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Abstract
In this paper, a numerical method for solving 'fuzzy di�erential inclusions' is considered.
The fuzzy reachable set can be approximated by the proposed method with complete error
analysis which is discussed in detail. Moreover, the extrapolation method is employed for
increasing the accuracy of the approximate solution. The method is illustrated by solving
some linear and nonlinear fuzzy initial value problems.
Keywords: Fuzzy di�erential inclusions, Euler`s method, Extrapolation method, Fuzzy initial value
problem.
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1 Introduction

The topics of numerical methods for solving fuzzy di�erential equations have been rapidly
growing in recent years. The concept of fuzzy derivative was �rst introduced by S. L.
Chang and L.A. Zadeh [4]. It was followed up by D. Dubois and H. Prade [8], who de�ned
and used the extension principle. Other methods have been discussed by M. L Puri and
D. A. Ralescu [15] and R. Goetschel and W. Voxman [10]. The fuzzy di�erential equation
and the initial value problem were regularly treated by O. Kaleva [12, 13], by S. Seikkala
[16]," and by other researchers". H�ullermeier [11] suggested a di�erent formulation of
the FIVP (fuzzy initial value proble), based on a family of di�erential inclusions at each
r-level, 0 � r � 1,

x0(t) 2 [f(t; x(t))]r; x(0) 2 [x0]r;

where [f(�; �)]r : [0; T ]�Rn ! �nc , and �nc is the space of nonempty convex compact subsets
of Rn. The numerical methods for solving fuzzy di�erential equations are introduced in
[1, 2, 3]. The paper is organized as follows:
�Corresponding author. Email address: Y nej@yahoo.com
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In section 2, some basic de�nitions and results on fuzzy numbers along with a de�nition
of a fuzzy derivative, discussed by D. Vorobiev and S. Seikkala [17] and Phil Diamond in
[6], are given. In section 3, we de�ne the problem which is a fuzzy initial value problem.
The numerical method for fuzzy di�erential inclusions is discussed in section 4. And the
extrapolation method is discussed in section 5. The proposed algorithm is illustrated by
solving some examples in section 6, and conclusions are in provided section 7.

2 Preliminaries

Denote by �n the set of all nonempty compact subset of Rn and by �nc the subset of �n
consisting of nonempty convex compact sets. Recall that

�(x;A) = min
a2A kx� ak

is the distance of a point x 2 Rn from A 2 �n and that the Hausdor� separation �(A;B)
of A;B 2 �n is de�ned as

�(A;B) = max
a2A �(a;B):

Note that the notation is consistent since �(a;B) = �(fag; B). Now, � is not a metric. In
fact, �(A;B) = 0 if and only if A � B: The Hausdor� metric dH on �n is de�ned by

dH(A;B) = maxf�(A;B); �(B;A)g
and (�n; dH) is a complete metric space. An open �-neighborhood of A 2 �n is the set

N(A; �) = fx 2 Rn : �(x;A) < �g = A + �Bn;

where Bn is the open unit ball in Rn: A mapping F : Rn ! �n is upper semicontinuous
(usc) at x0 if for all � > 0 there exits � = �(�; x0) such that

F (x) � N(F (x0); �)) = F (x0 + �Bn)

for all x 2 N(x0; �): Let Dn denote the set of upper semicontinuous normal fuzzy sets on
Rn with the property of compact support. That is, u 2 Dn, then u : Rn ! [0; 1] is usc
, supp(u)= fx 2 Rn : u(x) > 0g is compact and there exists at least one � 2 supp(u) for
which u(�) = 1. The r-level set of u, 0 < r � 1, is

