
Available online at http://ijim.srbiau.ac.ir

Int. J. Industrial Mathematics Vol. 3, No. 4 (2011) 237-249

Fuzzy Galerkin Method for Solving Fredholm

Integral Equations with Error Analysis

Taher Lotfi ∗, Katayoun Mahdiani
Department of Applied Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

Received 18 December 2010; revised 6 October 2011; accepted 10 October 2011.

———————————————————————————————-
Abstract
In this paper, the classic Galergin method for solving integral equations of the second kind
is extended to fuzzy Galerkin method. Moreover, the error analysis, particularly, error
estimate, stability and convergence of the extended method are studied.
Keywords : Fredholm integral equation; Fuzzy Galerkin method; error analysis.
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1 Introduction

In this paper the classic Galerkin method for linear fuzzy Fredholm integral equations
of the second kind is extended and the error estimate of this method is given. Also,
convergence of the mentioned method is studied.

In [31], Zadeh introduced the concept of a fuzzy set. His pioneering work generated
applications in a wide range of areas. In [16], Dubois and Prade considered a certain type
of fuzzy-value function and defined the integral of such a function using the extension
principle. Definitions in terms of the extension principle are usually cumbersome to use
in applications. In [16], Dubois and Prade considered a restricted class of fuzzy-value
functions and stated a more practical definition of the integral of this type of function,
which they showed to be equivalent to the extension principle for this class of functions.

The fuzzy integral equations theory is well developed. In the existence of the solution
of fuzzy integral equations, the Ascoli’s theorem or metric fixed point theorems are used.
For the existence and uniqueness, the main tool is the Banach fixed point principle. Such
results can be found in [8, 9, 10, 14, 19, 20, 21, 23, 25, 26]

Numerical methods for fuzzy integral equations can be found in [1, 2, 6, 11, 13, 17,
18, 24, 29]. These methods use quadrature formulas (for linear fuzzy Fredholm integral
equations, see [17, 18]) and Adomian decomposition (see [1]). For instance, in [17, 18]
an iterative numerical method, using the trapezoidal quadrature rule for linear fuzzy
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Fredholm integral equations is given. In these two papers, the convergence of the method
was proved, but without the error estimate. In the recent paper [13], the author developed
a numerical method for nonlinear fuzzy Fredholm integral equations, based on Henstock
integral of Lipschitzian fuzzy-number-valued fuctions. He also presented the error estimate
of the method and the corresponding algorithm. Results on the fuzzy Henstock integral
theory can be found in [3, 30] and for the metric spaces theory in fuzzy context see [15, 28].

In what follows, the results from [3, 30] (about fuzzy Henstock and Riemann integral)
are used, obtaining a new numerical method for linear fuzzy Fredholm integral equations
of the second kind. Moreover, the error estimate of the proposed method is presented
and it’s convergence is discussed. Finally, some numerical examples are given to show the
applicability of fuzzy Galerkin method.

2 Preliminaries

The following definitions are needed:

Definition 2.1. (see [3, 30]). Let µ : R → [0, 1] with the following properties:

(i) is normal, i.e., ∃x0 ∈ R; µ(x0) = 1.

(ii) µ(λx + (1− λ)y) ≥ min{µ(x), µ(y)}, ∀x, y ∈ R, ∀λ ∈ [0, 1] (µ is called a convex fuzzy
subset).

(iii) µ is upper semicontinuous on R, i.e., ∀x0 ∈ R and ∀ε > 0, ∃ neighborhood V (x0) :
µ(x) ≤ µ(x0) + ε, ∀x ∈ V (x0).

(iv) The set supp(µ) is compact in R (where supp(µ) := {x ∈ R;µ(x) > 0}).

We call µ a fuzzy real number. Denote the set of all µ with Rz.
E.g., χ{x0} ∈ Rz, for any x0 ∈ R, where χ{x0} is the characteristic function at x0.
For 0 ≤ r ≤ 1 and µ ∈ Rz define [µ]r := {x ∈ R : µ(x) ≥ r} and

[µ]0 := {x ∈ R : µ(x) > 0}.

