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Abstract

Fuzzy integral equations play major roles in various areas, therefore a new method for finding a solution
of the Fredholm fuzzy integral equation is presented. This method converts the fuzzy integral equation
into linear system by using the Taylor series. For this scope, first the Taylor expansion of unknown
function is substituted in parametric form of the given equation. Then we differentiate both sides of
the resulting integral equation and also approximate the Taylor expansion by a suitable truncation
limit. This work yields a linear system in crisp case. Now the solution of this system yields unknown
Taylor coefficients of the solution functions. The proposed method is illustrated by several examples
with computer simulations.
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1 Introduction

S
ince many mathematical formulations of phys-
ical phenomena contain fuzzy integral equa-

tions and these equations are very useful for solv-
ing many problems in several applied fields like
mathematical physics and engineering, therefor
various approaches for solving these problems
have been proposed. Also these equations usu-
ally can not be solved explicitly, so it is required
to obtain the approximate solutions. There are
numerous numerical methods which have been
focusing on the solution of integral equations.
For example, Tricomi in his book [23], intro-
duced the classical method of successive approx-
imations for nonlinear integral equations. Varia-
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tional iteration method [13] and Adomian decom-
position method [3] are effective and convenient
for solving integral equations. Also the Homo-
topy analysis method (HAM) was proposed by
Liao [15, 16, 17, 18] and then has been applied
in [1, 5, 8]. Moreover, some different valid meth-
ods for solving this kind of equations have been
developed in the last years. First time, Taylor
expansion approach was presented for solution of
integral equations by Kanwal and Liu in [12] and
then has been extended in [10, 19, 20, 21, 25, 26].
In this paper we want to propose a new numer-
ical approach to approximate the solution of the
linear Fredholm fuzzy integral equation. This
method converts the given fuzzy equation that
supposedly has an unique fuzzy solution, into a
crisp linear system. For this scope, first the Tay-
lor expansion of unknown function is substituted
in parametric form of the present fuzzy equation.
Then we differentiate both sides of the resulting
integral equations of the fuzzy equation N times
and also approximate the Taylor expansion by a
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suitable truncation limit. This work yields a lin-
ear system in crisp case, such that the solution
of the linear system yields the unknown Taylor
coefficients of the solution function. An interest-
ing feature of this method is that we can get an
approximate of the Taylor expansion in arbitrary
point to any desired degree of accuracy. Here is
an outline of the paper.
In Section 2, the basic notations and definitions of
integral equation and Taylor polynomial method
are briefly presented . Section 3 describes how
to find a approximate solution of the given Fred-
holm fuzzy integral equation by using the pro-
posed approach. Finally in Section 4, we apply
the proposed method on some examples to show
the simplicity and efficiency of the method.

2 Preliminaries

This section briefly deals with the foundation of
fuzzy numbers and integral equations which are
used in the next sections. We started by defining
the fuzzy number.

Definition 2.1 A fuzzy number is a fuzzy set u :
R1 → I = [0, 1] which satisfies

i u is upper semicontinuous,

ii u(x) = 0 outside some interval [a, d],

iii There are real numbers b, c : a ≤ b ≤ c ≤ d
for which:

1. u(x) is monotonically increasing on
[a, b],

2. u(x) is monotonically decreasing on
[c, d],

3. u(x) = 1, b ≤ x ≤ c.

The set of all fuzzy numbers (as given by defini-
tion 2.1 ) is denoted by E1 [7, 21].

Definition 2.2 A fuzzy number v is a pair (v, v)
functions v(r), v(r) : 0 ≤ r ≤ 1. which satisfy the
following requirements:

i v(r) is a bounded monotonically increasing left
continuous function,

ii v(r) is a bounded monotonically decreasing left
continuous function,

iii v(r) ≤ v(r): 0 ≤ r ≤ 1.

A popular fuzzy number is the triangular fuzzy
number v = (a, b, c) with membership function,

µv(x) =



x−a
b−a , a ≤ x ≤ b

c−x
c−b , b ≤ x ≤ c

0 , otherwise,

where a ≤ b ≤ c. Its parametric form is:

[v]αl = a+ (b − a)α and [v]αu = c − (c− b)α, 0 ≤
α ≤ 1.

