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Abstract

In this paper, the Ritz-Galerkin method in Bernstein polynomial basis is applied for solving the
nonlinear problem of the magnetohydrodynamic (MHD) flow of third grade fluid between the two
plates. The properties of the Bernstein polynomials together with the Ritz-Galerkin method are used
to reduce the solution of the MHD Couette flow of non-Newtonian fluid in a porous medium to the
solution of algebraic equations.
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1 Literature review

N
on-Newtonian fluid dynamics is one of the
most important subjects in modern applied

mathematics. This is due to the fact that
non-Newtonian fluids are of considerable inter-
est in many industrial and technological applica-
tions. In nature there are different kinds of non-
Newtonian fluids. All such fluid in terms of their
diverse characteristics cannot be described by one
constitutive equation. Hence different fluid mod-
els have been proposed. Amongst these a subclass
of differential type fluids third grade can predict
the shear thinning/shear thickening effects even
in steady unidirectional flow over rigid boundary.
MHD consideration of non-Newtonian fluids is
important in the metallurgical process. Further,
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the non-Newtonian fluids in porous media are en-
countered in fields like ceramics production, cer-
tain separation processes, filtration and oil recov-
ery, petroleum production, food processing, poly-
mer engineering etc. Having such importance of
non-Newtonian fluids in mind, many researchers
are engaged to examine various physical aspects
of such fluids in different flow figurations (see for
instance the studies [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
and many references therein).

Recently, the effects of nonlinear partial slip
on the walls for steady flow and heat transfer of
an incompressible, thermodynamically compati-
ble third grade fluid in a channel is investigated
in [11]. In that paper, the space between two
plates is not a porous media and the upper plate
is moving with uniform velocity.

The Ritz method is a variational method. Vari-
ational methods are approximate methods for
the solutions of boundary value problems (BVP).
These methods include the Collocation, Galerkin
(with its various versions [12]), least squares
methods and the moment methods; amongst oth-
ers. In each variational algorithm, we obtain
some Coefficients of some given assumed approx-
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imate solutions to the BVP that would satisfy
Some boundary given conditions. In this paper,
the Ritz-Galerkin method in Bernstein polyno-
mial basis is used. The approximation of the
problem is based on the modified Bernstein poly-
nomial basis. The properties of Bernstein poly-
nomials are first presented. The Bernstein poly-
nomial basis vanish except the first polynomial at
x = 0, which is equal to 1 and the last polyno-
mial at x = R, which is also equal to 1 over the
interval [0, R]. This provides greater flexibility in
which to impose boundary conditions at the end
points of the interval.

In this work, Couette flow of an incompress-
ible third grade fluid is considered. The fluid is
electrical conducted in the presence of uniform
applied magnetic field B0 in the y-direction. In-
duced magnetic field is not taken into account in
view of small magnetic Reynolds number. The
fluid saturates the porous space between two infi-
nite plates. The lower plate at y = 0 is stationary
while the upper plate at y = h is suddenly jerked
with the velocity U0. Slip effects in terms of shear
stress is considered. For unidirectional steady
flow, the velocity field V = (u(y), 0, 0)) satisfies
the incompressibility conditions and equation of
motion in absence of axial pressure gradient gives

µ
d2u

dy2
+ 2β

d

dy

(
du
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)3

− (1.1)

ϕ

K

[
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]
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with the subjected boundary conditions
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]
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= 0, (1.2)

u(2h) + γ
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(
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)3
]
y=2h

= U0. (1.3)

In above equations µ is the dynamic viscosity, β
is the material parameter, ϕ and k are the poros-
ity and permeability of porous medium, σ is the
electrical conductivity and γ is the dimensional
slip parameter.

At this point, we introduce the following di-
mensionless variables

u =
u∗

U0
, y =

y∗

h
, γ =

γ∗

h
,

1

K
=

h2ϕ

k
,

M =
σB2

0h
2

µ
, β∗ =

βU2
0

µh2
.

Now dimensionless forms of Eqs. (1.1)-(1.3) are
reduced as follows
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with conditions

u(0)− γ

[
du
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+ 2β

(
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)3
]
y=0

= 0, (1.5)

u(2) + γ

[
du

dy
+ 2β

(
du

dy

)3
]
y=2

= 1, (1.6)

where asterisks have been suppressed for simplic-
ity.