Then it is well known that for each r ∈ [0, 1], [µ]r is a closed and bounded interval of R,
([3]). For u, v ∈ Rz and λ ∈ R, we define uniquely the sum u ⊕ v and the product λ ⊙ u
by

[u ⊕ v]r = [u]r + [v]r, [λ ⊙ u]r = λ[u]r, ∀r ∈ [0, 1],

where [u]r + [v]r means the usual addition of two intervals (as subsets of R) and λ[u]r

means the usual product between a scalar and a subset of R (see, e.g., [30]). Notice
1⊙ u = u and it holds u⊕ v = v ⊕ u, λ⊙ u = u⊙ λ. If 0 ≤ r1 ≤ r2 ≤ 1 then [u]r2 ⊆ [u]r1 .
Actually [u]r = [u(r)

− , u
(r)
+ ], where u

(r)
− ≤ u

(r)
+ , u

(r)
− , u

(r)
+ ∈ R, ∀r ∈ [0, 1]. For λ > 0 one has

λu
(r)
± = (λ ⊙ u)(r)± , respectively.

Define
D : Rz × Rz → R+
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by

D(u, v) : = sup
r∈[0,1]

max{|u(r)
− − v

(r)
− |, |u(r)

+ − v
(r)
+ |}

= sup
r∈[0,1]

Hausdorff distance([u]r, [v]r),

where [v]r = [v(r)
− , v

(r)
+ ]; u, v ∈ Rz. We have that D is a metric on Rz. Then (Rz, D) is

a complete metric space, see [3, 30], with the properties

(i) D(u ⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ Rz,

(ii) D(k ⊙ u, k ⊙ v) = |k|D(u, v), ∀u, v ∈ Rz, ∀k ∈ R,

(iii) D(u ⊕ v, w ⊕ e) ≤ D(u, w) + D(v, e), ∀u, v, w, e ∈ Rz.

Let f, g : R → Rz be fuzzy number valued functions. The distance between f, g is defined
by

D∗(f, g) := sup
x∈R

D(f(x), g(x)).

If we denote ∥u∥z := D(u, õ), ∀u ∈ Rz, then ∥.∥z has the properties of a usual norm on
Rz, i.e.,

∥u∥z = 0 iff u = õ, ∥λ ⊙ u∥z = |λ|.∥u∥z,

∥u ⊕ v∥z ≤ ∥u∥z + ∥v∥z, ∥u∥z − ∥v∥z ≤ D(u, v).

A subset K ⊆ Rz is called fuzzy bounded, iff D(u, v) ≤ M, M > 0, ∀u, v ∈ K.

Definition 2.2. (see [30]). Let x, y ∈ Rz. If there exists a z ∈ Rz such that x = y ⊕ z,
then we call z the H-difference of x and y, denoted by z := x − y.

Definition 2.3. ([3]). Let f : [a, b] → Rz. We say that f is Fuzzy- Riemann integrable
to I ∈ Rz if for any ε > 0, there exists δ > 0 such that for any division P = {[u, v]; ξ} of
[a, b] with the norms △(P ) < δ, we have

D

( ∗∑
P

(v − u) ⊙ f(ξ), I

)
< ε,

where Σ∗ denotes the fuzzy summation. We choose to write

I := (FR)
∫ b

a
f(x)dx.

We also call an f as above (FR)-integrable.

Theorem 2.1. ([3]). If f, g : [c, d] → Rz are (FR)-integrable fuzzy functions, and α, β
are real numbers, then

(FR)
∫ d

c
(αf(x) ⊕ βg(x))dx = α(FR)

∫ d

c
f(x)dx ⊕ β(FR)

∫ d

c
g(x)dx.
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3 Extension: Fuzzy Galerkin Method

This section deals with solving fuzzy integral equations using Galerkin method. To this
end, Consider the fuzzy Fredholm integral equation

[x(t)](r) =
[
y(t) ⊕ (FR)

∫
D

k(t, s) ⊙ x(s)ds

](r)

, t ∈ D. (3.1)

To solve (3.1), a finite dimensional family of fuzzy functions is chosen, which is believed
to contain a fuzzy function [x̃(s)](r) close to the true fuzzy solution [x(s)](r).

