

ν
), (u =

ū

U0
), (U =

Ūp

v0
), (θ =

(T̄ − T̄∞)
(T̄w − T̄∞)

), (Sc =
ν

D
),

(Gm =
νgβ̄(C̄w − C̄∞)

U0v2
0

), (Gr =
νgβ(T̄w − T̄∞)

U0v2
0

), (Pm = σνµ0),

(M =
√

µ0

ρ

H̄x

U0
), (H =

√
µ0

ρ

H̄0

v0
), (Pr =

µCP

κ
), (K =

νK̄

v2
0

),

(Ec =
U2

0

CP (T̄w − T̄∞)
), (R =

64m̄n̄νT̄ 3
∞

ρCP v2
0

), (ϕ =
(C̄ − C̄∞)
(C̄w − C̄∞)

) (2.6)

For the case of an optically thin gray gas, the local radiant absorption is expressed as
[11, 4, 12, 2, 3]:

∂qr

∂y
= 4mn

(
T

4
∞ − T

4
)

(2.7)

where m is the absorption coefficient and n is the Stefan-Boltzmann constant.
We assume that the temperature differences within the flow are sufficiently small such

that T
4 may be expressed as linear function of the temperature. This is accomplished by

expanding T
4 in Taylor series about T∞ and neglecting higher-order terms, thus

T
4 ∼= 4T

3
∞T − 3T

4
∞ (2.8)
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Using the transformations (2.6) and with the help of (2.7)-(2.8), the non-dimensional forms
of (2.1) to (2.4) are

d2u

dy2
+

du

dy
+ M

dH

dy
+ Grθ + Gmϕ = 0 (2.9)

d2θ

dy2
+ Pr

dθ

dy
+

PrR

4
θ + PrEc

(
du

dy

)2

= 0 (2.10)

d2ϕ

dy2
+ Sc

dϕ

dy
− ScKϕ = 0 (2.11)

d2H

dy2
+ MPm

du

dy
+ Pm

dH

dy
= 0 (2.12)

The corresponding boundary conditions are:

(y = 0) : (u = 0), (θ = 1), (H = 0), (ϕ = 1)

(y → ∞) : (u → 1), (θ → 0), (H → 0), (ϕ → 0) (2.13)

3 Method of solution

The perturbation theory leads to an expression for the desired solution in terms of a power
series in some ”small” parameter that quantifies the deviation from the exactly solvable
problem. The leading term in this power series is the solution of the exactly solvable
problem, while further terms describe the deviation in the solution, due to the deviation
from the initial problem. The perturbation theory is applicable if the problem at hand can
be formulated by adding a ”small” term (Eckert number in this work) to the mathematical
description of the exactly solvable problem. The solution of the equation (2.11) subject
to the boundary condition (2.13) is

ϕ = e−ηy (3.14)

Now, in order to solve the equations (2.9), (2.10) and (2.12) under the boundary
condition (2.13), we note that Ec << 1 for all incompressible fluids and it is assumed the
solutions of the equations to be of the form

ℜ(y) = ℜ0(y) + Ecℜ1(y) + O(Ec2), (3.15)

where ℜ stands for u , θ or bx. Substituting (3.15) into the equations (2.9), (2.10) and
(2.12) and equating the coefficients of the same degree terms and neglecting terms of
O(Ec2) , the following differential equations are obtained:

u
′′
0 + u

′
0 = −Grθ0 − Gmϕ − MH

′
0 (3.16)

u
′′
1 + u

′
1 = −Grθ1 − MH

′
1 (3.17)

θ
′′
0 + Prθ

′
0 −

PrR

4
θ0 = 0 (3.18)
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θ
′′
1 + Prθ

′
1 −

PrR

4
θ1 = −Pr

(
u

′
0

)2
(3.19)

H
′′
0 + PmH

′
0 = −MPmu

′
0 (3.20)

H
′′
1 + PmH

′
1 = −MPmu

′
1 (3.21)

The boundary conditions (2.10) reduce to

(y = 0) : (u0 = 0), (u1 = 0), (θ0 = 1), (θ1 = 0), (H0 = 0), (H1 = 0)

