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Abstract
In this paper, we propose a new type of fuzzy fractional differential equations under fuzzy
Kolwankar- Gangal local fractional derivatives (for short, fuzzy KG-LFD) using fuzzy
Riemann-Liouville differentiability. Then, we prove some basic results in this area like,
the relation between different types of fuzzy KG-LFD and their r-cut representations, com-
position of the fuzzy KG-LFD and the fuzzy local fractional integral. Also, an application
is provided in details such that the explicit solutions are expressed through Mittag-Leffler
function.

Keywords : Fuzzy Riemann-Liouville differentiability; Fuzzy Kolwankar-Gangal local fractional
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1 Introduction

In the last decade, fractional calculus attracted a huge number of physicists and math-
ematicians. Fractional differential and integral equations play an important roles in the
modeling of real problems in scientific fields and engineering, as shown in [1, 35, 27, 31].
Firstly, the fractional derivative has been introduced by Riemann-Liouvill, wellknown as

Riemann-Liouvill derivative defined by dβf(x)

[d(x−a)]β
= 1

Γ(1−β)

∫ x
a

f(t)dt
(x−t)β

), 0 < β < 1. For more

details see [6, 8, 16, 26, 27, 29, 31]. The local fractional integrals and derivatives are
appeared in many mathematical and physical problems and have plenty of usages. One
of the most important usages of them is to analyze fractal sets, because fractals are ir-
regular and nowhere differentiable functions [20]. Based on the local fractional calculus,
and we can easily use the properties local fractional integrals and derivatives to analyze
them. This was introduced by Kolwankar and Gangal local fractional derivative KG-LFD
[20, 21] in 1996 so that to investigate the local behavior of fractional differential equations
and then was studied by many researches [9, 12, 16, 15]. LFD operators engender a new
kind of differential equations, referred as local fractional differential equations (LFDEs)
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different from the conventional fractional differential equations(FDEs). The (LFDEs) in-
volving LFD has been used in modeling phenomena involving fractal time. LFD therefore
provide a much needed tool for calculus of fractal space-time [9]. Recently, Agarwal,
Arshad and Allahviranloo[6, 8, 2] proposed on the fractional differential equations with
uncertainty. They considered Riemann-Liouville differentiability to solve (FFDEs). In
this paper, concentrate on local fractional derivatives which were defined by KG-LFD. We
first define local fractional H-differentiability which is a direct extension of local fractional
derivatives KG-LFD with using hukuhara difference. So that to drive such concept which
is constructed based on the combination of strongly generalized differentiability [11] and
local fractional derivative [20, 22, 23].
At the end, we try to solve fuzzy local fractional differential equations (FLFDEs) under
local fractional H-differentiability.
This paper is organized as follows:
In section 2, we recall some basic notions of fuzzy number. In section 3, Riemann-Liouville
H-differentiability is introduced. We introduce of local fractional H-differentiability is
based on the Riemann-Liouville H-differentiability for a fuzzy-valued function of a single
variable and some of its properties are considered, are given in section 4. In section 5,
the solutions (FLFDEs) under local fractional H-differentiability and An applications to
(FLFDEs) by Mittag-Leffer function in fractal space is also given. Finally, conclusion and
future research are drawn in section 6.

2 Preliminaries

We now recall some definitions needed through the paper. The basic definition of fuzzy
numbers is given in [40]. By R, we denote the set of all real numbers. A fuzzy number is
a mapping u : R → [0, 1] with the following properties:
(a) u is upper semi-continuous,
(b) u is fuzzy convex, i.e., u(λx+ (1− λ)y) ≥ min{u(x), u(y)} for all x, y ∈ R, λ ∈ [0, 1],
(c) u is normal, i.e., ∃x0 ∈ R for which u(x0) = 1,
(d) supp u = {x ∈ R | u(x) > 0} is the support of the u, and its closure cl(supp u) is
compact. Let E be the set of all fuzzy number on R. The r-level set of a fuzzy number
u ∈ E, 0 ≤ r ≤ 1, denoted by [u]r , is defined as

