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Abstract

There are some situations in the real word which can not be modeled by the proposed method until
now, to get rid of this difficulty, the concept of Fuzzy Differential Inclusion (FDI) is introduced and
then an extension of differential transformation method for solving it is given by defining a fuzzy
partition. Proposed algorithms are illustrated by numerical example.
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1 Introduction

T
he fuzzy differential equation is a topic very
important as much from the theoretical point

of view [1, 2, 3, 17, 20, 23, 24, 25, 26, 27, 28, 29, 31]
as well as from the view point of its applications;
for example, in population models [10], and in
modeling hydraulics [9].The usage of fuzzy differ-
ential equations is a natural way to model dynam-
ical systems under possibilistic uncertainty [33].
The concept of differential equations in a fuzzy
environment have been suggested by Kaleva [23]
as a way of modeling uncertain and incompletely
specified systems.
Formulation of the concept usually interprets the
solution as a flow on some appropriate space of
fuzzy sets and has been largely concerned with
existence and uniqueness problems [9, 14, 23, 24,
31, 4].

∗Corresponding author.
mahnaz barkhordari@yahoo.com

†Department of Mathematics, Bandar Abbas Branch,
Islamic Azad University, Bandar Abbas, Iran.

‡Department of Mathematics, Science and Research
Branch Islamic Azad University,Tehran, Iran.

If an equation such as

x′(t) = f(t, x(t)), x(0) = x0 (1.1)

is to be interpreted within a fuzzy context, a no-
tation of differential of a fuzzy valued function
of a real is required as well as some definition of
what a solution means.
The concept of fuzzy derivative, was first intro-
duced by Chang and Zadeh [12]. It was followed
up by Dubios and Prade in [15] who defined and
used the extension principle.
Other methods have been discussed by Puri and
Ralescu in [30] and Goetschel and Voxman in [19].
A variety of methods, exact, approximate and
purely numerical are available for the solution of
fuzzy initial value problem. The first has usu-
ally taken the lines of Hukuhara differentiation
[9, 14, 23, 24, 31].
Let εn be the space of all upper semi continu-
ous (USC) normal convex fuzzy sets on Rn, with
compact support. Each level set of u ∈ εn is a
nonempty convex compact subset of Rn. Deriva-
tives of mappings f : R → εn are defined in much
the same way as those of set-valued functions. If
u=v+w ( equivalent to Minkowski sum of β level
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sets at each β ), u − v := w is the Hukuhara
difference. The fuzzy set f ′(t0) is the Hukuhara
derivative of f at t0 if, for all small δ > 0 the
equations ( f(t0+δ)−f(t0))/δ, f(t0)−f(t0−δ)/δ
) exist and converge to f ′(t0) as δ → 0+. A solu-
tion to the fuzzy initial value problem ( FIVP
) x′(t) = f(t, x(t)), x(0) = x0 ∈ εn, where
f : R× εn → εn, exists under appropriate condi-
tions on f and defines a trajectory in εn.
Alternating approaches have been introduced by
Buckly and Feurig [10]. The former treats crisp
differential equations with fuzzy initial conditions
to obtain fuzzy solutions, while the latter solves
the same problem by fuzzifying via the Zadeh ex-
tension principle [12].
However these approaches suffers a grave disad-
vantage in so far as the solution has the property
that diam (x(t)) is nondecreasing in t, that is,
the solution is irreversible in possibilistic terms.
Consequently, these formulations can not really
reflect any of the rich behavior of ordinary dif-
ferential equations such as Periodicity, Stability
bifurcation and the like, and is ill-suited for mod-
eling. Hallermeier in [21] suggested a different
formulation of the FIVP based on a family of dif-
ferential inclusions at each β-level, 0 ≤ β ≤ 1,

x′(t) ∈ [f(t, x(t))]β, x(0) ∈ [x0]
β (1.2)

where now [f(·, ·)]β : R× Rn → Kn
c , the space of

nonempty convex compact subsets of Rn.
The idea is that the set of all such solutions
Γβ(x0, T ) would be the β-level of a fuzzy set
Γ(x0, T ), in the sense that all attainable sets
Aβ(x0, t) to be the solution of the FIVP x′ =
f(t, x(t)), x(0) = x0, thus captures both uncer-
tainty and the rich properties of differential inclu-
sions in one and the same technique. It has been
shown that the solution set and attainability set
are fuzzy sets under fairly relaxed conditions on
f [5]. The previous approaches seem to be some-
what less general than (1), which also does have a
fuzzy character in the formulation itself. The so-
lutions obtained by Hallermeier are smaller than
those provided by Buckly and Feurig, although
they do not have the advantage of being fuzzy
convex when f is a fuzzy convex valued function.
But then, solution sets of set valued differential
equations x′ ∈ f(t, x(t)) are, in general, not con-
vex even when f is compact convex set valued in
spite of advantages of inclusion FIVP. Bede and
Gal [8, 6, 7] introduce a more general definition