[u]r = fx 2 Rn : u(x) � rg:
Clearly, for � � �; [u]� � [u]�. The level sets are nonempty from normality and compact
by usc and compact support. The metric dH is de�ned on Dn as

d1(u; v) = supfdH([u]r; [v]r) : 0 � r � 1g; u; v 2 Dn

and (Dn; d1) is a complete metric space. Denote by En the subset of fuzzy convex elements
of Dn. The metric space (En; d1) is also complete, [7]. Let I = [0; T ] be a �nite interval,
y0 2 Rn, and G be a map from I � Rn into the set of all subsets of Rn; one must �nd an
absolutely continuous function x(�) on I such that�

x0(t) 2 G(t; x(t)); for almost all t 2 I;
x(0) = y0 2 Y0 � Rn: (2.1)
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Recall that a continuous function x : I ! Y � Rn is said to be absolutely continuous if
there exists a locally integrable function � such thatZ s

t
�(�)d� = x(s)� x(t)

for all t; s 2 I. The di�erential inclusion (2.1) is said to have a solution x(t) on I. If x(�)
is absolutely continuous, x(0) = y0 and x(�) satis�es the inclusion a.e. on I. Let

P
(y0; �);

be the reachable set, that is,X
(y0; �) := fx : I ! Rnjx is the solution of (2:1)g � C(I);

and A(y0; �) = fx(�) : x(:) 2 P(y0; �)g be the attainable set that is, the set of all
points x(�) that constitute the ends of the trajectories of (2.1). Obviously, A(y0; �); 0 <
� � T is a compact subset of Rn: As a rule, the set

P
(y0; �) consists of more than

one element, i.e., we have a bundle of trajectories. We use a �nite di�erence scheme
together with suitable selection procedures resulting in a sequence of grid reachable setsP

(y0; t0);
P

(y0; t1); : : : ;
P

(y0; T ), on a uniform grid 0 = t0 � t1 � : : : � tN = T with
step size h = T�t0

N = ti � ti�1; i = 1; : : : ; N: The technique based on the midpoint
approximation and Euler`s method is used for (2.1) as follows,

y0 2 Y0 � Rn;
yi+1 2 yi + hf(ti; yi; r); i = 0; : : : ; N � 1:

(2.2)

yi+1 2 yi�1 + 2hf(ti; yi); i = 0; : : : ; N � 1: (2.3)

In all cases, for any random y0 selections from Y0; the asymptotic expansion of the result
x(t; h) 2 Rn is of the form

x(t; h) = y(t; h) +
mX
i=1

ei(t)h�i + h�m+1�m+1(h); 0 < �1 < �2 < : : : < �m+1; (2.4)

where the expansion �i; i = 1; 2; : : :;m, need not be integers. The coe�cient ei(t) 2 Rn
is related to the derivatives of the solution x(t; h) and independent of h. The function
�m+1(h) is bounded for h ! 0, and x(t; h) = limh!0y(t; h) is the exact solution of the
problem at hand. This technique requires two starting values, because both y0; y1 2 Rn
needed before the �rst midpoint approximation y2 2 Rn, can be determined. As usual, we
use the initial condition for y0 = x(0) 2 Y0: To determine the second starting value, y1,
we apply Euler's method. This produces an approximation y(t; h) to x(t; h) that is of the
form

x(t; h) = y(t; h) +
mX
i=1

ei(t)h2i + h2m+2�2m+2(h): (2.5)

De�nition 2.1. The fuzzy number X 2 En is called pyramidal fuzzy number if its r-level
sets are n-dimensional rectangles for 0 � r � 1:
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3 A fuzzy initial value problem

Let U 2 En, then U = (u1; : : : ; un)T where ui 2 E = E1; i = 1; : : : ; n: The parametric
form of ui is ui(r) = (ui(r); ui(r)); r 2 [0; 1], where ui(r) = mi +�i(r� 1) is an increasing
function and ui(r) = mi + 
i(1 � r) is an decreasing function where mi is the core and
�i; 
i are the left and right spreads, respectively, in (mi; �i; 
i). Also ui(1) = ui(1).
The parametric form of inclusion triangles have the following increasing and decreasing
functions, respectively,

ui(r; �) = mi + �i(1� �)(r � 1);

ui(r; �) = mi + 
i(1� �)(1� r); r; � 2 [0; 1]:
(3.6)

The convex hull (C.H.) of the corners can be obtained with any variation of r 2 [0; 1] for
any � 2 [0; 1]. Then, the components of a fuzzy triangular number U 2 En are as follows