The desired numerical fuzzy solution [x̃(s)](r) is selected by having it satisfy (3.1) fuzzy
approximately. The most popular of these are fuzzy collocation and Galerkin methods,
and we want to extend the classic Galerkin method to fuzzy Galerkin method. When this
method is formulated in an abstract framework using fuzzy operator, it makes essential
use of fuzzy projection operator. Since the error analysis and convergence are most easily
carried out within such a fuzzy operator framework, the method is referred to as fuzzy
projection method.

3.1 General theory

Let r ∈ [0, 1]. Then it follows that[
(FR)

∫
D

k(t, s) ⊙ x(s)ds

]r

=
[∫

D
(k(t, s) ⊙ x(s))(r)− ds,

∫
D

(k(t, s) ⊙ x(s))(r)+ ds

]
=
[∫

D
k(t, s)x(r)

− (s)ds,

∫
D

k(t, s)x(r)
+ (s)ds

]
= (FR)

∫
D

k(t, s)x(r)(s)ds,

and [∫
D

k(t, s)x(s)ds

]r

±
=
∫

D
k(t, s)x(r)

± (s)ds.

Thus
x

(r)
± (t) = y

(r)
± (t) +

∫
D

k(t, s)x(r)
± (s)ds,

and therefore[
x

(r)
− (t), x(r)

+ (t)
]

=
[
y

(r)
− (t) +

∫
D

k(t, s)x(r)
− (s)ds, y

(r)
+ (t) +

∫
D

k(t, s)x(r)
+ (s)ds

]
.

So we get

[x(t)](r) =
[
x

(r)
− (t), x(r)

+ (t)
]

=
[
y

(r)
− (t) +

∫
D

k(t, s)x(r)
− (s)ds, y

(r)
+ (t) +

∫
D

k(t, s)x(r)
+ (s)ds

]
= y(r)(t) +

[
(FR)

∫
D

k(t, s) ⊙ x(s)ds

](r)

, r ∈ [0, 1]

=
[
y(t) ⊕ (FR)

∫
D

k(t, s) ⊙ x(s)ds

](r)

, r ∈ [0, 1].
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We write the fuzzy integral equation (3.1) in the operator form

(I − K)x(r) = y(r),

and the fuzzy operator K is assumed to be compact on a fuzzy Banach space Xz to Xz.
The most popular choices are Cz(D) and L2

z(D).
In fact, this framework is needed to understand the behavior of fuzzy Galerkin method

for solving fuzzy integral equation (3.1), including solving equations regarding convergence,
numerical stability and error estimates.

In practice, we choose a sequence of finite dimensional fuzzy subspace Xz ⊂ X, n ≥ 1,
with Xz having dimension dn. Let Xz have a basis {φi}d

i=1, with d ≡ dn for notational
simplicity. We seek a fuzzy function x

(r)
n ∈ Xz , and it can be written as

[xn(t)](r) =
d∗∑

j=1

c
(r)
j ⊙ [φj(t)] , t ∈ D, (3.2)

where Σ∗ denotes the fuzzy summation. This is substituted into (3.1), and the coefficient{
c
(r)
i

}d

i=1
is determined by forcing the equation to be almost fuzzy exact in Galerkin

sense. Now, we introduce fuzzy residual in the approximation of equation (3.1), when
[x(t)](r) ≈ [xn(t)](r).

Theorem 3.1. Let x(r) ∈ CF (D), then

[xn(t)](r) =
[
Rn(t) ⊕ y(t) ⊕ (FR)

∫
D

k(t, s) ⊙ xn(s)ds

](r)

.

Proof: Let r ∈ [0, 1]. We have [xn(t)](r) =
[
x

(r)
n−(t), x(r)

n+(t)
]

and considering what was
discussed before,

x(r)
n±(t) = R(r)

n±(t) −
∫

D
k(t, s)x(r)

n±(s)ds − y(r)(t),

so

[xn(t)](r) =
[
x

(r)
n−(t), x(r)

n+(t)
]

=
[
R

(r)
n−(t), R(r)

n+(t)
]
−
[∫

D k(t, s)x(r)
n−(s)ds,

∫
D k(t, s)x(r)

n+(s)ds
]
−
[
y

(r)
− (t), y(r)

+ (t)
]

= [Rn(t)](r) ⊕
[
(FR)

∫
D k(t, s) ⊙ xn(s)ds

](r) + [y(t)](r) .