of the derivative for fuzzy mappings enlarging the
class of differentiable fuzzy mappings, and Chalco
and Flores [11] solved FDEs, wich is used in the
peresent work.
There are a lot of situations which differential in-
clusion naturally occur, but this concepts do not
extended to FIVP. A certain number of papers
have been appeared where attempts have been
made to investigate differential inclusions with
uncertainty about some of their components de-
scribed in terms of fuzzy sets. Most of authors
continued the idea from Hallermeier, but it is a
correction of FIVPs’ solving methods not really
extension of crisp inclusion concepts. In other
words if we consider real problem like oscillat-
ing system with combined dry and viscous damp-
ing, . . . in the case of fuzzy initial value, they can
not be modeled by existence model of differential
equations because their initial value vary along
fuzzy interval and interval can ’t be determined
exactly. As it is said, in the previous works au-
thors used the concept of crisp inclusion to find-
ing r−soultion of FIVP after discretizing it to m
crisp differential equation. To overcome this dif-
ficulty and generalizing the model to cover this
kind of real problem, we suggest a new concept
Fuzzy inclusions, which by it we mean that the
problem that its initial value belongs to a fuzzy
set. The origin of differential equations with a
fuzzy right hand can be illustrated by the follow-
ing example. Suppose, that there is a differential
equation which models a real process:

x′ = f(t, x, k) (1.3)

where k is a vector formed by the parameters on
the right hand side of equation. The vector k may
often be completely unknown. Moreover, k may
be vary according to an unknown low. If some
set k of possible values of k can be defined, then
it is convenient to replace 1.1 by the differential
inclusion

x′ ∈ f(t, x, k). (1.4)

It may be happen that different points of k de-
note have an equal statues as possible samples of
the values of k. Then, it is natural to regard k as
a fuzzy set. If the function f(t, x, .) is extended
on the family of fuzzy sets in accordance with
Zadeh’s extension principle, we obtain a fuzzy
set on the right hand side of 1.2. In this paper,
we are going to solve FIs by differential trans-
formation method and fuzzy partition. Intrin-
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sically, differential transformation method evalu-
ates the approximating solution by the finite Tay-
lor series. The differential transformation method
does not evaluate the derivative symbolically; in-
stead, it calculates the relative derivatives by an
iteration procedure described by the transformed
equations obtained from the original equations
using differential transformation. The concept of
differential transformation was first proposed by
Zhou [34] and it was applied to solve linear and
nonlinear initial value problems in electric circuit
analysis. The proposed method provides the Tay-
lor’s series expansion solution for the domain be-
tween any adjacent grid points. During the last
5 years, significant progress has been made in ap-
plications of the differential transformation ap-
proach for some linear and nonlinear initial value
problems. In 1999, Chen and Ho [13] introduced
two-dimensional differential transformation and
applied it for solving partial differential equa-
tions. Jang et al. [22] introduced the concept
of the differential transformation of fixed grid size
and adaptive grid size mechanism to approximate
solutions of initial-value problems. This paper is
organized as follows: Section 2 contains the ba-
sic material to be used in the rest of paper, in
Section 3 the proposed method for solving FDI is
presented, and in the Section 4 proposed method
are illustrated by numerical examples.

2 Preliminaries

There are various definitions for the concept of
fuzzy numbers ([15, 18]) A nonempty subset A of
R is called convex if and only if (1 − k)x + ky ∈
A for every x, y ∈ A and k ∈ [0, 1]. By pk(R),
we denote the family of all nonempty compact
convex subsets of R.
There are various definitions for the concept of
fuzzy numbers ([15, 18])

Definition 2.1 A fuzzy number is a function
u : R → [0, 1] satisfying the following properties:
(i) u is normal, i.e. ∃x0 ∈ R with u(x0) = 1,
(ii) u is a convex fuzzy set (i.e. u(λx+(1−λ)y) ≥
min{u(x), u(y)}∀x, y ∈ R, λ ∈ [0, 1]),
(iii) u is upper semi-continuous on R,
(iv) {x ∈ R : u(x) > 0} is compact, where A de-
notes the closure of A.

The set of all fuzzy real numbers is denoted by
E. Obviously R ⊂ E. Here R ⊂ E is understood

as R ={χx : χ is usual real number}. For
0 < r ≤ 1, denote [u]r = {x ∈ R;u(x) ≥ r} and
[u]0 = {x ∈ R;u(x) > 0}. Then it is well-known
that for any r ∈ [0, 1], [u]r is a bounded closed
interval. For u, v ∈ E, and λ ∈ R, where
sum u + v and the product λ.u are defined by
[u + v]r = [u]r + [v]r, [λ.u]r = λ[u]r, ∀r ∈ [0, 1],
where [u]r + [v]r = {x + y : x ∈ [u]r, y ∈ [v]r}
means the conventional addition of two intervals
(subsets) of R and λ[u]r = {λx : x ∈ [u]r} means
the conventional product between a scalar and a
subset of R (see e.g. [15, 32]).

Another definition for a fuzzy number is as
follows:

Definition 2.2 An arbitrary fuzzy number in
the parametric form is represented by an ordered
pair of functions (u(r), u(r)), 0 ≤ r ≤ 1, which
satisfy the following requirements:

1. u(r) is a bounded left-continuous non-
decreasing function over [0, 1].

2. u(r) is a bounded left-continuous non-
increasing function over [0, 1].

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

A crisp number α is simply represented by
u(r) = u(r) = α, 0 ≤ r ≤ 1. We recall that for
a < b < c, a, b, c ∈ R, the triangular fuzzy num-
ber u = (a, b, c) determined by a, b, c is given such
that u(r) = a+(b−c)r and u(r) = c−(c−b)r are
the endpoints of the r-level sets, for all r ∈ [0, 1].
Here u(r) = u(r) = b and it is denoted by [u]1.
For arbitrary u = (u(r), u(r)), v = (v(r), v(r))
we define addition and multiplication by k as

1. (u+ v)(r) = (u(r) + v(r)),

2. (u+ v)(r) = (u(r) + v(r)),

3. (ku)(r) = ku(r), (ku)(r) = ku(r), k ≥ 0,

4. (ku)(r) = ku(r), (ku)(r) = ku(r), k < 0.