[u]r =

{
{x ∈ R | u(x) ≥ r} if 0 < r ≤ 1
cl(supp u) if r = 0

It is clear that the r-level set of a fuzzy number is a closed and bounded interval [u(r), u(r)],
where u(r) denotes the left-hand endpoint of [u]r and u(r) denotes the right-hand endpoint
of [u]r. Since each y ∈ R can be regarded as a fuzzy number ỹ defined by

ỹ(t) =

{
1 if t = y
0 if t ̸= y

Definition 2.1. A fuzzy number u in parametric form is a pair (u, u) of functions u(r),
u(r), 0 ≤ r ≤ 1, which satisfy the following requirements:

1. u(r) is a bounded non-decreasing left continuous function in (0, 1], and right contin-
uous at 0,
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2. u(r) is a bounded non-increasing left continuous function in (0, 1], and right contin-
uous at 0,

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

For arbitrary u = (u(r), u(r)), v = (v(r), v(r)) and k > 0 we define addition u + v ,
subtraction u⊖ v and scalar multiplication by k as (See [28, 40])

u+v = (u(r)+v(r), u(r)+v(r)), u−v = (u(r)−v(r), u(r)−v(r)), k⊙u =

{
(ku, ku), k ≥ 0,
(ku, ku), k < 0.

Lemma 2.1. [30]. If u ∈ E then the following properties hold:
(i) [u]r2 ⊂ [u]r1 if 0 < r1 ≤ r2 ≤ 1;
(ii) {rn} ⊂ (0, 1] is a nondecreasing sequence which converges to r then
[u]r =

∩
n≥1 [u]

rn (i.e, ur1 and ur2 are left-continuous with respect to r).
Conversely, if Ar = {[ur1, ur2]; r ∈ (0, 1]} is a family of closed real intervals verifying (i)
and (ii), then {Ar} defined a fuzzy number u ∈ E such that [u]r = Ar.

The Hausdorff distance between fuzzy numbers given by d : E × E −→ R+
∪
{0},

d(u, v) = sup
r∈[0,1]

max {|u(r)− v(r)|, |u(r)− v(r)|} ,

where u = (u(r), u(r)), v = (v(r), v(r)) ⊂ R is utilized in [10]. Then, it is easy to see that
d is a metric in E and has the following properties (See [32])

(1) d(u⊕ w, v ⊕ w) = d(u, v), ∀u, v, w ∈ E,
(2) d(k ⊙ u, k ⊙ v) = |k|d(u, v), ∀k ∈ R, u, v ∈ E,
(3) d(u⊕ v, w ⊕ e) ≤ d(u,w) + d(v, e), ∀u, v, w, e ∈ E,
(4) (d,E) is a complete metric space.

Definition 2.2. . Let x, y ∈ E. If there exists z ∈ E such that x = y+ z, then z is called
the H-difference of x,y and it is denoted x ⊖ y. In what follows, we fixed I = (a, b), for
a, b ∈ R, a < b.

3 Fuzzy Riemann-Liouville differentiability

In this section, we introduce our definition of fuzzy Riemann-Liouville integrals and deriva-
tives under Hukuhara difference. We try to produce such definitions and statements similar
to the non-fractional one in fuzzy context [10].
We denote CF [a, b] as the space of all continuous fuzzy-valued functions on [a, b]. Also, we
denote the space of all Lebesque integrable fuzzy-valued functions on the bounded interval
[a, b] ⊂ R by LF [a, b]. Now, we define the fuzzy Riemann-Liouville integral of fuzzy-valued
function as follows:

Definition 3.1. [2]. Let f ∈ CF [a, b] ∩ LF [a, b]. The fuzzy Riemann-Liouville integral of
fuzzy-valued function f is defined as following:

(Iβ
a+

f)(x) =
1

Γ(β)