Using H-difference, we have

[Rn(t)](r) = [xn(t)](r) −
[
(FR)

∫
D

k(t, s) ⊙ xn(s)ds

](r)

− [y(t)](r) .

or
[Rn](r) = (I − K) ⊙ [xn](r) − y(r). (3.3)

It is hoped and expected that the resulting fuzzy function [xn(t)](r) will be a good ap-
proximation of the true fuzzy solution [x(t)](r). To do this via fuzzy Galerkin method, let
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Xz = L2
z(D), and let < ., . >z denote the fuzzy inner product for Xz. Require R

(r)
n to

satisfy
< R(r)

n , φi >z= 0̃, i = 1, 2, · · · , d, r ∈ [0, 1], (3.4)

where < R
(r)
n , φi >z=

[
(FR)

∫
D Rn(t) ⊙ φi(t)dt

](r). The left side is the Fourier coefficient
of R

(r)
n associated with φi. If {φi}d

i=1 are the leading members of an orthonormal fuzzy
family ϕ = {φi}∞i=1 that is complete in Xz, then (3.4) requires the leading terms to be
zero in the Fourier expansion of R

(r)
n with respect to ϕ.

To find x
(r)
n , apply (3.4) to (3.3), we have⟨

[Rn(t)](r), φi(t)
⟩

=
⟨

[xn(t)](r) − (FR)
∫

D
k(t, s) ⊙ [xn(s)](r)ds − [y(t)](r), φi(t)

⟩
= 0̃,

This yields the fuzzy linear system

d∗∑
j=1

c
(r)
j ⊙ {⟨φj , φi⟩ − ⟨Kφj , φi⟩} =

⟨
y(r), φi

⟩
, i = 1, 2, · · · , d, (3.5)

or

d∗∑
j=1

c
(r)
j ⊙

{
(FR)

∫
D

φj(t)φi(t)dt − (FR)
∫∫

D
k(t, s)φi(t)φj(s)ds dt

}
= (FR)

∫
D

[y(t)](r) ⊙ φi(t)dt.

This is fuzzy Galerkin’s method for obtaining an approximate solution to (3.1).

4 Error Estimation and Convergence

In this section, error analysis and convergence conditions of the fuzzy Galerkin method
are discussed. We begin with the following definition.

Definition 4.1. Let Xz and Yz be fuzzy Banach spaces and let Lz : Xz → Yz be an
injective bounded fuzzy linear operator. Let Xzn ⊂ Xz and Yzn ⊂ Yz be two sequences of
fuzzy subspaces with dimXzn = dimYzn = n and let Pzn : Xzn → Yzn be fuzzy projection
operators. The fuzzy projection method, generated by Xzn and Pzn, approximates the fuzzy
equation

Lzx(r) = y(r), (4.6)

by the fuzzy projected equation

PznLzx(r)
n = Pzny(r). (4.7)

This fuzzy projection method is called fuzzy convergent for the fuzzy operator Lz if there
exists an index N such that for each y(r) ∈ Lz(X) the fuzzy approximating equation
PznLzx

(r)
n = Pzny(r) has a unique solution x

(r)
n ∈ Xzn for all n ≥ N and if this fuzzy

solutions converge x
(r)
n → x(r), n → ∞, to the unique fuzzy solution x(r) of Lzx(r) = y(r).
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In terms of fuzzy operators, fuzzy convergence of the fuzzy projection method means
that for all n ≥ N the finite dimensional fuzzy operators Lzn = PznLz : Xzn → Yzn are
invertible and that fuzzy piontwise convergence L−1

z PznLzx(r) = x(r), n → ∞, holds for
all x(r) ∈ Xz. In general, we can expect fuzzy convergence only if the fuzzy subspaces
Xzn possess the density property

inf
x̃(r)∈Xzn

∥x̃(r) − x(r)∥z → 0, n → ∞, ∀x(r) ∈ Xz, x̃(r) ∈ Xzn , (4.8)

for all x(r) ∈ Xz, [3]. Therefore, in the subsequent analysis we will always assume that
this condition is fulfilled.