Definition 2.3 Let E be a set of all fuzzy num-
bers, we say that f̃(x) is a fuzzy valued function
if f̃ : ℜ → E

In this paper, we follow [1] and represent an ar-
bitrary fuzzy number with compact support by a
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pair of functions (u(r), u(r)), 0 ≤ r ≤ 1. Also, we
use the Hausdorff distance between fuzzy num-
bers. This fuzzy number space as shown in [7]
can be embedded into Banach space B = c[0, 1]×
c[0, 1] where the metric is usually defined as fol-
lows: Let E be the set of all upper semicontinu-
ous normal convex fuzzy numbers with bounded
r−level sets. Since the r−cuts of fuzzy numbers
are always closed and bounded, the intervals are
written as ũ[r] = [u(r), u(r)], for all r. We denote
by ω the set of all nonempty compact subsets ofR
and by ωc the subsets of ω consisting of nonempty
convex compact sets. Recall that

ρ(x,A) = min
a∈A

∥x− a∥

is the distance of a point x ∈ R from A ∈ ω and
the Hausdorff separation ρ(A,B) of A,B ∈ ω is
defined as

ρ(A,B) = max
a∈A

ρ(a,B).

Note that the notation is consistent, since
ρ(a,B) = ρ({a}, B). Now, ρ is not a metric. In
fact, ρ(A,B) = 0 if and only if A ⊆ B. The Haus-
dorff metric dH on ω is defined by

dH(A,B) = max{ρ(A,B), ρ(B,A)}.

The metric dH is defined on E as

d∞(ũ, ṽ) = sup{dH(ũ[r], ṽ[r]) : 0 ≤ r ≤ 1},

ũ, ṽ ∈ E.

for arbitrary (u, v) ∈ c[0, 1] × c[0, 1]. The
following properties are well-known. (see e.g.
[18, 32])
(i)d∞(u+ w, v + w) = d∞(u, v), ∀u, v, w ∈ E,
(ii)d∞(k.u, k.v) = |k|d∞(u, v), ∀k ∈ R, u, v ∈
E,
(iii)d∞(u + v, w + e) ≤ d∞(u,w) +
D(v, e), ∀u, v, w, e ∈ E,

Theorem 2.1 (i) if we define 0̃ = χ0, then
0̃ ∈ Rf is a neutral element with respect to
addition, i.e. u+ 0̃ = 0̃ + u = u, for all u ∈ E.
(ii) With respect to 0̃, none of u ∈ E \ R, has
opposite in E.
(iii) For any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0
and any u ∈ E, we have (a + b).u = a.u + b.u;
however,this relation dose not necessarily hold
for any a, b ∈ R,in general.

(iv) For any λ ∈ R and any u, v ∈ E, we have
λ.(u+ v) = λ.u+ λ.v;
(v) For any λ, µ ∈ R and any u ∈ E, we have
λ.(µ.u) = (λ.µ).u;

Remark 2.1 d∞(u, 0) = d∞(0, u) =∥ u ∥ .

Definition 2.4 Let f̃(x) be a fuzzy valued
function on [a, b]. Suppose that f(x, r) and

f(x, r) are improper Riemman-integrable on
[a, b] then we say that f̃(x) is improper on [a, b],
furthermore,
(
∫ b
a f̃(x, r)dt) =

∫ b
a f(x, r)dt,

(
∫ b
a f̃(x, r)dx) =

∫ b
a f(x, r)dx.

Definition 2.5 Consider x, y ∈ E. If there ex-
ists z ∈ E such that x = y + z, then z is called
the H-difference of x and y and it is denoted by
x⊖ y.

In this paper, the sign ”⊖” always stands for H-
difference and note that x⊖ y ̸= x+(−y). Let us
recall the definition of strongly generalized differ-
entiability introduced in [2, 3].

Definition 2.6 (see [8]). Let f : (a, b) → E and
x0 ∈ (a, b). We say that f is strongly general-
ized differentiable at x0 (Bede differentiability),
if there exists an element f

′
(x0) ∈ E, such that

(i) for all h > 0 sufficiently small, ∃f(x0 + h)⊖
f(x0), ∃f(x0) ⊖ f(x0 − h) and the limits(in the
metric d∞)

limh↘0
f(x0+h)⊖f(x0)

h = limh↘0
f(x0)⊖f(x0−h)

h =

f
′
(x0)

or
(ii) for all h > 0 sufficiently small, ∃f(x0) ⊖
f(x0 + h), ∃f(x0 − h) ⊖ f(x0) and the limits(in
the metric d∞)

limh↘0
f(x0)⊖f(x0+h)

−h = limh↘0
f(x0−h)⊖f(x0)

−h =

f
′
(x0)

or
(iii) for all h > 0 sufficiently small, ∃f(x0+h)⊖
f(x0), ∃f(x0 − h) ⊖ f(x0) and the limits(in the
metric d∞)

limh↘0
f(x0+h)⊖f(x0)

h = limh↘0
f(x0−h)⊖f(x0)

−h =

f
′
(x0)

or
(iv) for all h > 0 sufficiently small, ∃f(x0) ⊖
f(x0 + h), ∃f(x0) ⊖ f(x0 − h) and the limits(in
the metric d∞)
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limh↘0
f(x0)⊖f(x0+h)

−h = limh↘0
f(x0)⊖f(x0−h)

h =

f
′
(x0)

(h and −h at denominators mean 1
h and −1

h , re-
spectively)

Proposition 2.1 If f̃ : (a, b) → E is a contin-
uous fuzzy valued function then g(x) =

∫ x
a f(t)dt

is differentiable with derivative g̃′(x) = f̃(x) (see
[15]).