∫ x

a

f(t)dt

(x− t)1−β
, x > a, 0 < β ≤ 1. (3.1)
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Let us consider the r-cut representation of fuzzy-valued function f as f(x; r) = [f(x; r), f(x; r)],
for 0 ≤ r ≤ 1, then we can indicate the fuzzy Riemann-Liouville integral of fuzzy-valued
function f based on the lower and upper functions is indicated as follows:

Theorem 3.1. [2]. Let f ∈ CF [a, b] ∩ LF [a, b] is a fuzzy-valued function. The fuzzy
Riemann-Liouville integral of a fuzzy-valued function f can be expressed as follows:

(Iβ
a+

f)(x; r) =
[
(Iβ

a+
f)(x; r), (Iβ

a+
f)(x; r)

]
, 0 ≤ r ≤ 1 (3.2)

where

(Iβ
a+

f)(x; r) =
1

Γ(β)

∫ x

a

f(t; r)dt

(x− t)1−β
, (3.3)

(Iβ
a+

f)(x; r) =
1

Γ(β)

∫ x

a

f(t; r)dt

(x− t)1−β
. (3.4)

Now, we define the fuzzy Riemann-Liouville fractional derivatives about order 0 < β < 1
for fuzzy-valued function f.

Definition 3.2. [2]. Let f ∈ CF [a, b] ∩ LF [a, b] , x0 ∈ (a, b) and Then :

Φ(x) = 1
Γ(1−β)

∫ x
a

f(t)dt
(x−t)β

. We say f is Riemann-Liouville H-differentiable about order

0 < β < 1 at x0,if there exists an element (RLDβ
a+

f)(x0) ∈ E, such that for h > 0 suffi-
ciently small

(i) (RLDβ
a+

f)(x0) = lim
h−→0+

Φ(x0 + h)⊖ Φ(x0)

h
= lim

h−→0+

Φ(x0)⊖ Φ(x0 − h)

h
,

or

(ii) (RLDβ
a+

f)(x0) = lim
h−→0+

Φ(x0)⊖ Φ(x0 + h)

−h
= lim

h−→0+

Φ(x0 − h)⊖ Φ(x0)

−h
,

or

(iii) (RLDβ
a+

f)(x0) = lim
h−→0+

Φ(x0 + h)⊖ Φ(x0)

h
= lim

h−→0+

Φ(x0 − h)⊖ Φ(x0)

−h
,

or

(iν) (RLDβ
a+

f)(x0) = lim
h−→0+

Φ(x0)⊖ Φ(x0 + h)

−h
= lim

h−→0+

Φ(x0)⊖ Φ(x0 − h)

h
,

For sake of simplicity, we say that the fuzzy-valued function f is RL[(1)−β]- differentiable
if it is differentiable as in the Definition 3.2 case (i), and f is RL[(2)− β] differentiable if
it is differentiable as in the Definition 3.2 case (ii) and so on for the other cases.
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Theorem 3.2. [2]. Let f ∈ CF [a, b] ∩ LF [a, b], x0 in (a, b) and 0 < β < 1. Then:

(i) Let us consider f is RL[(1)− β]-differentiable fuzzy-valued function, then:

(
RLDβ

a+
f
)
(x0, r) =

[
(RLDβ

a+
f)(x0, r), (

RLDβ
a+

f)(x0, r)
]
, 0 ≤ r ≤ 1,

(ii) Let us consider f is RL[(2)− β]-differentiable fuzzy-valued function, then:

(
RLDβ

a+
f
)
(x0, r) =

[
(RLDβ

a+
f)(x0, r), (

RLDβ
a+

f)(x0, r)
]
, 0 ≤ r ≤ 1,

where

(RLDβ
a+

f)(x0, r) =

[
1

Γ(1− β)

d

dx

∫ x

a

f(t; r)dt

(x− t)β

]
x=x0

,

(RLDβ
a+

f)(x0, r) =

[
1

Γ(1− β)

d

dx

∫ x

a

f(t; r)dt

(x− t)β

]
x=x0

.