2.1 Operation on fuzzy numbers

We briefly mention fuzzy number operations de-
fined by the Zadeh extension principle [26, 27].

µA+B(z) = max{µA(x) ∧ µB(y)| z = x+ y},
µf(Net)(z) = max{µA(x) ∧ µB(y)| z = xy},

where A and B are fuzzy numbers µ∗(.) denotes
the membership function of each fuzzy number,
∧ is the minimum operator and f(x) = x is the
activation function for output unit of our fuzzy
neural network.
The above operations on fuzzy numbers are
numerically performed on level sets (i.e. α-cuts).
For 0 < α ≤ 1, a α-level set of a fuzzy number A
is defined as:

[A]α = {x| µA(x) ≥ α, x ∈ R},
[A]α = [[A]αl , [A]

α
u ],

where [A]αl and [A]αu are the lower and the upper
limits of the α-level set [A]α, respectively.

From interval arithmetic [2], the above op-
erations on fuzzy numbers are written for the
α-level sets as follows:

[A]α + [B]α = [[A]αl , [A]
α
u ] + [[B]αl , [B]αu ] =

[[A]αl + [B]αl , [A]
α
u + [B]αu ], (2.1)

f([Net]α) = f([Net]αl , [Net]αu ]) =

[f([Net]αl ), f([Net]αu)],

k[A]α = k[[A]αl , [A]
α
u ] = [k[A]αl , k[A]

α
u ], if k ≥ 0,

(2.2)
k[A]α = k[[A]αl , [A]

α
u ] = [k[A]αu , k[A]

α
l ], if k < 0.

For arbitrary u = (u, u) and v = (v, v) we define
addition (u+v) and multiplication by k as [7, 21]:
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(u+ v)(r) = u(r) + v(r),
(u+ v)(r) = u(r) + v(r),

(ku)(r) = k.u(r), (kv)(r) = k.u(r), if k ≥ 0,

(ku)(r) = k.u(r), (kv)(r) = k.u(r), if k < 0.

Definition 2.3 For arbitrary fuzzy numbers
u, v ϵ E1 the quantity

D(u, v) = sup
0≤r≤1

{max[|u(r)−v(r)| , |u(r)−v(r)|]}

is the distance between u and v. It is shown that
(E1, D) is a complete metric space [22].

Definition 2.4 Let f : [a, b] → E1. For each
partition P = {t0, t1, ..., tn} of [a, b] and for arbi-
trary ξi ϵ [ti−1, ti] (1 ≤ i ≤ n), suppose

RP =

n∑
i=1

f(ξi)(ti − ti−1),

∆ := max{|ti − ti−1|, i = 1, ..., n}.

The definite integral of f(t) over [a, b] is∫ b

a
f(t)dt = lim

∆→0
RP

provided that this limit exists in the metric D.
If the fuzzy function f(t) is continuous in the
metric D, its definite integral exists [7]. Also,

(

∫ b

a
f(t, r) dt) =

∫ b

a
f(t, r)dt,

(

∫ b

a
f(t, r) dt) =

∫ b

a
f(t, r)dt.

More details about properties of the fuzzy inte-
gral are given in [7, 11].

2.2 Integral equation

The basic definition of integral equation is given
in [10].

Definition 2.5 The Fredholm integral equation
of the second kind is

F (t) = f(t) + λ(ku)(t), (2.3)

where

(ku)(t) =

∫ b

a
k(s, t)F (s)ds.

In Eq. (2.1), k(s, t) is an arbitrary kernel function
over the square a ≤ s, t ≤ b and f(t) is a function
of t : a ≤ t ≤ b. If the kernel function satisfies
k(s, t) = 0, s > t, we obtain the Volterra integral
equation

F (t) = f(t) + λ

∫ t

a
k(s, t)F (s)ds. (2.4)

In addition, if f(t) be a crisp function then the
solution of above equation crisp as well. Also
if f(t) be a fuzzy function we have Fredholm
fuzzy integral equation of the second kind which
may only process fuzzy solutions. Sufficient
conditions for the existence equation of the
second kind, where f(t) is a fuzzy function,
are given in [4, 6]. Now let (f(t, r), f(t, r)) and

(F (t, r), F (t, r)) (0 ≤ r ≤ 1; a ≤ t ≤ b) be
parametric form of f(t) and F (t) respectively. In
order to design a numerical scheme for solving
Eq. (2.3), we write the parametric form of the
given fuzzy integral equation as follows:

F (t, r) = f(t, r) + λ
∫ b
a U(s, r)ds

F (t, r) = f(t, r) + λ
∫ b
a U(s, r)ds

, (2.5)

where

U(s, r) =


k(s, t)F (s, r) , k(s, t) ≥ 0

k(s, t)F (s, r) , k(s, t) < 0
,

and

U(s, r) =


k(s, t)F (s, r) , k(s, t) ≥ 0

k(s, t)F (s, r) , k(s, t) < 0
.