In the special case when f̃ is a fuzzy-valued func-
tion, we have the following result.

Theorem 2.2 . Let f̃ : R → E be a function
and denote f̃(t) = (f(t, r), f(t, r)), for each r ∈
[0, 1]. Then
(1) If f̃ is differentiable in the first form (i), then
f(t, r) and f(t, r) are differentiable functions and

f̃
′
(t) = (f

′
(t, r), f

′
(t, r)).

(2) If f̃ is differentiable in the second form (ii),
then f(t, r) and f(t, r) are differentiable functions
and
f̃

′
(t) = (f

′
(t, r), f

′
(t, r)).

Lemma 2.1 (see [7]) For x0 ∈ R, the fuzzy dif-
ferential equation ỹ

′
= f(x, ỹ), ỹ(x0) = ỹ0 ∈ E

where f̃ : R×E −→ E is supposed to be continu-
ous, is equivalent to one of the integral equations:
ỹ(x) = ỹ0 +

∫ x
x0

f(t, ỹ(t))dt, ∀x ∈ [x0, x1]
or
ỹ(0) = ỹ(x) + (−1).

∫ x
x0

f(t, ỹ(t))dt, ∀x ∈
[x0, x1]
on some interval (x0, x1) ⊂ R, depending on the
strong differentiability considered, (i) or (ii), re-
spectively.
Here the equivalence between two equations means
that any solution of an equation is a solution for
the other one,too

Remark 2.2 (see [7]). In the case of strongly
generalized differentiability, to the fuzzy differen-
tial equation y

′
= f(x, y) we may attach two dif-

ferent integral equations, while in the case of dif-
ferentiability in the sense of the Definition of H-
differentiable, we may attach only one. The sec-
ond integral equation in Lemma (2.1) can be writ-
ten in the form ỹ(x) = ỹ0 ⊖ (−1).

∫ x
x0

f(t, ỹ(t))dt.

The following theorems concern the existence of
solutions of a fuzzy initial-value problem under
generalized differentiability (see [7]).

Theorem 2.3 Let us suppose that the
following conditions hold: (a)Let R0 =
[x0, x0 + p] × B(y0, q), p, q > 0, y0 ∈ E,
where B(y0, q) = {y ∈ E : d∞(y, y0) ≤ q} denote
a closed ball in E and let f : R0 −→ E
be a continuous function such that
d∞(0̃, f(x, y)) = ∥f(x, y)∥≤ M for all (x, y) ∈ R0

(b) Let g : [x0, x0 + p] × [0, q] −→ E, such
that g(x, 0) ≡ 0 and 0 ≤ g(x, u) ≤ M1,
∀x ∈ [x0, x0 + p], 0 ≤ u ≤ q, such that g(x, u) is
non-decreasing in u and g is such that the initial-
value problem u

′
(x) = g(x, u(x)), u(x0) = 0 has

only the solution u(x) ≡ 0 on [x0, x0 + p]. (c)
We have d∞(f(x, y), f(x, z)) ≤ g(x, d∞(y, z)),
∀(x, y), (x, z) ∈ R0 and d∞(y, z) ≤ q. (d) There
exists d > 0 such that for x ∈ [x0, x0 + d]
the sequence yn : [x0, x0 + d] −→ E given by
y0(x) = y0, yn+1(x) = y0 ⊖ (−1).

∫ x
x0

f(t, yn)dt
is defined for any n ∈ N . Then the fuzzy initial
-value problem{

y′ = f(x, y),
y(x0) = y0

has two solutions (one (i)-differentiable
and the other one (ii)-differentiable)
y, ŷ : [x0, x0 + r] −→ B(y0, q) where
r = min{p, q

M , q
M1

, d} and the successive it-
erations

y0(x) = y0, yn+1(x) = y0 +

∫ x

x0

f(t, yn(t))dt

and

ŷ0(x) = y0, ŷn+1(x) = y0 ⊖ (−1).

∫ x

x0

f(t, ŷn(t))dt

converge to these two solutions respectively.

According to theorem 2.3, we restrict our at-
tention to functions which are (i)- or (ii)-
differentiable on their domain except for a finite
number of points (see also [7]).
The following lemma gives a sufficient condition
for the existence of the H-difference of two trian-
gular fuzzy numbers.

Lemma 2.2 (see [7]) Let u, v ∈ E be such that
u(1) − u(0) > 0, u(0) − u(1) > 0 and len(v) =
(v(0) − v(0)) ≤ min{u(1) − u(0), u(0) − u(1)}.
Then the H-difference u⊖ v exists.

The following corollary gives simple sufficient
condition for the existence of fuzzy differential
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equations under strongly generalized differentia-
bility.

Corollary 2.1 Let f̃ : R0 −→ E where R0 =
[x0, x0+p]× (B(ỹ0, q)∩E), and ỹ0 ∈ E such that
y(0, 1) − y(0, 0) and y(0, 0) − y(0, 1). Let m =
min{y(0, 1)−y(0, 0), y(0, 0)−y(0, 1)}. Under the
assumptions (a)-(c) of Theorem (2.3), the fuzzy
initial-value problem{

ỹ′ = f(x, ỹ),
ỹ(x0) = ỹ0

has two solutions y, y : [x0, x0 + r] −→ B(ỹ0, q)
where r = min{p, q

M , q
M1

, m
2M } and the successive

iterations in (2.3) converge to these two solutions.