U� = (u1;�; : : : ; un;�)
= (C:H:(A1; B1; C1); : : : ; C:H:(An; Bn; Cn))T ; 0 � � � 1:

where
ui;� = C:H:(Ai; Bi; Ci) =

[
0���1

f(ui(r; �); ui(r; �)) j 0 � r � 1g:

Now, let f : I�En ! En and consider the fuzzy initial value problem (FIVP)�
x0(t) = f(t; x(t)); t 2 I = [0; T ];
x(0) = Y0 2 En; (3.7)

interpreted as a family of di�erential inclusions. Set[
0���1

f(f(t; x; r; �); f(t; x; r; �)) j 0 � r � 1g := F (t; x; �)

and [
0���1

f(Y0(r; �)); Y0(r; �) j 0 � r � 1g := Y0(�)

and identify the FIVP with the family of di�erential inclusions�
x0�(t) 2 F (t; x�(t);�); t 2 I = [0; T ];
x�(0) = Y0 2 Y0(�); 0 � � � 1

(3.8)

where F : 
 � [0; 1] ! �nc and 
 is an open subset of I � En containing (0; Y0(�)); � 2
[0; 1]: Denote the set of all solutions of (3.7) on I by

P
�(Y0(�); T ) and the attainable

set by A�(Y0(�); T ) = fx(T ) : x(�) 2P�(Y0(�); T )g; where 9f(random) 2 F (t; x;�) and
9Y0(random) 2 Y0(�) such that�

x0�(t) = f(t; x�(t)); t 2 I = [0; T ];
x�(0) = Y0 2 En; almost every where (3.9)

that can be solved as �-levels. Suppose that g(T; k; Y0) is the solution of (3.8) at the end
point, then X

�

(:; :) =
[

0���1

fg(t; k; Y0) j k 2 k(�); Y0 2 Y0(�)g:

238

238 Y. Nejatbakhsh, M. Khezerloo / IJIM Vol. 1, No. 3 (2009) 235-247

IJIM JOURNAL
Text Box



Let
ZT (Rn) = fx(:) 2 C([0; T ];Rn) : x0(:) 2 L1([0; T ];Rn)g:

These sets are not generally convex; they are acyclic which are stronger than simply
connected, [9].

Theorem 3.1. [6], Let Y0 2 En and let 
 be an open set in R � Rn containing f0g �
supp(Y0). Suppose that f : 
 ! En is usc and F (t; x;�) 2 �nc for all (t; x; �) 2 Rn+1 �
[0; 1]: Let the boundedness assumption hold for all y0 2 supp(Y0) and the inclusion

x0(t) 2 F (t; x; 0); x(0) 2 supp(Y0):

Then, the attainable sets A�(Y0(�); T ); � 2 [0; 1];, of the family of inclusions (3.7) are the
level sets of a fuzzy set A(Y0; T ) 2 Dn: The solution sets

P
�(Y0(�); T ) of (3.7) are the

level sets of a fuzzy set
P

(Y0; T ) included in ZT (Rn):

4 Euler`s method

Let x�(ti) � yi(�) for all � 2 [0; 1]; then Euler`s method for approximating the reachable
set of problem (3.9) is proposed as follows:

y0;� 2 Y0(�) � Rn;
yi+1;� =

S
s�2Yi(�)(s� + hf(ti; s�;�)); i = 0; : : : ; N � 1; � 2 [0; 1];

(4.10)

where [
0���1

f(Yi(r; �)); Yi(r; �) j 0 � r � 1g := Yi(�)

and

f(ti; s�;�)) 2 [
0���1

f(f(t; s�; r; �); f(t; s�; r; �)) j 0 � r � 1g = F (t; s�; �):

Lemma 4.1. Let a sequence of numbers fWngNn=0 satisfy

jWn+1j � AjWnj+B; 0 � n � N � 1;

for some given positive constants A and B. Then

jWnj � AnjW0j+B
An � 1
A� 1

; 0 � n � N:
Proof: See [14].