Theorem 3.3. [2]. Let f ∈ CF [a, b] ∩LF [a, b] be a Riemann-Liouville H-differentiable of
order 0 < β ≤ 1 on each point x ∈ (a, b) in the sense of Definition 3.2 case (iii) or case

(iv). Then (RLDβ
a+

f)(x) ∈ R for all x ∈ (a, b).

4 Fuzzy Local fractional differentiability

In this section, we introduce our definition of fuzzy local fractional differentiability is based
on the Riemann-Liouville differentiability for a fuzzy-valued functions.

Definition 4.1. Let us consider the fuzzy-valued function f : [a, b] → E, then the fuzzy

local fractional integrable of f of order β on the interval [a, b] is denoted by
(
aI

β
b f

)
(x) and

defined as follows:

(aI
β
b f)(x) =

1

Γ(1 + β)

∫ b

a
f(t)⊙ (dt)β. (4.5)

Theorem 4.1. . Let f ∈ CF
β [a, b] ∩ LF [a, b] is a fuzzy-valued function. The fuzzy local

fractional integral of a fuzzy-valued function f can be expressed as follows:(
Iβa f

)
(x; r) =

[
(Iβa f)(x; r), (I

β
a f)(x; r)

]
, 0 ≤ r ≤ 1, (4.6)

where

(
Iβa f

)
(x; r) =

1

Γ(1 + β)

∫ x

a
f(t; r)(dt)β,
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(
Iβa f

)
(x; r) =

1

Γ(1 + β)

∫ x

a
f(t; r)(dt)β.

Proof. since f(t) ∈ E then for (0 < β < 1), we set

Ar =:
1

Γ(1 + β)

[∫ x

a
f(t; r)(dt)β,

∫ x

a
f(t; r)(dt)β

]
,

for r1 ≤ r2, we have that f(t; r1) ≤ f(t; r2) and f(t; r1) ≥ f(t; r2). It follows that
Ar1 ⊇ Ar2. Since

f(t; 0) ≤ f(t; rn) ≤ f(t; 1),

we have

{
|f(t; rn)| ≤ max{|f(t; 0)|, |f(t; 1)| =: g1(t)

|f(t; rn)| ≤ max{|f(t; 0)|, |f(t; 1)| =: g2(t)

for rn ∈ (0, 1] and i = 1, 2 obviously, gi is Lebesgue integrable on [a, x]. Therefore, if rn ↑ r
then by the Lebesgue’s Dominated Convergence Theorem, we have

{
limn−→∞

1
Γ(1+β)

∫ x
a f(t; rn)(dt)

β = 1
Γ(1+β)

∫ x
a f(t; r)(dt)β,

limn−→∞
1

Γ(1+β)

∫ x
a f(t; rn)(dt)

β = 1
Γ(1+β)

∫ x
a f(t; r)(dt)β.

From Lemma 2.1, the proof is complete. �

Definition 4.2. Let f : (a, b) → E , f ∈ CF [a, b] ∩ LF [a, b], x0 ∈ (a, b) and Then :

Φ(x) = 1
Γ(1−β)

∫ x
x0

f(t)⊖f(x0)dt
(x−t)β

. we say that f the local fractional H-differentiable (LFD)

order β, (0 < β < 1) at x0, if there exists an element (Dβf)(x)|x=x0 ∈ E, such that for
h > 0 sufficiently small

(i) (Dβf)(x0) = lim
x−→x+

0

(
lim

h−→0+

Φ(x0 + h)⊖ Φ(x0)

h

)
= lim

x−→x+
0

(
lim

h−→0+

Φ(x0)⊖ Φ(x0 − h)

h

)
,

or

(ii) (Dβf)(x0) = lim
x−→x+

0

(
lim

h−→0+

Φ(x0)⊖ Φ(x0 + h)

−h

)
= lim

x−→x+
0

(
lim

h−→0+

Φ(x0 − h)⊖ Φ(x0)

−h

)
,

or

(iii) (Dβf)(x0) = lim
x−→x+

0

(
lim

h−→0+

Φ(x0 + h)⊖ Φ(x0)

h

)
= lim

x−→x+
0

(
lim

h−→0+

Φ(x0 − h)⊖ Φ(x0)