Suppose that in Eq. (2.5) the functions
f(t, r), f(t, r) and the kernel k(s, t) are given
and assumed to be sufficiently differentiable with
respect to all their arguments on the interval
a ≤ t, s ≤ b. Also, F (t, r) = [F (t, r), F (t, r)] is
the solution where to be determined.

2.3 Taylor series

Let us first recall the basic principles of the
Taylor polynomial method for solving Fredholm
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fuzzy integral equations (2.3). Since these results
are the key for our problems therefore we explain
them. Without loss of generality, we assume that

λ.k(s, t) ≥ 0 , a ≤ s ≤ c

λ.k(s, t) < 0 , c ≤ s ≤ b
.

Therefore Eq. (2.5) is transformed to following
form:

F (t, r) = f(t, r) + λ
∫ c
a k(s, t)F (s, r)ds+

λ
∫ b
c k(s, t)F (s, r)ds

F (t, r) = f(t, r) + λ
∫ c
a k(s, t)F (s, r)ds+

λ
∫ b
c k(s, t)F (s, r)ds

.

(2.6)

Now we want to obtain the numerical solution of
the above system in the form of

FN (t, r) =

N∑
i=0

(
1

i!
.
∂(i)F (t, r)

∂ti
|t=z .(t− z)i),

(2.7)
a ≤ t, z ≤ b, 0 ≤ r ≤ 1,

FN (t, r) =

N∑
i=0

(
1

i!
.
∂(i)F (t, r)

∂ti
|t=z .(t− z)i),

a ≤ t, z ≤ b, 0 ≤ r ≤ 1,

which are the Taylor expansions of degree
N at t = z for the unknown functions F (t, r)
and F (t, r), respectively. For this scope, we
differentiate each equation of system (2.6) N
times with respect to t and get

∂(j)F (t,r)
∂tj

=

∂(j)f(t, r)

∂tj
+ λ

∫ c

a

∂(j)k(s, t)

∂tj
.F (s, r)ds (2.8)

+ λ

∫ b

c

∂(j)k(s, t)

∂tj
.F (s, r)ds,

∂(j)F (t,r)
∂tj

=

∂(j)f(t, r)

∂tj
+ λ

∫ c

a

∂(j)k(s, t)

∂tj
.F (s, r)ds

+ λ

∫ b

c

∂(j)k(s, t)

∂tj
.F (s, r)ds, j = 0, ..., N.

For brevity, we define below symbols as,

F
(i)
(z, r) :=

∂(i)F (t, r)

∂ti
|t=z

and

F (i)(z, r) :=
∂(i)F (t, r)

∂ti
|t=z.

The aim of this paper is determining of the coef-

ficients F
(i)
(z, r) and F (i)(z, r), (i = 0, ..., N) in

Eq. (2.7). For this aim, we expanded F (s, r) and
F (s, r) in Taylor series at z = a and substituted
it’s N -th truncation in (2.8). Now we can write:

F
(j)

(a, r) =
∂(j)f(t, r)

∂tj
|t=a +

N∑
i=0

wj,i. (2.9)

F
(i)
(a, r) +

N∑
i=0

w′
j,i . F

(i)(a, r),

F (j)(a, r) =
∂(j)f(t, r)

∂tj
|t=a +

N∑
i=0

wj,i .

F (i)(a, r) +

N∑
i=0

w′
j,i . F

(i)
(a, r),

where

wj,i =
λ

i!

∫ c

a

∂(j)k(s, t)

∂tj
|t=a .(s− a)ids,

and

w′
j,i =

λ

i!

∫ b

c

∂(j)k(s, t)

∂tj
|t=a .(s− a)ids.