Definition 2.7 Let f : (a, b) → E and
x0 ∈ (a, b). We define the n− thorder differential
of f as follow: We say that f is strongly general-
ized differentiable of the n−thorder at x0. If there
exists an element f (s)(x0) ∈ E, ∀s = 1 . . . n,
such that
(i) for all h > 0 sufficiently small,
∃f (s−1)(x0 + h)⊖ f (s−1)(x0),
∃f (s−1)(x0)⊖ f (s−1)(x0−h) and the limits(in the
metric d∞)

limh↘0
f (s−1)(x0+h)⊖f (s−1)(x0)

h =

limh↘0
f (s−1)(x0)⊖f (s−1)(x0−h)

h = f (s)(x0)
or
(ii) for all h > 0 sufficiently small,
∃f (s−1)(x0)⊖ f (s−1)(x0 + h),
∃f (s−1)(x0−h)⊖ f (s−1)(x0) and the limits(in the
metric d∞)

limh↘0
f (s−1)(x0)⊖f (s−1)(x0+h)

−h =

limh↘0
f (s−1)(x0−h)⊖f(x0)

−h = f (s)(x0)
or
(iii) for all h > 0 sufficiently small,
∃f (s−1)(x0 + h)⊖ f (s−1)(x0),
∃f (s−1)(x0−h)⊖ f (s−1)(x0) and the limits(in the
metric d∞)

limh↘0
f (s−1)(x0+h)⊖f (s−1)(x0)

h =

limh↘0
f (s−1)(x0−h)⊖f (s−1)(x0)

−h = f (s)(x0)
or
(iv) for all h > 0 sufficiently small,
∃f (s−1)(x0)⊖ f (s−1)(x0 + h),
∃f (s−1)(x0)⊖ f (s−1)(x0−h) and the limits(in the
metric d∞)

limh↘0
f (k−1)(x0)⊖f (s−1)(x0+h)

−h =

limh↘0
f (s−1)(x0)⊖f (s−1)(x0−h)

h = f (s)(x0)
(h and −h at denominators mean 1

h and −1
h ,

respectively ∀s = 1 . . . n)

Remark 2.3 Note that by the above definition
a fuzzy -valued function is i-differentiable (or ii-
differentiable) of order n if f (s) for s = 1 . . . n
is i-differentiable (or ii-differentiable). It is possi-
ble that the different orders have different kind of
(i or ii) differentiability, but we do not consider
this kind of function in this paper.

Following [1] we define a first-order fuzzy differ-
entiable equation by

x′ = f(t, x(t))

where x(t) = (x(t, r), x̄(t, r)) is a fuzzy function
of t. f(t, x(t)) is a fuzzy -valued function and the
fuzzy variable x′(t) is the defined derivative of
X(t, r). If an initial value x(t0) = x0 is given, we
obtain a fuzzy Cauchy problem of the first order

x′ = f(t,X(t, r)), x(t0) = x0 (2.5)

So , if we consider derivative form i or ii we may
replace the FIVP by the equivalent system

x′(t, r) = h(t, x(t, r), x(t, r)) x(t0, r) = x0(r)
x′(t, r) = g(t, x(t, r), x(t, r)) x(t0, r) = x0(r)

(2.6)
for r ∈ [0, 1].

or

x′(t, r) = g(t, x(t, r), x(t, r)) , x(t0, r) = x0(r)
x′(t, r) = h(t, x(t, r), x(t, r)) ,x(t0, r) = x0(r)

(2.7)
for r ∈ [0, 1],For every prefixed r, the system rep-
resents an ordinary Cauchy problem for which
any converging classical numerical procedure can
be applied. In the next section a differential
transformation method is proposed for solving
this problem.
The set of all r-solution to (2.6) is denoted
Γ(r) and the r-reachable set Γ(r, t) is defined as
Γ(r, t) = {x(t, r) : x(r) ∈ Γ(r)}. For each se-
lection of X(0, r) from fuzzy set [γ0(r), γ1(r)], we
have one FIVP in parametric form which should
be solved.

3 Extension of DTM to solve
Fuzzy Differential inclusions

In this section we are going to propose a new
numerical method for computing approximation
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of the set of all solutions to a FDI. Let approx-
imate Γ(r) by choosing m distinct initial value
from [γ0(r), γ1(r)]. So if we find a fuzzy parti-
tion with m elements and solved then, we can
obtained an approximation from Γ(r). Whit out
loss of generality, assume m = 5 then from which
can be obtained by applying the nearest symmet-
ric triangular defuzzification procedure from two
extreme values. We consider two alternatives :

• Two extreme values are real.

• Two extreme values are fuzzy.

Real case:
Step 1: Given the extreme values γ0,γ1 we define
the fuzzy number medium x(1)(r) as

x1(r) = 1− γ0+γ1
2 r

x1(r) = γ0+γ1
2 r

Step 2: Defuzzify γ0 and x(1)(r) to obtain the
lower medium x2,1(r) for which

X0 = 1/4
∫ 1
0 [x

1(r) + x1(r) + 2γ0]dr

σ = 3/4
∫ 1
0 [x

1(r)− x1(r)− 2γ0](1− r)dr

Thus x2,1(r) = x0 − σ + σr and
x2,1(r) = x0 + σ − σr. We now defuzzify
x(1)(r) and γ1 to get upper medium x2,3(r), we
compute x0 and σ as it is computed for x2,1(r).