−h

)
,



S. Abbasbandy, et al / IJIM Vol. 4, No. 3 (2012) 231-246 237

or

(iν) (Dβf)(x0) = lim
x−→x+

0

(
lim

h−→0+

Φ(x0)⊖ Φ(x0 + h)

−h

)
= lim

x−→x+
0

(
lim

h−→0+

Φ(x0)⊖ Φ(x0 − h)

h

)
,

provided that the Hukuhara differences exist.
For sake of simplicity, we say that the fuzzy-valued function f is LF [(1)−β]- differentiable
if it is differentiable as in the Definition 4.2 case (i), and f is LF [(2)− β] differentiable if
it is differentiable as in the Definition 4.2 case (ii) and so on for the other cases.

Remark 4.1. One can easily verify that the fuzzy local derivative can be expressed by
fuzzy Riemann-Liouville derivative as follows:

(
Dβf

)
(x0) = lim

x−→x+
0

(
RLDβ

x+
0

{f(x)⊖ f(x0)}
)

Theorem 4.2. . Let f ∈ CF [a, b] ∩ LF [a, b], x0 in (a, b) and 0 < β < 1. Then:

(i) Let us consider f is LF [(1)− β]-differentiable fuzzy-valued function at point x0, then:

(
Dβf

)
(x0, r) =

[
(Dβf)(x0, r), (Dβf)(x0, r)

]
, 0 ≤ r ≤ 1,

(ii) Let us consider f is LF [(2)− β]-differentiable fuzzy-valued function at point x0, then:

(
Dβf

)
(x0, r) =

[
(Dβf)(x0, r), (Dβf)(x0, r)

]
, 0 ≤ r ≤ 1,

where (
Dβf

)
(x0, r) = lim

x−→x+
0

1

Γ(1− β)

d

dx

∫ x

x0

f(t; r)− f(x0; r)dt

(x− t)β
,

(
Dβf

)
(x0, r) = lim

x−→x+
0

1

Γ(1− β)

d

dx

∫ x

x0

f(t; r)− f(x0; r)dt

(x− t)β
.

Proof. Let us consider f RL[(1)− β]-differentiable and x0 ∈ (a, b), then we have:(
Dβf

)
(x0, r)=limx−→x+

0

RLDβ

x+
0

([f(x, r)⊖ f(x0, r)])

= limx−→x+
0

(
RLDβ

x [f(x, r)− f(x0, r), f(x, r)− f(x0, r)]
)

By linear property RLDβ

x+
0

and passing to the limx−→x+
0
, we get:(

Dβf
)
(x0, r)=

[
limx−→x+

0
(RLDβ

x(f(x, r)− f(x0, r))), limx−→x+
0
(RLDβ

x(f(x, r)− f(x0, r)))
]

Consequently, we get (
Dβf

)
(x0, r) =

[
(Dβf)(x0, r), (Dβf)(x0, r)

]
,
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which completes the proof of this part. Now, Let us consider f is RL[(2)−β]-differentiable,
using definition of fuzzy KG-LFD we have:

(
Dβf

)
(x0, r) = lim

x−→x+
0

RLDβ

x+
0

([f(x, r)⊖ f(x0, r)])

= lim
x−→x+

0

(
RLDβ

x [f(x, r)− f(x0, r), f(x, r)− f(x0, r)]
)

By linear property RLDβ

x+
0

type of differentiability of f and passing to the limx−→x+
0
, we get:(

Dβf
)
(x0, r)=

[
limx−→x+

0
(RLDβ

x(f(x, r)− f(x0, r))), limx−→x+
0
(RLDβ

x(f(x, r)− f(x0, r)))
]

Consequently, we get(
Dβf

)
(x0, r) =

[
(Dβf)(x0, r), (Dβf)(x0, r)

]
,

which completes the proof. �
Now, we state some useful results about the reminder type of fuzzy KG-LFD differen-
tiability. The proof is completely similar to the obtained result by Bede et al. [10] and
Salahshour et al. [34], so the proof is omitted.