Theorem 4.1. Let F 2 C2(
) in (4.10) be a compact convex-valued mapping that satis�es
the Lipschitz condition in x with the Lipschitz constant L > 0 and x� be a solution of (3.7),
then limh!0yN (�) = x�(T ); for any � 2 [0; 1]:
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Proof: Let
x�(ti+1) =

[
�x�2Xi(�)

(�x� + hf(ti; �x�;�)); a:e:

and
yi+1(�) =

[
�y�2Yi(�)

(�y� + hf(ti; �y�;�) +O(h2));

it is su�cient to prove limh!0 k �yi+1(�)� �x�(ti+1) k= 0; i = 0; : : : ; N � 1; � 2 [0; 1]: Since

�yi+1(�) = �yi(�) + hf(ti; �yi(�);�) +O(h2)

and
�x�(ti+1) � �x�(ti) + hf(ti; �x�(ti);�)

then
k �yi+1(�)� �x�(ti+1) k�k �yi(�)� �x�(ti) k (1 + Lh) +O(h2):

By using Lemma (4.1) for all ti in particular at T;

k �yN (�)� �x�(T ) k� 1
L
O(h)[eLT � 1];

by which the proof is completed.

5 Extrapolation Method

Let
P

�(Y0(�); t) be the reachable set formed on the exact solutions and
P0

�(Y0(�); t) be
the reachable set formed on the approximate solutions at t. Assume that we have a �xed
step size h and that we wish to approximate x(t1;�) = x(h;�) 2 P�(Y0(�); t1), with
t0 = 0 for all � 2 [0; 1]: For the �rst extrapolation step, we set h0 = h

2 and use Euler's
method with random y0 2 Y0(�) to approximate x(h0;�) = x(h2 ;�) as

y1(�) 2 y0(�) + h0f(a; y0;�); 8� 2 [0; 1]: (5.11)

We then apply the midpoint approximatin with t0 = a and t1 = h0 = h
2 to produce a �rst

approximation to x(h;�) = x(2h0;�) 2Pr(Y0(�); t2), as y2(�) 2 y0(�) + 2h0f(h0; y1;�):
The endpoint correction is applied to obtain the �nal approximation of x(h;�) for all
� 2 [0; 1] with the step size h0: This results in the approximation of O(h2

0) to x(t1;�)

x1
1(�) 2 1

2
[y2(�) + y1(�) + h0f(2h0; y2;�)]; 8� 2 [0; 1]:

We save the approximation x1
1(�) 2 P�(Y0(�); t1) and discard the intermediate results

y1(�) 2 P0�(Y0(�); t1) and y2(�) 2 P0( Y0(�); t2) for all � 2 [0; 1]: To obtain the next
approximation, x1

2(�) to x(t1;�), we set h1 = h
4 and use initial value of Euler's method to

achieve an approximation to x(h1;�) = x(h4 ;�) that we will call y1(�) 2P0�(Y0(�); t1)

y1(�) 2 y0(�) + h1f(a; y0;�); 8� 2 [0; 1]: (5.12)

Next, we produce approximations y2(�) 2 P0
�(Y0(�); t2) to x(2h1;�) = x(h2 ;�) and

y3(�) 2P0�(Y0(�); t3) to x(3h1;�) = x(3h
4 ;�) given by

y2(�) 2 y0(�) + 2h1f(h1; y1(�);�); 8� 2 [0; 1];
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and
y3(�) 2 y1(�) + 2h1f(2h1; y2(�);�); 8� 2 [0; 1]:

Then, we produce the approximation y4(�) 2P0�(Y0(�); t4) to x(4h1;�) = x(t1;�) given
by

y4(�) 2 y2(�) + 2h1f(3h1; y3(�);�); 8� 2 [0; 1]:

The endpoint correction is now applied to y3(�) 2P0�(Y0(�); t3) and y4(�) 2P0�(Y0(�); t4)
to produce the improved O(h2

1) approximation to x(t1;�)

x1
2(�) 2 1

2
[y4(�) + y3(�) + h1f(4h1; y4(�);�)]; 8� 2 [0; 1]:

The approximation to x(h;�) has the properties

x(h;�) 2 x1
1(�) + e1(�)(

h
2

)2 + e2(�)(
h
2

)4 + : : : = x1
1(�) + e1(�)

h2

4
+ e2(�)

h4

16
+ : : :; (5.13)

and

x(h;�) 2 x1
2(�)+e1(�)(

h
4

)2 +e2(�)(
h
4

)4 + : : : = x1
2(�)+e1(�)

h2

16
+e2(�)

h4

256
+ : : :; (5.14)

for all � 2 [0; 1] where e : [0; 1] ! Rn and x : [0; T ] � [0; 1] ! Rn. We can eliminate the
O(h2) portion of this truncation error by averaging these two formulas appropriately, for
any � 2 [0; 1]: Speci�cally, if we subtract (5.13) from 4 times (5.14) and divide the result
by 3, we have

x(h;�) 2 x1
2(�) +

1
3

(x1
2(�)� x1

1(�))� e2(�)
h4

64
+ : : ::

So the approximation
x2

2(�) 2 x1
2(�) +

1
3

(x1
2(�)� x1

1(�))

for all � 2 [0; 1] has error of order O(h4): Continuing in this manner, we next let h2 =
h
6 and apply Euler`s method once followed b. Then we use the endpoint correction to
determine the h2 approximation, x1

3(�), to x(h;�), which can be averaged with x1
2(�)

to produce a second O(h4) approximation that we denote by x2
3(�). Then x2

3(�) and
x2

2(�) are averaged to eliminate the O(h4) error terms and produce an approximation
with error of order O(h6): Higher-order formulas are generated by continuing the process.
The error is controlled by requiring that the approximations x1

1(�); x2
2(�); : : : be computed

until jxii(�) � xi�1
i�1(�)j is less than a given tolerance. If xii(�) is found to be acceptable,

then y1(�) is set to xii(�) and computations begin again to determine y2(�), which will
approximate x(t2;�) = x(2h;�); for any � 2 [0; 1]. The process is repeated until the
approximation yN (�) 2 A0�(Y0(�); tN ) to x(b;�) 2 A�(Y0(�); tN ), for all � 2 [0; 1], is
determined.

6 Examples

Example 6.1. Consider the following fuzzy di�erential inclusions with constant coe�-
cients (

dx1(t;�)
dt 2 3x1(t;�)� 2x2(t;�); 0 � t � 0:3;

dx2(t;�)
dt 2 2x1(t;�)� x2(t;�):

(6.15)
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As an initial value for the fuzzy initial value problem (6.15), we take a number Y0 2 E2

such that

Y0(�) = f(x1(0;�); x2(0;�)) 2 R2 : x1(0;�) 2 [��1; 1��] ; x2(0;�) 2 [:5+:5�; 1:5�:5�]g;
� 2 [0; 1];

whereX
�

(Y0(�); t) =
�
x1(t;�)
x2(t;�)

�
=
�
et[x1(0;�) + 2t(x1(0;�)� x2(0;�))]
et[x2(0;�) + 2t(x1(0;�)� x2(0;�))]

�
; (6.16)

in which (x1(0;�); x2(0;�)) 2 Y0(�). Fig. 1., Fig. 2. and Fig. 3. show the plan of
�� level sets of

S
�
P

�(Y0(�); T ) (pyramidal) and its approximation with Euler`s method
with h = 0:3 and the extrapolation method, respectively, for � 2 f0; 0:1; : : : ; 1g.
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Let C =
S
�
P

�(Y0(�); T ) and B be the approximation of C which is obtained by nu-
merical methods. In Table 1, we compare dH(C;B) for the extrapolation method with
� = 0:001 and Euler`s method.