Step 3: Update the medium by defuzzify-
ing the lower medium x2,1(r) and upper medium
x2,3(r). The result is the medium x2,2(r) centered
at

x0 = 1/4∫ 1
0 [x

2,1(r) + x2,1(r) + x2,3(r) + x2,3(r)]dr

σ = 3/4∫ 1
0 [x

2,1(r)− x2,1(r)− x2,3(r) + x2,3(r)]
(1− r)dr

We thus obtain a fuzzy partition with five ele-
ments. The procedure can be extended easily to
obtain a fuzzy partition with arbitrary elements.
So it is sufficient to solve these m equations [16].
Fuzzy extreme values’case: In this case we

need only to repeat Step 3 for generating suffi-
cient number of fuzzy number.
Let show elements of a fuzzy partition by
{y10(r), . . . , ym0 (r)}. Then we should solve

y′(t, r) = F (t, y(t), r), y0(r) = yi0(r), (3.8)

i = 1, . . . ,m

So we have m fuzzy differential equations, we can
solve them in one of the following method.

Crisp inclusion point of view In this case,
we should solve m fuzzy differential equa-
tions using the concept of crisp inclusion and
then solve t crisp differential equation by one
of the existence methods

One of the fuzzy derivative concept In this
case we should try to transform m fuzzy dif-
ferential equations to crisp differential equa-
tion by using one of the fuzzy derivative.

In the first case as described in introduction we
should use the idea which is proposed to solve the
fuzzy initial value problem by diamond; it worked
by the many of authors but if we consider the sec-
ond point of view we need a method to solve the
fuzzy differential equation using one of the fuzzy
derivative.In this part of paper we want to ex-
tend differential transformation method to solv-
ing fuzzy initial value problem based on lateral
Hukuhara derivative which is shown that do not
have the disadvantage of Sikala’s derivative [5].

3.1 The Differential transformation
method

Definition 3.1 If x(t, r) is strongly generalized
differentiable of order k in the time domain T
then let If f is differentiable in first form (i)

φ(t, k, r) = dk(x(t,r))
dtk

∀t ∈ T

Xi(k, r) = φ(ti, k, r) =
dk(x(t,r))

dtk
]t=ti ∀k ∈ K

φ(t, k, r) = dk(x(t,r))
dtk

∀t ∈ T

Xi(k, r) = φ(ti, k) =
dk(x(t,r))

dtk
]t=ti ∀k ∈ K

If f is differentiable in second form (ii)

φ(t, k, r) = dk(x(t,r))
dtk

∀t ∈ T

Xi(k, r) = φ(ti, k, r) =
dk(x(t,r))

dtk
]t=ti k is odd

φ(t, k, r) = dk(x(t,r))
dtk

∀t ∈ T

Xi(k, r) = φ(ti, k) =
dk(x(t,r))

dtk
]t=ti k is odd



244 M. Barkhordari Ahmadi, et al /IJIM Vol. 5, No. 3 (2013) 237-249

where X(k, r) and X(k, r) are called the lower
and the upper spectrum of x(t, r) at t = ti in the
domain K, respectively.

If k is even then φ is considered as it considered
in the first form(i) . So x(t, r) can be represented
as

x(t, r) =

∞∑
k=0

(t− ti)
k

k!
X(k, r).

x(t, r) =

∞∑
k=0

(t− ti)
k

k!
X(k, r).

or

x(t, r) =

∞∑
k=1, odd

(t− ti)
k

k!
X(k, r)

+

∞∑
k=0, even

(t− ti)
k

k!
X(k, r).

x(t, r) =
∞∑

k=1, odd

(t− ti)
k

k!
X(k, r)

+

∞∑
k=0, even

(t− ti)
k

k!
X(k, r).

The above set of equations is known as the inverse
transformation of X(k) if X(k) is defined as

X(k, r) = M(k)[
dk(q(t)x(t, r))

dtk
]t=0,

k = 0, 1, 2, . . . ,∞

X(k, r) = M(k)[
dk(q(t)x(t, r))

dtk
]t=0,

k = 0, 1, 2, . . . ,∞

or

X(k, r) = M(k)[
dk(q(t)x(t, r))

dtk
]t=0,

k = 1, 3, 5, . . . ,∞

X(k, r) = M(k)[
dk(q(t)x(t, r))

dtk
]t=0,

, k = 0, 2, 4, . . . ,∞

Then the function x(t, r) can be described as

x(t, r) =
1

q(t)

∞∑
k=0

(t− ti)
k

k!

X(k, r)

M(k)
.

x(t, r) =
1

q(t)

∞∑
k=0

(t− ti)
k

k!

X(k, r)

M(k)
.

or

x(t, r) =
1

q(t)
(

∞∑
k=1, odd

(t− ti)
k

k!

X(k, r)

M(k)

+
∞∑

k=0, even

(t− ti)
k

k!

X(k, r)

M(k)
).

x(t, r) =
1

q(t)
(

∞∑
k=1, odd

(t− ti)
k

k!

X(k, r)

M(k)

+

∞∑
k=0, even

(t− ti)
k

k!

X(k, r)

M(k)
).

where M(K) > 0 and q(t) > 0. M(k) is called
the weighting factor and q(t) is regarded as a ker-
nel corresponding to X(t, r). If M(k) = 1 and
q(t) = 1, then (5) can be treated as a special case
of (7). In this paper, the transformation with

M(k) = Hk

k! and q(t) = 1 is applied, where H is
the time horizon of interest. Then If f is differ-
entiable in first form (i)

X(k, r) =
Hk

k!

dkx(t, r)

dtk
.