(y → ∞) : (u0 → 1), (u1 → 0), (θ0 → 0), (θ1 → 0), (H0 → 0), (H1 → 0), (3.22)

The solutions of equations (3.16) to (3.21) subject to the boundary conditions (3.22) are:

θ0(y) = e−ξy (3.23)

u0(y) = 1 + A1e
−ξy + A2e

−ηy + A3e
−λy (3.24)

H0(y) = A4e
−ξy + A5e

−ηy + A6e
−λy + A7e

−Pmy (3.25)

θ1(y) = D1e
−2ξy + D2e

−2ηy + D3e
−2λy + D4e

−(ξ+η)y + D5e
−(λ+ξ)y

+D6e
−(λ+η)y + D7e

−ξy
(3.26)

u1(y) = F1e
−2ξy + F2e

−2ηy + F3e
−2λy + F4e

−(ξ+η)y + F5e
−(λ+ξ)y

+F6e
−(λ+η)y + F7e

−ξy + F8e
−λy + F9e

−y
(3.27)

H1(y) = E1e
−2ξy + E2e

−2ηy + E3e
−2λy + E4e

−(ξ+η)y + E5e
−(λ+ξ)y

+E6e
−(λ+η)y + E7e

−ξy + E8e
−λy + E9e

−y
(3.28)

4 Skin-Friction

The boundary layer produces a drag on the plate due to the viscous stresses which are
developed at the wall. The viscous stress at the surface of the plate is given by

τ =
(

∂u

∂y

)
y=0

= τ0 + Ecτ1, (4.29)

where
u

′
0(0) = −ξA1 − ηA2 − λA3

and

u
′
1(0) = −2ξF1 − 2ηF2 − 2λF3 − (ξ + η)F4 − (λ + ξ)F5 − (λ + η)F6 − ξF7 − λF8 − F9
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5 Current density

The non-dimensional current density at the plate is given by

J =
(

∂H

∂y

)
y=0

= J0 + EcJ1, (5.30)

where
J0 = H

′
0(0) = −ξA4 − ηA5 − λA6 − PmA7

and

J1 = H
′
1(0) = −2ξE1 −2ηE2 −2λE3 − (ξ +η)E4 − (λ+ ξ)E5 − (λ+η)E6 − ξE7 −λE8 −E9

6 Results and discussion

In order to get a clear insight of the physical problem, numerical results are displayed with
the help of graphical illustrations. A representative set of results is shown in Figs. 2-12.
Computations were carried out for various values of the physical parameters such as the
chemical reaction parameter K, Hartmann number M , magnetic Prandtl number Pr ,
and the radiation parameter R. In addition, the values of the induced magnetic field H,
temperature field θ and the current density J are tabulated in Tables 1 and 2 for various
values of the Eckert number Ec.

Figures 2-4 show the effects of both of the Hartmann and magnetic Prandtl numbers
M and Pm on the velocity, temperature and induced magnetic field distributions, respec-
tively. In general, application of a transverse magnetic field has the tendency to decrease
the velocity due to the resistive Lorentz force. However, in the presence of the induced
magnetic field, increasing the magnetic parameter M increases the induced magnetic field
J causing the velocity of the fluid to increase yielding a net increase in the velocity profile.
This behavior is depicted in the increases in both the fluid velocity and induced magnetic
field profiles as M and increase in figures 2 and 4. In addition, it is also seen that, due to
the presence of viscous dissipation, the increases in the velocity profiles as M and increase
cause increases in the temperature profiles as is clearly depicted in Fig. 3.

Fig. 2. Velocity field distribution with Hartmann and magnetic Prandtl number.
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Fig. 3. Temperature field distribution with Hartmann and magnetic Prandtl number.

Fig. 4. Induced magnetic field distribution with Hartmann and magnetic Prandtl number.