Since Lzn = PznLz is a linear fuzzy operator between two finite dimensional fuzzy
spaces, carrying out the fuzzy projection method is reduced to solving a finite dimensional
fuzzy linear system. Here, we first proceed with a general convergence and error analysis.

Theorem 4.1. The fuzzy projection method convergence if and only if there exist an index
N and a positive constant M such that for all n ≥ N the finite dimensional fuzzy operators

Lzn = PznLz : Xzn → Xzn ,

are invertible and the fuzzy operators L−1
zn

PznLz : Xzn → Xzn are uniformly fuzzy
bounded

∥L−1
zn

PznLz∥z ≤ M. (4.9)

There holds an error estimate

∥x(r)
n − x(r)∥z ≤ (1 + M) inf

x̃(r)∈Xzn

∥x̃(r) − x(r)∥z. (4.10)

Proof: Provided the fuzzy projection method converges, the uniform fuzzy bounded-
ness (4.9) is a consequence of the uniform fuzzy bounded principle, [3, 28]. Conversely, if
the assumptions of the theorem are fulfilled we can write

x(r)
n − x(r) = (L−1

zn
PznLz − I)x(r).

Since for all x̃(r) ∈ Xzn , trivially, there holds L−1
zn

PznLzx̃(r) = x̃(r), we have

x(r)
n − x(r) = (L−1

zn
PznLz − I)(x(r) − x̃(r)).

Hence, we have the error estimate (4.10) and, with the aid of the density (4.8), the con-
vergence follows.

We now state and extend the main stability property of the classic projection method
for fuzzy projection method.

Theorem 4.2. Assume that Sz : Xz → Yz is a bounded fuzzy linear operator with a
bounded fuzzy inverse S−1

z : Yz → Xz and that the fuzzy projection method is convergent
for Sz. Let Lz : Xz → Yz be a bounded fuzzy linear operator satisfying either

(1) ∥Lz∥z is sufficiently small or

(2) Lz is compact and Sz − Lz is injective.



244 Taher Lotfi, Katayoun Mahdiani / IJIM Vol. 3, No. 4 (2011) 237-249

Then the fuzzy projection method also converges for Sz − Lz.

Proof: The fuzzy operator Sz satisfies the conditions of theorem (4.1), that is,
the fuzzy operators Szn = PznSz are invertible for all sufficiently large n and satisfy
∥S−1

zn
PznSz∥z ≤ M with some constant M . Since S has a bounded fuzzy inverse, the

pointwise fuzzy convergence S−1
z PznSz → I, n → ∞, on Xzn implies pointwise fuzzy

convergence S−1
z Pzn → S−1

z , n → ∞, on Yzn . We will show that for sufficiently large n,
the inverse fuzzy operators of I − S−1

z PznLz : Xzn → Xzn exist and are uniformly fuzzy
bounded if (1) or (2) is satisfied.

(1) We apply the uniform fuzzy boundedness principle to the pointwise fuzzy conver-
gent sequence (S−1

zn
Pzn). Then the inverse fuzzy operators (I −S−1

z PznLz)−1 exist
and are uniformly fuzzy bounded for all sufficiently large n, provided Lz satisfies
supn∈N ∥S−1

zn
Pzn∥z∥Lz∥z < 1.

(2) Since S−1
z Lz is compact, by the Riesz fuzzy theory, I − S−1zLz : Xz → Xz has

a bounded fuzzy inverse. From the pointwise fuzzy convergence of the sequence
(S−1

zn
Pzn) and the fuzzy compactness of Lz, by theorem (4.1), we derive norm

fuzzy convergence ∥S−1
z Lz − S−1

zn
PznLz∥z → 0, n → ∞. Therefore the inverse

fuzzy operators (I − S−1
zn

PznLz)−1 exist and are uniformly fuzzy bounded for all
sufficiently large n.

Note that (I − S−1
zn

PznLz)−1 maps Xzn into itself. We abbreviate S̃z = Sz − Lz and
S̃zn = PznS̃z. Then S̃zn = Szn(I − S−1

zn
PznLz) : Xzn → Yzn is fuzzy invertible for

sufficiently large n with the inverse given by

S̃z
−1

n = (I − S−1
zn

PznLz)−1S−1
zn

.