X(k, r) =
Hk

k!

dkx(t, r)

dtk
.

If f is differentiable in second form (ii)

X(k, r) =
Hk

k!

dkx(t, r)

dtk
. k is odd

X(k, r) =
Hk

k!

dkx(t, r)

dtk
. k is odd

If k is even then φ is considered as it considered in
the first form(i). Using the differential transfor-
mation, a differential equation in the domain of
interest can be transformed to an algebraic equa-
tion in the domain K and X(t, r) can be obtained
by the finite-term Taylor series plus a reminder,
as

x(t, r) = 1
q(t)

∑n
k=0

(t−t0)k

k!
X(k,r)
M(k) +Rn+1(t)

=
∑∞

k=0(
t−t0
H )kX(k, r) +Rn+1(t)

x(t, r) = 1
q(t)

∑n
k=0

(t−t0)k

k!
X(k,r)
M(k) +Rn+1(t)

=
∑n

k=0(
t−t0
H )kX(k, r) +Rn+1(t)
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or

x(t, r) = 1
q(t)(

∑∞
k=1, odd

(t−t0)k

k!
X(k,r)
M(k)

+
∑∞

k=0, even
(t−t0)k

k!
X(k,r)
M(k) ) +Rn+1(t)

=
∑∞

k=1, odd(
t−t0
H )kX(k, r)

+
∑∞

k=0, even(
t−t0
H )kX(k, r) +Rn+1(t)

x(t, r) = 1
q(t)(

∑∞
k=1, odd

(t−t0)k

k!
X(k,r)
M(k)

+ 1
q(t)(

∑∞
k=0, even

(t−t0)k

k!
X(k,r)
M(k) ) +Rn+1(t)

=
∑∞

k=1, odd(
t−t0
H )kX(k, r)

+
∑∞

k=0, even(
t−t0
H )kX(k, r) +Rn+1(t)

The objective of this section is to find the so-
lution of (1.1) at the equally spaced grid points
[t0, t1, . . . , tN ] where ti = a + ih for each i =

0, 1, . . . , N and h = (b−a)
N the domain interest

[a, b] is divided in to N sub-domains and the
approximation function in each sub-domain are
xi(t, r), i = 0, 1, . . . , N − 1 respectively. Taking
the differential transformation of (1.2) or (1.3),
the transformed equation describes the relation-
ship between the spectrum x(t, r) as

(k + 1)X(k + 1, r) = H(t,X(k, r), X(k, r))

(k + 1)X(k + 1, r) = G(t,X(k, r), X(k, r))

Or

(k + 1)X(k + 1, r) = G(t,X(k, r), X(k, r))

(k + 1)X(k + 1, r) = H(t,X(k, r), X(k, r))

k is odd

(k + 1)X(k + 1, r) = H(t,X(k, r), X(k, r))

(k + 1)X(k + 1, r) = G(t,X(k, r), X(k, r))

k is even

where H(.) denotes the transformed function of
h(t, x(t, r), x(t, r)) and G(.) denotes the trans-
formed function of g(t, x(t, r), x(t, r)). From the
initial conditions the following can be obtained

X(0, r) = x0(r), X(0, r) = x0(r).

In the first sub-domain, x(t, r), x(t, r) can be de-
scribed by x0(t, r) and x0(t, r) respectively. They
can be represented in terms of their nth order
Taylor Polynomial with respect to a, that is

x0(t, r) = X0(0, r) +X0(1, r)(t− a)

+X0(2, r)(t− a)2 + . . .+X0(n, r)(t− a)n (3.9)

x0(t, r) = X0(0, r) +X0(1, r)(t− a)

+X0(2, r)(t−a)2+ . . .+X0(n, r)(t−a)n (3.10)

where the subscript 0 denotes that the Taylor
Polynomial is expanded to t0 = a. Once the Tay-
lor Polynomial is obtained x(t1, r) can be evalu-
ated as

x(t1, r) = X0(0, r) +X0(1, r)(t1 − a)

+X0(2, r)(t1 − a)2 + . . .

+X0(n, r)(t1 − a)n

= X0(0, r) +X0(1, r)h+X0(2, r)h
2

+ . . .+X0(n, r)h
n =

∑n
j=0X0(j, r)h

j

x(t1, r) = X0(0, r) +X0(1, r)(t1 − a)

+X0(2, r)(t1 − a)2 + . . .

+X0(n, r)(t1 − a)n

= X0(0, r) +X0(1, r)h+X0(2, r)h
2

+ . . .+X0(n, r)h
n =

∑n
j=0X0(j, r)h

j

The first value, x0(t1, r) of the first sub-domain
is the initial value of the second sub-domain, i.e.
x1(t1, r) = x0(t1, r). In a similar manner x(t2, r)
can be represented as

x(t2, r) ≈ x1(t2, r)

= X1(0, r) +X1(1, r)(t2 − t1)

+X1(2, r)(t2 − t1)
2 + . . .

+X1(n, r)(t2 − t1)
n

= X1(0, r) +X1(1, r)h+X1(2, r)h
2

+ . . .+X1(n, r)h
n

=
∑n

j=0X1(j, r)h
j
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Table 1: Data Set.