Figures 5-7 present the effects of both of the chemical reaction and the radiation parame-
ters K and R on the velocity, temperature and induced magnetic field profiles, respectively.
It is seen that the velocity distribution decreases as the radiation parameter increases while
it increases as the chemical reaction parameter increases. In addition, increasing either of
the radiation parameter or the chemical reaction parameter causes the fluid temperature
to increase. It is also predicted that the induced magnetic field distribution increases as
the radiation parameter increases while it decreases as the chemical reaction parameter
increases. The behaviors are clear from figures 5-7.
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Fig. 5. Velocity field distribution with radiation and chemical reaction parameter.

Fig. 6. Temperature field distribution with radiation and chemical reaction parameter.

Fig. 7. Induced magnetic field distribution with Radiation and chemical reaction parameter.

Figures 8 and 9 present the current density distribution J versus the Hartmann number
M for various values of the radiation parameter, chemical reaction parameter and the
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magnetic Prandtl number, respectively. It is observed that, in general, for small magnetic
Prandtl numbers (Pm < 1), the current density increases as the Hartmann number in-
creases reaching a maximum and then decreases slightly thereafter. However, for Pm ≥ 1,
the current density increases as the Hartmann number increases. Moreover, the current
density increases as either of the chemical reaction parameter or the magnetic Prandtl
number increases while it decreases as the radiation parameter increases.

Fig. 8. Current density versus Hartmann number for various radiation and chemical reaction
parameter.

Fig. 9. Current density versus Hartmann number for various magnetic Prandtl number.

Figures 10-12 show the effects of the radiation parameter, magnetic Prandtl number and
the chemical reaction parameter on the distribution of the shear stress versus the Hart-
mann number, respectively. In general, it is observed that increases in the Hartmann
number cause increases in the shear stress values. In addition, the values of shear stress
are predicted to increase as either of the radiation parameter or the magnetic Prandtl
number increases while the values of the shear stress decrease as the chemical reaction
parameter increases.
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Fig. 10. Shear stress versus Hartmann number for various radiation parameters.

Fig. 11. Shear stress versus Hartmann number for various magnetic Prandtl numbers.

Fig. 12. Shear stress distribution versus Hartmann number for various chemical reaction
parameters.

Table 3 presents the induced magnetic field (H) and temperature field (θ) for various
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Eckert numbers (Ec). It is predicted that the fluid temperature increases due to viscous
dissipation as (Ec) increases while the induced magnetic field shows a different behavior
in which it decreases and then increases as (Ec) is increased from 0 to 0.05.

Table 3
Induced magnetic field (H) and temperature field (θ) for various Eckert numbers for When
Gr = 5 = Gm,Pr = 0.71, Pm = K = R = 0.1,M = 0.25
⋆ H H H ⋆ θ θ θ
y Ec = 0.00 Ec = 0.03 Ec = 0.05 y Ec = 0.00 Ec = 0.03 Ec = 0.05
0 -0.04226 -0.08204 -0.01574 0 1.00000 1.00000 1.00000
1 -0.11541 -0.13119 -0.10489 1 0.05304 0.07427 0.08843
2 -0.12354 -0.12831 -0.12035 2 0.01222 0.01843 0.02256
3 -0.10944 -0.11071 -0.1.0859 3 0.00281 0.00435 0.00435
4 -0.09175 -0.09296 -0.09153 4 0.00065 0.00101 0.00125

Table 4 displays the effects of the Eckert number (Ec) and the Hartmann number (M)
on the current density (J). It is seen that the current density increases with increases in
either of the Hartmann number or the Eckert number.

Table 4
Current density (J) for Gr = 5 = Gm , Pr = 0.71 , Pm = K = R = 0.1 , M = 0.25

M Ec = 0.00 Ec = 0.05 Ec = 0.10
0.1 0.02783 0.09170 0.18835
0.2 0.05444 0.19218 0.36436
0.3 0.07878 0.27390 0.51780
0.4 0.10021 0.34103 0.64206
0.5 0.11845 0.39227 0.73454