Theorem 4.3. Let f ∈ CF [a, b] ∩ LF [a, b] be a local fractional H-differentiable of order
0 < β ≤ 1 on each point x ∈ (a, b) in the sense of Definition 4.2 case (iii) or case (iv).
Then (Dβf)(x) ∈ R for all x ∈ (a, b).

Remark 4.2. For case β = 1, the fuzzy KG-LFD reduces to the generalized differentiability
[10].

Definition 4.3. If there exists the relation

d(f(x), f(x0)) < εβ, (4.7)

with |x − x0| < δ, for ∃δ > 0 and ε, δ ∈ R. Then fuzzy valued f(x) is called fuzzy local
fractional continuous on the interval (a, b), denoted by

f(x) ∈ CF
β (a, b).

Lemma 4.1. If 0 < β < 1 and f(x) ∈ CF
β [a, b]∩LF [a, b], then the following equality hold

almost every where on [a, b] for case LF [(1)− β]-differentiability:

(
DβIβa f

)
(x; r) =

[
f(x; r), f(x; r)

]
0 ≤ r ≤ 1, (4.8)

and the following equality hold almost every where on [a, b] for case of LF [(2) − β]-
differentiability: (

DβIβa f
)
(x; r) =

[
f(x; r), f(x; r)

]
0 ≤ r ≤ 1. (4.9)
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Proof. Using Definition 4.2 and Theorem 4.2, we obtain:(
Iβa f

)
(x; r) =

[
Iβa f(x; r), I

β
a f(x; r)

]
0 ≤ r ≤ 1.

Using linear property Dβ for case LF [(1)− β]-differentiability we have

Dβ
(
Iβa f(x; r)

)
=

[
DβIβa f(x; r),DβIβa f(x; r)

]
=

[
f(x; r), f(x; r)

]
and for case LF [(2)− β]-differentiability:

Dβ
(
Iβa f(x; r)

)
=

[
DβIβa f(x; r),DβIβa f(x; r)

]
=

[
f(x; r), f(x; r)

]
Lemma 4.2. Let f(x) ∈ CF

β [a, b] ∩ LF (a, b) and 0 < β < 1, then we have(
0I

β
aDβf

)
(x) = f(x)⊖ f(0),

for case LF [(1)− β]-differentiability and we have(
0I

β
aDβf

)
(x) = −(f(0))⊖ (−f(x))

,
for case LF [(2)−β]-differentiability, and provided that the mentioned Hukuhara differences
exist. Also, −f(x) = [−f(x; r),−f(x; r)].

Proof. Indeed, we have by direct computation for case of LF [(1)−β]-differentiability:(
IβaDβf

)
(x; r) =

[
(IβaDβf)(x; r), (IβaDβf)(x; r))

]
=

[
f(x; r)− f(x0; r), f(x; r)− f(x0; r)

]
,

and for LF [(2)− β]-differentiability:(
IβaDβf

)
(x; r) =

[
(IβaDβf)(x; r), (IβaDβf)(x; r))

]
=

[
f(x; r)− f(x0; r), f(x; r)− f(x0; r)

]
,

for all 0 ≤ r ≤ 1 which complete the proofs. �

5 Result on the fuzzy local fractional calculus

Definition 5.1. A fuzzy-valued function f(x) is called a function of exponent β, (0 < β <
1), which satisfy Höltder function of exponent β,if for x, y ∈ R such that

d(f(x), f(y)) < C|x− y|β, for any x, y ∈ R, (5.10)

where C is real constant.
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Definition 5.2. A functionf : R → E, x → f(x), is called continuous of order β,
(0 < β < 1) or β-continuous on the interval [a, b], if

d(f(x), f(y)) = O((x− y)β), for any x, y ∈ [a, b], (5.11)

Proposition 5.1. Assume that the continuous function f(x)((k+1)β) ∈ CF
β (a, b)), f : R →