Functional form Differential Transform

y(x) = u(x)± v(x) Y (k) = u(k)(k)
y(x) = αw(x) Y (k) = αw(k)

y(x) = dmz(x)/dxm Y (k) = (m+k)!
k! z(k +m)

y(x) = u(x).v(x) Y (k) =
∑k

i=0 u(l)v(k − l)
y(x) = xm Y (k) = δ(k −m)
y(x) = exp(λx) Y (k) = λk/k!

y(x) = (1 + x)m Y (k) = m(m−1)···(m−k−1)
k!

y(x) = sin(ωx+ α) Y (k) = ωk

k! sin(π
k
2! + α)

y(x) = cos(ωx+ α) Y (k) = ωk

k! cos(π
k
2! + α)

x(t2, r) ≈ x1(t2, r)

= X1(0, r) +X1(1, r)(t2 − t1)

+X1(2, r)(t2 − t1)
2 + . . .

+X1(n, r)(t2 − t1)
n

= X1(0, r) +X1(1, r)h

+X1(2, r)h
2 + . . .+X1(n, r)h

n

=
∑n

j=0X1(j, r)h
j

Hence, the solution on the grid points (ti+1) can
be obtained as follows:

x(ti+1, r) ∼= xi(ti+1, r)

= Xi(0, r) +Xi(1, r)(ti+1 − ti)

+Xi(2, r)(ti+1 − ti)
2 + . . .

+Xi(n, r)(ti+1 − ti)
n

=
∑n

j=0Xi(j, r)h
j

x(ti+1, r) ∼= xi(ti+1, r)

= Xi(0, r) +Xi(1, r)(ti+1 − ti)

+Xi(2, r)(ti+1 − ti)
2 + . . .

+Xi(n, r)(ti+1 − ti)
n

=
∑n

j=0Xi(j, r)h
j

From definition (3.1), it can be easily proven that
the transformation function has basic mathemat-

ical operations shown in Table (1).

Theorem 3.1 [11] If f is nondecreasing with re-
spect to the second argument then, using the (i)
or (ii) differentiability, the fuzzy solution of the
FIVP and the solution via differential inclusions
are identical.

4 Numerical example

Consider y′(t) = y(t) − t2 + 1, 0 ≤ t ≤ 2, in
the case that its initial value belongs to a fuzzy
interval as [0, 1]. By the proposed algorithm
partition P is obtained.

P = {0, y10(r), y20(r), y30(r), 1} where

y10(r) : (r/4, 1/2− r/4),
y20(r) : (1/2 + r/4, 1− r/4),

y30(r) : (1/4 + r/4, 3/4− r/4).

Then we should have 5 FIVP but in this
case since the extreme values are crisp we have 3
FIVP and 2 crisp initial value problem.

FIVP

y′(t) = y(t)− t2 + 1, 0 ≤ t ≤ 2, y(0) = yi0

i = 1, · · · , 3

crisp initial value problem

y′(t) = y(t)− t2 + 1, 0 ≤ t ≤ 2, y(0) = 0

y′(t) = y(t)− t2 + 1, 0 ≤ t ≤ 2, y(0) = 1
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by solving them we have The exact solution of
each problem is

y(t, r) = (−2r)et + (t+ 1)2

y(t, r) = (2 + 2r)et + (t+ 1)2

y(t, r) = (−1/2− r/4)et + (t+ 1)2

y(t, r) = (1− r/4)et + (t+ 1)2

y(t, r) = (−r/4)et + (t+ 1)2

y(t, r) = (−1/2 + r/4)et + (t+ 1)2

y(t, r) = (−1/4− r/4)et + (t+ 1)2

y(t, r) = (−3/4 + r/4)et + (t+ 1)2

y(t, r) = (t+ 1)2 − et y(0) = 0
y(t, r) = (t+ 1)2 y(0) = 1

Let N = 10 and h = 0.2, the differential equation
of a system between ti and ti+1 can be represented
as

y′(t∗) = y(t∗)− t∗2 − 2tit
∗ + (1− t2i ) (∗)

where t∗ = t − ti. Since we know that y(0) ∈ E,
then y′(t) ∈ E and so on. If we show the equation
(∗) in parametric form, we have

y′(t∗) = y(t∗)− t∗ − 2tit
∗ + (1− ti)

2 (4.11)

y′(t∗) = y(t∗)− t∗ − 2tit
∗ + (1− ti)

2 (4.12)

Taking the differential transformation of (12)
and (13), it can be obtained that

Y i(k+ 1, r) = [Y i(k, r)− δ(k− 2)− 2ti(δ(k− 1))

+(1− t2i )δ(k)]/(k + 1) (∗∗)

Y i(k+ 1, r) = [Y i(k, r)− δ(k− 2)− 2ti(δ(k− 1))

+(1− t2i )δ(k + 1)]/(k + 1) (∗ ∗ ∗)

with Y 0() = yi0 and Y 0(0) = yi
0
. The approxi-

mate of y(t, r) and y(t, r) on the grid point can be
obtained by (∗), (∗∗) and (∗∗∗) for each i; i.e there
are a Taylor series corresponds to each i as ξi then
the set of solution is Γ(r) = {ξi|i = 1 · · · 5}.

Remark 4.1 Note that this problem have 2 solu-
tions By theorem 3, but We considered only one
solution. Based on application different form of
ODE can be considered for more detail about it
you can see [8].

5 Conclusion

A new concept, Fuzzy inclusions, and a new
method, DTM, are introduced in this paper. Dur-
ing this work we do not use the crisp inclusion
concept to find r − soulution of FIVP, it can be
done easily after generating sufficient FIVP by
fuzzy partition,instead it a new method to solv-
ing a FIVP is proposed which is an analytical-
numerical method and give us an appropriate ac-
curacy related to other methods. The Concept
of Fuzzy inclusion due to its properties can play
an important role in mechanics and physics prob-
lems.
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