We now write the matrix form of expression (2.9)
as

WY = E, (2.10)

where

Y =

[F (a, r), ..., F (N)(a, r), F (a, r), ..., F
(N)

(a, r)]′

=

Y
Y

 ,
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E = [−f(a, r), ...,−
∂(N)f(t, r)

∂tN
|t=a,−

f(a, r), ...,−∂(N)f(t, r)

∂tN
|t=a]

′ =

E
E

 ,

W =

W1,1 W1,2

W2,1 W2,2

 ,

whose elements are defined by

3 Convergence analysis

In this section we proved that the above numer-
ical method convergence to the exact solution of
Eq. (2.5).

Theorem 3.1 Let FN (t) and FN (t) be polyno-
mial solution of (2.5) such that it’s coefficients
produced by solving linear system (2.10). Then
these polynomials converges to the exact solu-
tion of the fuzzy Fredholm integral equation (2.3),
when N −→ +∞.

Proof. First consider the Eq. (2.3) in the form

F (t) = f(t) + λ

∫ t

a
k(s, t)F (s)ds. (3.11)

If the series (2.7) converges to F (t, r) and F (t, r)
respectively, then we can write:

FN (t, r) = f(t, r) + λ
∫ c
a k(s, t)FN (s, r)ds+

λ
∫ b
c k(s, t)FN (s, r)ds

FN (t, r) = f(t, r) + λ
∫ c
a k(s, t)FN (s, r)ds+

λ
∫ b
c k(s, t)FN (s, r)ds

.

(3.12)
and it holds that

F (t, r) =

lim
N→∞

FN (t, r), and F (t) = lim
N→∞

FN (t, r).

We defined the error function eN (t, r) by sub-
tracting Eqs. (3.12)-(2.6) as follows:

eN (t, r) = eN (t, r) + eN (t, r), (3.13)

where

eN (t, r) = (F (t, r)− FN (t, r))

+λ

∫ c

a
k(s, t)(F (s, r)− FN (s, r))ds+

λ

∫ b

c
k(s, t)(F (s, r)− FN (s, r))ds,

and

eN (t, r) = (F (t, r)− FN (t, r))

+λ

∫ c

a
k(s, t)(F (s, r)− FN (s, r))ds+

λ

∫ b

c
k(s, t)(F (s, r)− FN (s, r))ds.

We must prove when

N −→ +∞, the error function eN (t) becomes to
zero. Hence we proceed as follows:

∥eN∥= ∥eN + eN∥≤ ∥(F (t, r)

−FN (t, r))∥+∥(F (t, r)− FN (t, r))∥

+|λ|
∫ b

a
∥k∥ (∥F (s, r)− FN (s, r)∥+

∥F (s, r)− FN (s, r)∥)dt.

Since ∥k∥ is bounded, therefore ∥(F (s, r) −
FN (s, r))∥→ 0 and ∥(F (s, r) − FN (s, r))∥−→ 0
imply that ∥eN∥−→ 0 and proof is completed.2

4 Numerical examples

In this section, we present three examples of
linear Fredholm fuzzy integral equations and
results will be compared with the exact solutions.

Example 4.1 Consider the following Fredholm
integral equation with:

f(t, r) =
5r(2t− 1)2

24
−t(r−2)+

(2t− 1)2(r − 2)

24
,

f(t, r) = rt− r(2t− 1)2

24
− 5(2t− 1)2(r − 2)

24
,

and kernel

k(s, t) = (2t− 1)2(1− 2s), 0 ≤ s, t ≤ 1,

and a = 0, b = 1, λ = 1. The exact solution in
this case is given by

F (t, r) = (2− r)t and F (t, r) = rt.
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w0,0 − 1 w0,1 . . . w0,N−1 w0,N

w1,0 w1,1 − 1 . . . w1,N−1 w1,N

W1,1 = W2,2 =
...

...
. . .

...
...

wN−1,0 wN−1,1 . . . wN−1,N−1 − 1 wN−1,N

wN,0 wN,1 . . . wN,N−1 wN,N − 1

w′
0,0 w′

0,1 . . . w′
0,N−1 w′

0,N

w′
1,0 w′

1,1 . . . w′
1,N−1 w′

1,N

W1,2 = W2,1 =
...