Table 1
The distance between the reachable set and its approximations
Euler Extra:
0.7226 1.7251e-005

Example 6.2. Consider the following fuzzy di�erential inclusions

x01(t;�) 2 �x2(t;�) + 0:1x1(t;�)(9� x1(t;�)2 � x2(t;�)2) + w(�)
x02(t;�) 2 �x1(t;�) + 0:1x2(t;�)(9� x1(t;�)2 � x2(t;�)2) + w(�)

We take a number Y0 2 E2 such that

Y0(�) = f(x1(0;�); x2(0;�)) 2 R2 : x1(0;�) 2 [��1; 1��] ; x2(0;�) 2 [:5+ :5�; 1:5� :5�]g

and w(�) 2 [� � 1; 1� �]; � 2 [0; 1]:

Then

f1(t; x�(t);�) =
� �x2(t;�) + 0:1x1(t;�)(9� x1(t;�)2 � x2(t;�)2) + � � 1
�x1(t;�) + 0:1x2(t;�)(9� x1(t;�)2 � x2(t;�)2) + � � 1

�
and

f2(t; x�(t);�) =
� �x2(t;�) + 0:1x1(t;�)(9� x1(t;�)2 � x2(t;�)2) + 1� �
�x1(t;�) + 0:1x2(t;�)(9� x1(t;�)2 � x2(t;�)2) + 1� �

�
:

The Hausdor� distance between the solutions obtained the extrapolation method and
Euler`s method for h = 0:5 and h = 0:25 with � = e � 5 are 7:1801e � 008 and 0:3202,
respectively, as, are shown in Fig. 4. and Fig. 5.
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Fig. 5. Euler`s method results with h and h
2 .

Example 6.3. Consider the system x0(t) = AX(t) + F (t) where A 2 En�n, F : [0; T ]!
En, X0 2 En,

A =
�

(1:5; 0:5; :5); (1:0; 0:5; 0:5)
(1:0; 0:5; 0:5); (2:5; 0:5; 0:5)

�
; (6.17)

F (t) =

0@ (3 + 4t)=2 ; (1 + 2t)=2 ; (1 + 2t)=2

(e�t + et)=2 ; (et � e�t)=2 ; (et � e�t)=2

1A ; (6.18)
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and
X0 =

�
(1:5; 0:5; 0:5)
(0:5; 0:5; 0:5)

�
(6.19)

The exact solutions for � = 0 are
P

�(t) = (
P

�
(t);
P

�(t)) whereX
0

=
� �2:5308� 1:1430t+ 0:0826e�t + 3:1007ekt + 0:3476evt

0:2040 + 0:3734t+ 0:3479e�t � 0:5517ekt � 0:0002evt

�
(6.20)

and X
0

=

 �3:9942� 2:3797t� 6:0022et + 10:4599ekt + 1:5363evt

2:3996 + 1:1998t+ 4:0022et � 7:5399ekt + 2:1380evt

!
(6.21)

in which k = 0:7929; v = 2:2071; k = 0:9189; v = 4:0811. The numerical solution for the
family of inclusions

x0�(t) 2 A�X�(t) + F�(t); X�(0) 2 X0(�);

have the Hausdor� distance from the exact solution at the endpoint of interval [0; 0:01],
by using Euler`s method and the extrapolation method.

Table 2
The distance between the reachable set and its approximations

h Extrapolation Euler
0:01 0.0606 0.1603
0:001 1.5900e-004 0.0097

Example 6.4. [5] Consider the FIVP in E1, x0 = �x; x(0) = X0; where X0 is a symmetric
triangular fuzzy number with support [-1,1].

Since �x� = f�x�g is a singleton set in �1
c , it is interpreted as a family of di�erential inclusions

x0�(t) = �x�(t); x�(0) 2 X� = (1� �)[�1; 1]; � 2 [0; 1];

which has the solution set
P
�(X� ; t) on [0; t] comprising the functions

x�(t) = x�(0)e�t; x�(0) 2 X� :

Now, we demonstrate the reachable set and its approximation at t = 1 with h = 0:1 and � = e� 5
in Fig. 6.
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Reach. Set and Ext. Method
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Fig. 6. t = 1:

Table 3
The distance between the reachable set and its approximations
Euler Extra:
0.0209 4.0449e-004

7 Conclusion
The method presented in this paper for the approximation of the reachable set, is based on pyra-
midal fuzzy numbers. The ��level sets of these fuzzy numbers are n�dimensional rectangles.
The convex hull of the corners of rectangles or the set of all points on them (in n�dimensional
space) can form the reachable set. In this paper, all points (n�dimensional vectors) belonging
to the reachable set are approximated by using Euler`s method. This can be improved by the
extrapolation method.
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