From S̃z
−1

n PznS̃z = (I − S−1
zn

PznLz)−1S−1
zn

PznSz(I − S−1
z Lz) we estimate

∥S̃z
−1

n PznS̃z∥z ≤ ∥(I − S−1
zn

PznLz)−1∥z∥I − S−1
z Lz∥zM,

and observe that the condition (4.9) is satisfied for S̃z.

For an fuzzy equation of the second kind

x(r) − Lzx(r) = y(r), (4.11)

with a bounded fuzzy linear operator Lz : Xz → Xz we need only a sequence of fuzzy
subspaces Xn ⊂ X and fuzzy projection operators Pzn : Xz → Xzn . Then the fuzzy
projection method assumes the form

x(r)
n − PznLzx(r)

n = Pzny(r). (4.12)

Note that each solution x
(r)
n ∈ Xz to (4.12) automatically belongs to Xzn . When L is

fuzzy compact, from theorem (4.2) we have the following convergence property.

Corollary 4.1. Let Lz : Xz → Xz be fuzzy compact, I − Lz be fuzzy injective and let
the fuzzy projections Pzn : Xz → Xz converge pointwise Pznx(r) → x(r), n → ∞, for all
x(r) ∈ Xz. Then the fuzzy projection method for I − Lz converges.

Proof: Apply the second part of theorem (4.2) for Sz = I and identify Xz = Yz and
Xzn = Yzn .
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5 Examples

In this section, using two examples, the proposed fuzzy Galerkin method for solving
fuzzy Fredholm integral equations of the second kind is illustrated.

Example 5.1. Suppose

x(r)(t) = y(r)(t) +
∫ 1

−1
stx(r)(s) ds, (5.13)

where
y(r)(t) = [r2 + r, 4 − r3 − r]t, r ∈ [0, 1].

We choose here three linearly independent functions ϕ1(t) = 1, ϕ2(t) = t and ϕ3(t) = t2.
So the approximate solution from (3.2) is

x
(r)
3 (t) = c

(r)
1 + c

(r)
2 t + c

(r)
3 t2. (5.14)

If we substitute (5.14) in (3.3), then we have

R
(r)
2 (t) = c

(r)
1 + c

(r)
2 t + c

(r)
3 t2 − y(r)(t) −

∫ 1

−1
st
(
c
(r)
1 + c

(r)
2 s + c

(r)
3 s2

)
ds.

Using (3.3), then fuzzy Galerkin method gives⟨
R

(r)
2 (t), ϕk(t)

⟩
= 0̃, k = 1, 2, 3,

which is equivalent to the following fuzzy linear system of equations∫ 1

−1

[
c
(r)
1 + c

(r)
2 t + c

(r)
3 t2 −

∫ 1

−1
st
(
c
(r)
1 + c

(r)
2 s + c

(r)
3 s2

)
ds

]
dt =

∫ 1

−1
y(r)(t) dt,

∫ 1

−1
t

[
c
(r)
1 + c

(r)
2 t + c

(r)
3 t2 −

∫ 1

−1
st
(
c
(r)
1 + c

(r)
2 s + c

(r)
3 s2

)
ds

]
dt =

∫ 1

−1
ty(r)(t) dt,

∫ 1

−1
t2
[
c
(r)
1 + c

(r)
2 t + c

(r)
3 t2 −

∫ 1

−1
st
(
c
(r)
1 + c

(r)
2 s + c

(r)
3 s2

)
ds

]
dt =

∫ 1

−1
t2y(r)(t) dt.

It is clear that ∫ 1

−1
s(c(r)

1 + c
(r)
2 s + c

(r)
3 s2)ds =

2
3
c
(r)
2 .

Therefore, we have ∫ 1

−1

(
c
(r)
1 +

1
3
c
(r)
2 t + c

(r)
3 t2

)
dt =

∫ 1

−1
y(r)(t)dt,

∫ 1

−1
t

(
c
(r)
1 +

1
3
c
(r)
2 t + c

(r)
3 t2

)
dt =

∫ 1

−1
ty(r)(t)dt,

∫ 1

−1
t2
(

c
(r)
1 +

1
3
c
(r)
2 t + c

(r)
3 t2

)
dt =

∫ 1

−1
t2y(r)(t)dt.