2 Properties of Bernstein poly-
nomials

The general form of the B-polynomials of mth-
degree are defined on the interval [0, 1] as [13]

Bi,m(x) =
m!

i! (m− i)!
xi(1− x)m−i, 0 ≤ i ≤ m.

A recursive definition also can be used to generate
the B-polynomials over [0, 1] so that the ith mth
degree B-polynomial can be written

Bi,m(x) = (1− x)Bi,n−1(x) + xBi−1,n−1(x).

It can be readily shown that each of the B-
polynomials is positive and also the sum of all the
B-polynomials is unity for all real x belonging to
the interval [0, 1], that is,

∑m
i=0Bi,m(x) = 1. It

can be easily shown that any given polynomial
of degree m can be expanded in terms of linear
combination of the basis functions

P (x) =

m∑
i=0

CiBi,m(x), m ≥ 1.

Moreover the Bernstein basis polynomials have
the following properties:

i) Bi,m(0) = δi,0and Bi,m(1) = δi,m where δ is
the Kronecker delta function.
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ii) Bi,m(x) has a root with multiplicity i at
point x = 0 (note if i is 0 there is no root at
0).

iii) Bi,m(x) has a root with multiplicity m − i
at point x = 1 (note if m = i there is no root at
1).

Now suppose that H = L2[0, 1]
and{B0,m, B1,m, . . . , Bm,m} ⊂ H , be the
set of Bernstein polynomials of mth degree and:

Y = Span{B0,m, B1,m, . . . , Bm,m}
and f be an arbitrary element in H. Since Y is a
finite dimensional vector space, f has the unique
best approximation out of Y such as y0 ∈ Y , i.e.,

∃y0 ∈ Y ; ∀y ∈ Y ∥ f − y0 ∥≤∥ f − y ∥ .

Since y0 ∈ Y , there exist the unique coefficients
c0, c1, . . . , cm such that:

f ∼= y0 =
m∑
i=0

ciBi,m = cTϕ,

where ϕT = [B0,m, B1,m, . . . , Bm,m] and cT =
[c0, c1, . . . , cm], and cT can be obtained by

cT < ϕ, ϕ >=< f, ϕ >,

in which

< f, ϕ >=

∫ 1

0
f(x)ϕ(x)Tdx = [< f,B0,m >,

,< f,B1,m >, . . . , < f,Bm,m >],

and < ϕ, ϕ > is a (m + 1) × (m + 1) matrix and
is said dual matrix of ϕ. Let

Q = [Q(i+1),(i+1)] =< ϕ, ϕ >=

∫ 1

0
ϕ(x)ϕ(x)Tdx,

then

cT = (

∫ 1

0
f(x)ϕ(x)Tdx)Q−1.

In the following lemma we present an upper
bound to estimate the error.

Lemma 2.1 Suppose that the function g :
[t0, tf ] → R is m + 1 times continuously
differentiable, g ∈ Cm+1[t0, tf ] and Y =
Span{B0,m, B1,m, . . . , Bm,m}. If cTϕ be the best
approximation of g out of Y then the mean error
bounded is presented as follows

∥ g − cTϕ ∥≤
M(tf − t0)

(2m+3)/2

(m+ 1)!
√
2m+ 3

,

where M = maxx∈[t0,tf ]|g
(m+1)(x)|.

Proof. We consider the Taylor polynomial

y1(x) =

g(t0) + g′(t0)(x− t0) + ...+ g(m)(t0)
(x− t0)

m

m!
,

which we know

|g(x)− y1(x)|≤ |g(m+1)(η)|(x− t0)
m+1

(m+ 1)!
, (2.7)

where η ∈ (t0, tf ). Since cTϕ is the best approx-
imation g out of Y , y1 ∈ Y and using Eq. (2.7)
we have

∥ g − cTϕ ∥22≤∥ g − y1 ∥22=
∫ tf

t0

|g(x)− y1(x)|2dx

≤
∫ tf

t0

[g(m+1)(η)
(x− t0)

m+1

(m+ 1)!
]2dx

≤ M2

(m+ 1)!2

∫ tf

t0

(x− t0)
2m+2dx =

M2(tf − t0)
2m+3

[(m+ 1)!2 ](2m+ 3)
,

and by taking square roots we have the above
bound.

3 The Ritz-Galerkin Method

Consider the vector space of real functions whose
domain is the closed interval [a, b]. We define the
inner product of two functions f(x) and g(x) as
follows

< f, g >=

∫ b

a
f(x)g(x)dx.