E , and f (kβ) is local fractional H-differentiability of order kβ near the point x = x0 , for
any positive integer k and any β, 0 < β < 1, then the following equality holds, which is

if f(x) is LF [(1)− β]-differentiability then:

f(x; r) =

[
n∑

k=0

f (kβ)(x0; r)

Γ(1 + βk)
(x− x0)

kβ ,
n∑

k=0

f
(kβ)

(x0; r)

Γ(1 + βk)
(x− x0)

kβ

]
or

if f(x) is LF [(2)− β]-differentiability then:

f(x; r) = [f1(x, r), f2(x, r)],

where

f1(x; r) =
n∑

k=1,even

f (kβ)(x0; r)

Γ(1 + βk)
(x− x0)

kβ +
n∑

k=1,odd

f
(kβ)

(x0; r)

Γ(1 + βk)
(x− x0)

kβ ,

f2(x; r) =

n∑
k=1,even

f
(kβ)

(x0; r)

Γ(1 + βk)
(x− x0)

kβ +

n∑
k=1,odd

f (kβ)(x0; r)

Γ(1 + βk)
(x− x0)

kβ .

Remark 5.1. Let Eβ : R → E, x → Eβ(x), denote a continuously function, which is
so-called the Mittag-Leffler function

Eβ(x) =

∞∑
k=0

xk

Γ(1 + βk)
, 0 < β < 1.

As further result of the above formula, in fractional space defined by the expression

Eβ(x
β) =

∞∑
k=0

xβk

Γ(1 + βk)
, 0 < β < 1,

one has a continuously non-differentiable function.
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6 FLFDEs under local fractional H-differentiability

Here, we will investigate the integral form of the original (FLFDE) under local fractional
H-differentiability.First we consider the following fuzzy local fractional differential equa-
tion (FLFDE):

{
(Dβy)(x) = f [x, y(x)]
y(x0) = y0 ∈ E

(6.12)

where f(x) ∈ CF
β [a, b] ∩ LF [a, b] continuous fuzzy-valued function and x0 ∈ [a, b].

Lemma 6.1. Let 0 < β < 1 and x0 ∈ R. the fuzzy local fractional differential equation
(FLFDE) (6.12) is equivalent to one of the following integral equations:

y(x) = y(x0) +
1

Γ(1 + β)

∫ x

x0

f(t, y(t))(dt)β, x ∈ [x0, b], (6.13)

if y(t) is LF [(1)− β]-differentiable, and

y(x) = y(x0)⊖
1

Γ(1 + β)
(−1)

∫ x

x0

f(t, y(t))(dt)β, x ∈ [x0, b], (6.14)

if y(t) is LF [(2)− β]-differentiable, provided that ⊖ exists.

Proof. Let us consider y(t) is LF [(1) − β]-differentiable and using Lemma 4.2 and
Definition 4.1, we have

Iβa (Dβy)(x) = Iβa (f [x, y(x)]) .

Therefore,

y(x)⊖ y(x0) =
1

Γ(1 + β)

∫ x

a
f(t, y(t))(dt)β.

Then, we conclude that

y(x) = y(x0) +
1

Γ(1 + β)

∫ x

a
f(t, y(t))(dt)β.

If y(t) is LF [(2)− β]-differentiable, and using Lemma 4.2 and Definition 4.1, we get

Iβa (Dβy)(x) = Iβa (f [x, y(x)]) ,

which leads to derive

(−y(x0))⊖ (−y(x)) =
1

Γ(1 + β)

∫ x

a
f(t, y(t))(dt)β.
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Finally, we obtain

y(x) = y(x0)⊖
1

Γ(1 + β)
(−1)

∫ x

a
f(t, y(t))(dt)β,

which complete the proofs. �

7 An application

Now, we drive the solutions to the fuzzy local fractional differential equations under lo-
cal fractional H-differentiability in fractal space according to the related Volterra integral
equation proposed in Lemma 6.1. To this end, consider The relaxation equation

{
dβy(x)
dxβ = λcβy(x), c > 0, x > 0, 0 < β < 1,

y(x0) = y0 ∈ E
(7.15)

We solve this FLFDEs according to two following cases
Case I. Let us consider λ ≥ 0. Then, using LF [(1)− β]-differentiability and applying Eq.
(6.13), we get the solution as follows:

{
y(x; r) = y(x0; r)Eβ[c

βtβ],

y(x; r) = y(x0; r)Eβ[c
βtβ].