...
. . .

...
...

w′
N−1,0 w′

N−1,1 . . . w′
N−1,N−1 w′

N−1,N

w′
N,0 w′

N,1 . . . w′
N,N−1 w′

N,N

In this example we assume that z = 0. Using
Eqs. (2.9)-(2.10), we calculated the coefficients
matrix as following:

With using of above matrix, we can rewrite
the linear system (2.10) as follows:

W



F (0, r)
F ′(0, r)
F ′′(0, r)

F (0, r)

F
′
(0, r)

F
′′
(0, r)


=



0.2500 r − 0.4166
1.6667− 2.0000 r
2.0000 r − 3.3333
0.0833− 0.2500 r
2.0000 r − 2.3333
0.6666− 2.0000 r


The vector solution of above linear system is:

F (0, r)
F ′(0, r)
F ′′(0, r)

F (0, r)

F
′
(0, r)

F
′′
(0, r)


=



0
r
0
0

2− r
0


Approximate solution and exact solution are
compared in Fig. 1 for r = 0, 0.5, 1.

After propagating this solution in Eq. (2.7), the
calculated solution is equal to exact solution.
In other words, with using of this method we
can find the analytical solution for this kind of
equation, if the exact solution of given problem
be a polynomial.

Example 4.2 Let fuzzy integral equation

f(t, r) =

3(r2−2)(3t2+2)−t3(3r2−6)−r(r4+2)(9t2−10),

Figure 1: Comparison the exact and ap-
proximated solutions for Example 4.1.

f(t, r) =

3(r2−2)(9t2−10)+t3(r5+2r)−r(r4+2)(3t2+2),

k(s, t) = 3(2− s2 + t2), 0 ≤ s, t ≤ 2,

with the exact solution F (t, r) = t3(6 − 3r2),
F (t, r) = t3(r5 + 2) and a = 0, b = 2, λ = 1. By
using Eqs. (2.9)-(2.10), we worked as following:

W =

W1,1 W1,2

W2,1 W2,2

 ,

W1,1 =
4.6569 3.0000 1.1314 0.33333 0.0808
0.0000 −1.0000 0.0000 0.0000 0.0000
8.4853 6.0000 1.8284 1.0000 0.2828
0.0000 0.0000 0.0000 −1.0000 0.0000
0.0000 0.0000 0.0000 0.0000 −1.0000

 ,
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-0.7500 0.0416 0.0052 -0.2500 -0.2083 -0.0885
-1.0000 -1.1667 -0.0208 1.0000 0.8333 0.3541

W= 2.0000 0.3333 -0.9583 -2.0000 -1.6667 -0.7083
-0.2500 -0.2083 -0.0885 -0.7500 0.0416 0.0052
1.0000 0.8333 0.3541 -1.0000 -1.1667 -0.0208

-2.0000 -1.6667 -0.7083 2.0000 0.3333 -0.9583

W1,2 =
−1.656 −3.000 −2.731 −1.666 −0.766
0.000 0.000 0.000 0.000 0.000
3.514 6.000 5.171 3.000 1.372
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000


Now we can write system (2.10) as follows:

W



F (0, r)
F ′(0, r)
F ′′(0, r)
F ′′′(0, r)

F (4)(0, r)

F (0, r)

F
′
(0, r)

F
′′
(0, r)

F
′′′
(0, r)

F
(4)

(0, r)


=



2r(r4 + 2) + 30r2 − 60
0

6r(r4 + 2)− 54r2 + 108
−6r5 − 12r

0
12− 6r2 − 10r(r4 + 2)

0
18r(r4 + 2)− 18r2 + 36

18r2 − 36
0


The vector solution of the above linear system is:

F (0, r)
F ′(0, r)
F ′′(0, r)
F ′′′(0, r)

F (4)(0, r)

F (0, r)

F
′
(0, r)

F
′′
(0, r)

F
′′′
(0, r)

F
(4)

(0, r)


=



0
0
0

6r(r4 + 2)
0
0
0
0

−18(r2 − 2)
0



Approximate solution and exact solution
are compared in Fig. 2 for r = 0, 0.5, 1.

As showed, the exact solution and approxi-
mate solution are equal.

Figure 2: Comparison the exact and ap-
proximated solutions for Example 4.2.