246 Taher Lotfi, Katayoun Mahdiani / IJIM Vol. 3, No. 4 (2011) 237-249

Since y(r)(t) = [r2 + r, 4 − r3 − r]t, then

2c
(r)
1 +

2
3
c
(r)
3 = 0,

2
9
c
(r)
2 =

2
3
[r2 − r, 4 − r3 − r],

2
3
c
(r)
1 +

2
5
c
(r)
3 = 0.

The solution is c
(r)
1 = c

(r)
2 = 0 and c

(r)
2 = 3[r2 + r, 4 − r3 − r]. Thus, the fuzzy solution of

(5.13) is x
(r)
2 (t) = 3t[r2 + r, 4 − r3 − r]. It can be verified that the exact fuzzy solution of

the given fuzzy integral equation (5.13) is x(r)(t) = x
(r)
2 (t). It should be noted, however,

that such agreement is not possible when we consider another basis. Furthermore, if we
let r = 1, the exact solution of (5.13) is again x(t) = x2(t) = 6t.

Example 5.2. Choosing suitable basis is very important. If we consider the previous
example again, but set ϕ1(t) = 1, ϕ2(t) = sin t and ϕ3(t) = cos t, then repeating the
computations with these functions as basis gives

x
(r)
2 (t) = 3.2997 sin(t)[r2 + r, 4 − r3 − r].

Example 5.3. Consider

x(r)(t) = y(r)(t) +
∫ 2π

0

sin(t) sin(0.5s)
10

x(r)(s) ds, (5.15)

where

y(r)(t) = sin(0.5t)
[
2(r2 + r) + 13(4 − r3 − r)

15
,
13(r2 + r) + 2(4 − r3 − r

15

]
.

The exact fuzzy solution of (5.15) is

x(r)(t) = sin(0.5t)
[
r2 + r, 4 − r3 − r

]
.

Here the suitable choices of basis functions are ϕ1(t) = 1, ϕ2(t) = sin(0.5t) and ϕ3(t) =
cos(0.5t). So, the fuzzy approximate solution has the following form

x
(r)
2 (t) = c

(r)
1 + c

(r)
2 sin(0.5t) + c

(r)
3 cos(0.5t). (5.16)

If we substitute (5.16) in (3.3), then we have

R
(r)
2 (t) = c

(r)
1 + c

(r)
2 sin(0.5t) + c

(r)
3 cos(0.5t) − y(r)(t)

−
∫ 2π
0

sin(t) sin(0.5s)
10

(
c
(r)
1 + c

(r)
2 sin(0.5s) + c

(r)
3 cos(0.5s)

)
ds.

Using (3.3), then fuzzy Galerkin method gives⟨
R

(r)
2 (t), ϕk(t)

⟩
= 0̃, k = 1, 2, 3,
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which is equivalent to the following fuzzy linear system of equations∫ 2π

0
1.

[
x

(r)
2 (t) −

∫ 2π

0

sin(t) sin(0.5s)
10

x
(r)
2 (s) ds

]
dt =

∫ 2π

0
1.y(r)(t) dt,

∫ 2π

0
sin(0.5t)

[
x

(r)
2 (t) −

∫ 2π

0

sin(t) sin(0.5s)
10

x
(r)
2 (s) ds

]
dt =

∫ 2π

0
sin(0.5t)y(r)(t) dt,∫ 2π

0
cos(0.5t)

[
x

(r)
2 (t) −

∫ 2π

0

sin(t) sin(0.5s)
10

x
(r)
2 (s) ds

]
dt =

∫ 2π

0
cos(0.5t)y(r)(t) dt.

Solving this system, gives c
(r)
1 = c

(r)
3 = 0 and c

(r)
2 = [r2 + r, 4 − r3 − r]. Therefore

x
(r)
2 (t) = sin(0.5t)c(r)

2 = sin(0.5t)[r2 + r, 4− r3 − r] which is the exact fuzzy solution of the
given integral equation.

6 Conclusion

In this paper, the classic Galergin method for solving integral equations of the second
kind was improved to fuzzy Galerkin method. Also, the error analysis, namely, error
estimate, stability and convergence of the extended method were discussed and some
results were established. To support the applicability of the proposed method, some
examples were carried out.
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