In this method, we have the following assump-
tions:

1) All the functions we use are assumed to be
square-integrable.

2) If < f,w >=
∫ b
a f(x)w(x)dx = 0 for any

function w(x), then f(x) = 0.
3) A complete basis for a vector space V of

functions is a set of linear independent functions
S = {φi(x)}i=∞

i=0 which has the property that any
f(x) ∈ V can be written uniquely as a linear com-
bination

f(x) =

∞∑
j=0

cjφj(x).

If f(x) ∈ V and < φi, f >= 0 for all φi ∈ S
then f(x) ≡ 0. A weighted residual method uses
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a finite number of functions {φi(x)}i=n
i=0 . Consider

the differential equation

L[y(x)] + f(x) = 0, (3.8)

over the interval a ≤ x ≤ b. The term L[y(x)]
denotes a linear differential operator.
Multiplying Eq. (3.8) by any arbitrary weight
function w(x) and integrating over the interval
[a, b] one obtains∫ b

a
w(x)(L[y(x)] + f(x))dx = 0, (3.9)

for any arbitrary w(x). The Eqs. (3.8) and (3.9)
are equivalent, because w(x) is any arbitrary
function.

We introduce a trial solution u(x) to Eq. (3.8)
of the form

u(x) = φ0(x) +

n∑
j=1

cjφj(x),

and replace y(x) with u(x) on the left side of the
Eq. (3.8). The residual is defined as follows

r(x) = L[u(x)] + f(x).

The goal is to construct u(x) so that the inte-
gral of the residual will be zero for some choices
of weight functions. That is, u(x) will partially
satisfy (3.9) in the sense that∫ b

a
w(x)(L[y(x)] + f(x))dx = 0.

for some choices of w(x) . One of the most
important weighted residual methods was intro-
duced by the Russian mathematician, Boris Grig-
oryevich Galerkin (February 20, 1871 - July 12,
1945). Galerkin’s method selects the weight func-
tions in a special way: they are chosen from the
basis functions, i.e. w(x) ∈ {φi(x)}ni=1. It is re-
quired that the following n equations hold true∫ b

a
φi(x)(L[y(x)] + f(x))dx = 0,

for i = 1, 2, . . . , n. To apply the method, we solve
these n equations for the coefficients {cj}∞j=1.
Suppose we wish to solve a boundary value prob-
lem over the interval [a, b] with the above method,
we select φi(x), i = 1, 2, . . . ,m so that sat-
isfy the homogeneous form of the specified essen-
tial boundary conditions and φ0 must satisfy the
specified essential boundary conditions.

4 Solution procedure

By the change of variable

y = 2x,

we get du
dy = (1/2)dudx and d2u

dy2
= (1/4)d

2u
dx2 then

the Eqs. (1.4)-(1.6) can be written as the differ-
ential equation with boundary conditions on in-
terval [0, 1], i.e.

2
d2u

dx2
+ β

d

dx

(
du

dx

)3

−

1

K

[
8 + 4β

(
du

dx

)2
]
u− 8Mu = 0,

with conditions

u(0)− γ

[
(1/2)

du

dx
+ (1/4)β

(
du

dx

)3
]
x=0

= 0,

(4.10)

u(1) + γ

[
(1/2)

du

dx
+ (1/4)β

(
du

dx

)3
]
x=1

= 1.

(4.11)
As y goes from 0 to 2 in the original problem

continuously, x goes from 0 to 1 as well in the
above differential equation, continuously. Now,
having boundary conditions at interval [0, 1], we
apply Bernstein Ritz-Galerkin method to handle
the above problem as follows.

4.1 Satisfier function and Ritz-
Galerkin method

Let

y(x) =

n∑
i=0

ciϕi(x),

where for arbitrary constant n, ϕi(x) are following
modified Bernstein polynomials:

ϕi(x) = Bi,n, i = 1, 2, . . . , n− 1,

ϕ0(x) = xB0,n, ϕn(x) = (1− x)Bn,n.

With these choices of polynomials the function
y(x) has the following properties:

y(0) = y(1) = 0, (4.12)

y′(0) = c0 + nc1, (4.13)
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y′(1) = −ncn−1 − cn. (4.14)

Let us define the satisfier function ϕ(x) which
helps y(x) satisfies conditions (4.10)-(4.11).

Consider the truncated series

ū(n)(x) =
n∑

i=0

ciϕi(x) + ϕ(x) = y(x) + ϕ(x).