(7.16)

Case II. Let us consider λ < 0. Then, using LF [(2)− β]-differentiability and applying Eq.
(6.14), we get the solution as follows:

{
y(x; r) = y(x0; r)Eβ[−cβtβ],

y(x; r) = y(x0; r)Eβ[−cβtβ].
(7.17)

Where Eβ is the classical Mittag-Leffler function with fractal dimension β defined by

Eβ(x
β) =

∞∑
k=0

xβk

Γ(1 + βk)
.

Now, we denote the solution (7.16) by y1(x; r) and the solution (7.17) by y2(x; r). So,
using obtained results we have:{

y1(x; r) = mEβ[c
βtβ],

y2(x; r) = mEβ[−cβtβ].
(7.18)

Taking initial value condition into account in (7.18), we obtain the solutions of equation
(7.15), which is {

y1(x; r) = y0Eβ[c
βtβ],

y2(x; r) = y0Eβ[−cβtβ].
(7.19)
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Given any point x = x0, we have the fuzzy local fractional Taylor expansion of y(x) in the
following form:

if y(x) LF [(1)− β]-differentiability then:

Eβ(c
βxβ; r) =

[
n∑

k=0

ckβEβ(c
βxβ0 )(x− x0)

βk

Γ(1 + kβ)
,

n∑
k=0

ckβEβ(c
βxβ0 )(x− x0)

βk

Γ(1 + kβ)

]
, (7.20)

and if y(x) LF [(2)− β]-differentiability then:

Eβ(−cβxβ; r) =
[
Eβ,1(−cβxβ; r), Eβ,2(−cβxβ; r)

]
, (7.21)

Eβ,1(−cβxβ; r) =

 n∑
k=0,keven

ckβEβ(−cβxβ0 )(x− x0)
βk

Γ(1 + kβ)
+

n∑
k=0,kodd

(−1)k
ckβEβ(−cβxβ0 )(x− x0)

βk

Γ(1 + kβ)

 ,

(7.22)

Eβ,2(−cβxβ; r) =

 n∑
k=0,keven

ckβEβ(−cβxβ0 )(x− x0)
βk

Γ(1 + kβ)
+

n∑
k=0,kodd

(−1)k
ckβEβ(−cβxβ0 )(x− x0)

βk

Γ(1 + kβ)

 ,

(7.23)
where Eβ,1 and Eβ,2 are the lower and upper functions, and we always get the Hölder
relation

d(Eβ(c
βxβ1 ), Eβ(c

βxβ2 )) ≤ m|x1 − x2|β, (7.24)

d(Eβ(−cβxβ1 ), Eβ(−cβxβ2 )) ≤ m|x1 − x2|β. (7.25)

For any x1, x2 > 0. Using Eqs. (7.20), (7.22), (7.23) and Eqs. (7.24), (7.25), the solutions
of fuzzy the local fractional equation are continuous and the fractal property, is valid.

8 Conclusion and future research

In this paper, we introduce the fuzzy local fractional derivatives and related fuzzy local
fractional differential equations about order 0 < β < 1. Also, some useful and new results
are derived like as the relation between each type of fuzzy local fractional differentiability
and their r-cuts, the composition of the fuzzy KG-LFD and related fuzzy integrals. More-
over, as an application, we have solved some examples. Indeed, the solutions of FLFDEs
under local fractional H-differentiability is expressed using Mittag-Leffler function.
For future research, we will solve mentioned problems using some well-known analytic
methods like as fuzzy fractional Laplace transform method.
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