Example 4.3 Let fuzzy integral equation

f(t, r) = sin(
t

2
)((

13

15
)(r2 + r)+ (

2

15
)(4− r3 − r)),

f(t, r) = sin(
t

2
)((

2

15
)(r2 + r)+ (

13

15
)(4− r3 − r)),

k(s, t) = 0.1sin(s)sin(
t

2
), 0 ≤ s, t ≤ 2Π,

with the exact solution F (t, r) = (4−r3−r)sin( t2),
F (t, r) = (r2+r)sin( t2) and a = 0, b = 2π, λ = 1.

Similarly by using Eqs. (2.9)-(2.10), we calcu-
lated the coefficients matrix W in z = 0 as fol-
lowing:

W =

W1,1 W1,2

W2,1 W2,2

 ,

W1,1 =

−1.00 0.000 0.000 0.000 0.000 0.000
0.100 −0.84 0.146 0.101 0.056 0.026
0.000 0.000 −1.00 0.000 0.000 0.000
−0.02 −0.03 −0.03 −1.02 −0.01 −0.00
0.000 0.000 0.000 0.000 −1.00 0.000
0.006 0.009 0.009 0.006 0.003 −0.99

 ,
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W1,2 =

0.000 0.000 0.000 0.000 0.000 0.000
−0.10 −0.47 −1.13 −1.85 −2.31 −2.35
0.000 0.000 0.000 0.000 0.000 0.000
0.025 0.117 0.283 0.463 0.579 0.588
0.000 0.000 0.000 0.000 0.000 0.000
−0.00 −0.02 −0.07 −0.11 −0.14 −0.14

 .

Now we van write: (2.10) as follows:

W



F (0, r)
F ′(0, r)
F ′′(0, r)
F ′′′(0, r)

F (4)(0, r)

F (5)(0, r)

F (0, r)

F
′
(0, r)

F
′′
(0, r)

F
′′′
(0, r)

F
(4)

(0, r)

F
(5)

(0, r)



=



0
r3

15 − 13r2

30 − 11r
30 0−

4
15

0

− r3

60 + 13r2

120 + 11r
120 + 1

15
0

r3

240 − 13r2

480 − 11r
480 − 1

60
0

13r3

30 − r2

15 + 11r
30 − 26

15
0

−13r3

120 + r2

60 − 11r
120 + 13

30
0

13r3

480 − r2

240 + 11r
480 − 13

120


The vector solution of above linear system is:

F (0, r)
F ′(0, r)
F ′′(0, r)
F ′′′(0, r)

F (4)(0, r)

F (5)(0, r)

F (0, r)

F
′
(0, r)

F
′′
(0, r)

F
′′′
(0, r)

F
(4)

(0, r)

F
(5)

(0, r)



=



0
0.0127 r3 + 0.5023 r2 + 0.5151 r − 0.0511

0
−0.0031 r3 − 0.1255 r2 − 0.1287 r + 0.0127

0
0.0007 r3 + 0.0313 r2 + 0.03219 r − 0.0031

0
−0.5023 r3 − 0.0127 r2 − 0.5151 r + 2.0093

0
0.1255 r3 + 0.0031 r2 + 0.1287 r − 0.5023

0
−0.0313 r3 − 0.0007 r2 − 0.0321 r + 0.1255



Fig. 3 shows the accuracy of the solution
functions. The differences between 6-th trunca-
tion limits of Taylor series with exact solution
are quite noticeable.

Figure 3: Comparison the exact and ap-
proximated solutions for Example 4.3.

From this example, we can conclude that to get
the best approximating solution for unknown
functions, the truncation limit N must be chosen
large enough.

5 Conclusion

In some cases an analytical solution can not be
found for integral equation, therefore numerical
methods have been applied. In this paper we have
worked out a computational method for the ap-
proximate solution of the linear Fredholm fuzzy
integral equations of the second kind. the pre-
sented course in this study is a method for com-
puting unknown Taylor coefficients of the solution
functions. Consider that to get the best approxi-
mating solution of the present fuzzy equation, the
truncation limit N must be chosen large enough.
An interesting feature of this method is finding
the analytical solution for given equation, if the
exact solution was a polynomial of degree N or
less than N . The analyzed examples illustrate
the ability and reliability of the present method.
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