The goal is to construct ϕ(x) so that ū(n)(x) sat-
isfies the conditions (4.10)-(4.11).

In general, ϕ(x) is not unique. The simplest
choice of ϕ(x) is

ϕ(x) = a+ (3b− 3a)x2 + (2a− 2b)x3,

such that

a = γ((1/2)(c0 + nc1) + (1/4)β(c0 + nc1)
3),

b =

1−γ((1/2)(−ncn−1−cn)+(1/4)β(−ncn−1−cn)
3).

It is worth pointing out that for ϕ(x) we have

ϕ′(0) = ϕ′(1) = 0,

ϕ(0) = γ((1/2)(c0 + nc1) + (1/4)β(c0 + nc1)
3),

ϕ(1) =

1−γ((1/2)(−ncn−1−cn)+(1/4)β(−ncn−1−cn)
3).

Therefore, by using (4.12)-(4.14), it’s easy to see
that ū(m)(x) satisfies the conditions (4.10)-(4.11).
Now let

F (u) = 2
d2u

dx2
+ β

d

dx

(
du

dx

)3

− (4.15)

1

K

[
8 + 4β

(
du

dx

)2
]
u− 8Mu.

For solving (4.15), we approximate u(x) as

u(x) ≈ ū(n)(x) =

n∑
i=0

ciϕi(x) + ϕ(x). (4.16)

Now the expansion coefficients ci are determined
by the Galerkin equations

< F (ū(n)), Bi,n >= 0, i = 1, 2, . . . , n, (4.17)

where < . > denotes the inner product defined by

< F (ū(n)), Bi,n >=

∫ 1

0
F (ū(n))(x)Bi,n(x)dx.

Eq. (4.17) gives a system of nonlinear equations
which can be solved for the elements of ci using
Newton’s iterative method.

It is important to not that, we made satis-
fier function ϕ(x) so that sum of that and trun-
cated series

∑n
i=0 ciϕi(x) is satisfied boundary

conditions. This is different from other Ritz
method, where the satisfier function satisfies the
each boundary condition.

4.2 Collocation method

By the change of variable

y = x+ 1,

we get du
dy = du

dx then the problem (1.4)-(1.6)
can be written as the differential equation with
boundary conditions on interval [−1, 1], i.e.,

d2u

dx2
+ 2β

d

dx

(
du

dx

)3

− (4.18)

1

K

[
1 + 2β

(
du

dx

)2
]
u−Mu = 0,

with conditions

u(−1)− γ

[
du

dx
+ 2β

(
du

dx

)3
]
x=−1

= 0, (4.19)

u(1) + γ

[
du

dx
+ 2β

(
du

dx

)3
]
x=1

= 1. (4.20)

Now having boundary conditions at interval
[−1, 1], we apply collocation method to handle
the above problem as follows.

The unknown function u(x) is approximated as
a truncated series of Chebyshev polynomials

u(x) =

n∑
i=0

uiTi(x),

where Ti(x) is the ith Chebyshev polynomial and
ui are the Chebyshev coefficients. For the numer-
ical solution of (4.18) using collocation method
with collocation points

c0 = −1, c1, . . . , cn−1 ∈ (−1, 1), cn = 1,

we substitute u(x) in (4.18)-(4.20) and require
that the ODE (4.18) hold at the collocation
points c1, . . . , cn−1, and (4.19) and (4.20) hold at
the collocation points c0 and cn respectively.
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4.3 Approximate solutions of the
model

By using presented method with n = 5 and from
(4.16), we approximate u(x) by a finite linear
combination of the form

u(x) =

5∑
j=0

cjϕj + ϕ(x)

with

ϕ0 =

(1−x)5x, ϕ1 = 5(1−x)4x, ϕ2 = 10(1−x)3x2,

ϕ3 =

10(1−x)2x3, ϕ4 = 5(1−x)x4, ϕ5 = (1−x)x4,

and

ϕ(x) = γ((1/2)(c0 + 5c1) + (1/4)β(c0 + 5c1)3)+

(1− γ((1/2)(−5c4− c5) + (1/4)β(−5c4− c5)3)−

γ((1/2)(c0+5c1)+(1/4)β(c0+5c1)3))(−2x3+3x2).