7 Conclusion

The problem of steady heat and mass transfer by mixed convection flow of a viscous,
incompressible, electrically-conducting and radiating fluid which is an optically thin gray
gas, along a vertical porous plate under the action of a transverse magnetic field was
studied analytically. The governing equations for this problem were developed and the
perturbation theory was used. A parametric study illustrating the effects of the various
parameters on the flow, heat and mass transfer characteristics was performed. The val-
ues of the fluid velocity were reduced considerably with a rise in the radiation parameter
whereas they increased as either of the Hartmann number or the magnetic Prandtl number
was increased. The fluid temperature was found to be markedly boosted with an increase
in either of the radiation parameter, chemical reaction parameter or the Eckert number.
An increase in either of the magnetic Hartmann number or the chemical reaction param-
eter was found to escalate the induced magnetic field whereas an increase in either of the
radiation parameter or the magnetic Prandtl number was shown to exert the opposite
effect. Similarly, the current density and the shear stress were both considerably increased
with increases in either of the Hartmann number, magnetic Prandtl number or the Eckert
number.
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8 Appendix

(ξ =
Pr +

√
Pr2 + RPr

2
), (λ =

1 + Pm +
√

(1 − Pm)2 + 4M2Pm

2
),

(η =
Sc +

√
Sc2 + 4KSc

2
), (A1 =

Gr(ξ − Pm)
−ξ3 + (1 + Pm)ξ2 + ξPm(M2 − 1)

),

(A2 =
Gr(η − Pm)

−η3 + (1 + Pm)η2 + ηPm(M2 − 1)
), (A3 = −(1 + A1 + A2),

(A4 =
MA1Pm

ξ − Pm
), (A5 =

MA2Pm

η − Pm
), (A6 =

MA3Pm

λ − Pm
),

(A7 = −(A4 + A5 + A6), (D1 =
−Prξ2A2

1

4ξ2 − 2ξPr − PrR/4
),

(D2 =
−Prη2A2

2

4η2 − 2ηPr − PrR/4
), (D3 =

−Prλ2A2
3

4λ2 − 2λPr − PrR/4
),

(D4 =
−2PrξηA1A2

(ξ + η)2 − (ξ + η)Pr − PrR/4
), (D5 =

−2PrξλA1A3

(ξ + λ)2 − (ξ + λ)Pr − PrR/4
),

(D6 =
−2PrληA2A3

(λ + η)2 − (λ + η)Pr − PrR/4
), (D7 = −(D1 + D2 + D3 + D4 + D5 + D6)),

(E1 =
GrMPmD1

−8ξ3 + 4(1 + Pm)ξ2 + 2ξPm(M2 − 1)
),

(E2 =
GrMPmD2

−8η3 + 4(1 + Pm)η2 + 2ηPm(M2 − 1)
),

(E3 =
GrMPmD3

−8λ3 + 4(1 + Pm)λ2 + 2λPm(M2 − 1)
),
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(E4 =
GrMPmD4

−(ξ + η)3 + (1 + Pm)(ξ + η)2 + (ξ + η)Pm(M2 − 1)
),

(E5 =
GrMPmD5

−(ξ + λ)3 + (1 + Pm)(ξ + λ)2 + (ξ + λ)Pm(M2 − 1)
),

(E6 =
GrMPmD6

−(η + λ)3 + (1 + Pm)(η + λ)2 + (η + λ)Pm(M2 − 1)
),

(E7 =
GrMPmD7

−ξ3 + (1 + Pm)ξ2 + ξPm(M2 − 1)
), (E8 = −(E1 +E2 +E3 +E4 +E5 +E6 +E7)),

(F1 =
2MξE1 − GrD1

2ξ(2ξ − 1)
), (F2 =

2MξE2 − GrD2

2η(2η − 1)
), (F3 =

2MξE3 − GrD3

2λ(2λ − 1)
),

(F4 =
2M(ξ + η)E4 − GrD4

(ξ + η)(ξ + η − 1)
), (F5 =

2M(ξ + λ)E5 − GrD5

(ξ + λ)(ξ + λ − 1)
),

(F6 =
2M(η + λ)E6 − GrD6

(η + λ)(η + λ − 1)
), (F7 =

MξE7 − GrD7

ξ(ξ − 1)
),

(F8 =
MλE8

λ(λ − 1)
), (F9 = −(F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8))