Function u(x) for different values of β, γ,K,M
are plotted in the Figures 1-4, respectively. Also
Tables (1)-(4) show the obtained value of u(0) for
different values of parameters with two methods
described in this manuscript. These tables show
that our computations are more accurate.
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Figure 1: Variation of β on u
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Figure 2: Variation of γ on u
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Figure 3: Variation of K on u

5 Numerical results

In this section, we have discussed the analytical
and numerical results for Magnetohydrodynamic
(MHD) Couette flow of third grade fluid between
the two plates subject to nonlinear partial slip.
The important finding in this paper is the com-
bined effects of the nonlinear slip, MHD, porosity
and the third grade fluid parameter on the ve-
locity.Accurate numerical solutions are obtained
using Ritz-Galerkin method in Bernstein polyno-
mial basis.

To see the effects of emerging parameters on ve-
locity figures 1 to 4 have been displayed. The ef-
fects of third grade parameter β are shown in Fig.
1. It is observed that by keeping all the other pa-
rameters fixed, an increase in the non-Newtonian
parameter results in the decreased velocity. The
Fig. 2 has been prepared to explain the effects of
slip parameter γ. The partial slip is controlled by
a dimensionless slip factor, which can vary from
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Table 1: u(0) for γ = 1, M = 1 and β = 1 for Ritz-Galerkin method (RGM) and Collocation method (CM)
with n = 7.

1/K RGM CM

0 0 0
0.5 0.0452078 0.0452073
1 0.029734126 0.029701378
2 0.0146237 0.0146159
4 0.00474728 0.00475515
8 0.000910552 0.000909626

Table 2: u(0) for γ = 1, M = 1 and 1
K = 1 for Ritz-Galerkin method (RGM) and Collocation method (CM)

with n = 7.

β RGM CM

0 0 0
0.5 0.0293163 0.02931436
1 0.029734126 0.029701378
1.5 0.03000307655120 0.02998722999818
3 0.0305548224868 0.0305542409344
6 0.0311526024483 0.031155063902
10 0.0315581316154 0.0315582

Table 3: u(0) for γ = 1, β = 1 and 1
K = 1 for Ritz-Galerkin method (RGM) and Collocation method (CM)

with n = 7.

M RM CM

0 0 0
0.5 0.0435755 0.0435111
1 0.029734126 0.029701378
2 0.0154279 0.0153686
4 0.00528567 0.00527870
8 0.00106387 0.00106134

Table 4: u(0) for M = 1, β = 1 and 1
K = 1 for Ritz-Galerkin method (RGM) and Collocation method (CM)

with n = 7.

γ RGM CM

0.5 0.0317452 0.0317472
1 0.029734126 0.029701378
2 0.0229654 0.0229626
4 0.015086 0.0151021
8 0.00883166 0.00883382

total adhesion to infinity. It is found that the ve-
locity decreases by an increase in γ. The porosity
analysis is carried out in Fig. 3. It is seen that
with increase in porosity, velocity field decreases.
Variation of MHD parameter is displayed in Fig.
2. This graph elucidate that the velocity decrease
by increasing the MHD parameter.

The second set of results not only displays

the effects of sundry parameters but also provide
a comparison between Ritz-Galerkin and Collo-
cation methods shown in Tables 1 to 4. The
proposed method offers a superior intrinsic ac-
curacy for differential operator. The numeri-
cal results indicate the usefulness of the Ritz-
Galerkin method in Bernstein polynomial and
Collocation method in obtaining accurate solu-
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M = 0.5, 1, 2,4,8
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Figure 4: Variation of M on u

tions to the nonlinear problems arising in non-
Newtonian fluid mechanics. As compared to
other numerical techniques, such as finite differ-
ences, the nonlinearity is not a major complica-
tion for Ritz-Galerkin method in Bernstein poly-
nomial method.

To the best of our knowledge, this is the first
attempt to apply this robust and highly effective
analytical technique as well as highly accurate
method to study the non-Newtonian flows in this
geometry. The results presented in this paper will
now be available for experimental verification to
give confidence for the well-posedness of this non-
linear boundary value problem.

6 Conclusions

The properties of the Bernstein polynomials to-
gether with the Ritz-Galerkin method are used to
reduce the solution of the MHD Couette flow of
non-Newtonian fluid in a porous medium to the
solution of algebraic equations. The choice of ba-
sis and ϕ(x) provides greater flexibility in which
to impose boundary conditions. Numerical re-
sults are included to demonstrate the validity and
applicability of the new technique.
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