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Abstract

Let R be a commutative ring with identity and M be an unitary R-module. The intersection graph
of an R-module M , denoted by Γ(M), is a simple graph whose vertices are all non-trivial submodules
of M and two distinct vertices N1 and N2 are adjacent if and only if N1 ∩N2 ̸= 0. In this article, we
investigate the concept of a planar intersection graph and maximal submodules of an R-module. In
particular, we show that if Γ(M) is a planar graph, then M ∼= M1⊕M2 for a multiplication R-module
M with |Max(M)|≠ 1.
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1 Introduction

I
t is well known that graph is a very useful
tool to model problems originated in all most

all areas of our life. In this article, we concen-
trate our discussion on intersection graphs. Let
S = {Si : i ∈ I} be an arbitrary family of sets.
The intersection graph Γ(S) of S is the graph
whose vertices are Si, i ∈ I and there is an edge
between two distinct vertices Si and Sj if and only
if Si ∩ Sj ̸= ∅. It is more interesting to study the
intersection graphs Γ(S) when the elements of S
have an algebraic structure. These studies allow
us to obtain characterization and representation
of the classes of algebraic structure in terms of
graphs and vice versa.

Let R be a commutative ring with identity and
M be a unitary R-module. The idea of the inter-
section graph of semigroups was introduced by
Bosak in [5]. Inspired by his work, Csákány and
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Pollák in [8], studied the graph of subgroups of a
finite group. The intersection graph of ideals of
a ring, was considered by Chakrabarty, Ghosh,
Mukherjee and Sen in [7]. Recently, Akbari,
Tavallaee and Khaiashi in [1], introduced and in-
vestigated the intersection graph of submodules
of a module.

In this paper, we investigate the concept of in-
tersection graph of a module. The intersection
graph of an R-module M , denoted by Γ(M), is
defined to be the undirected simple graph whose
vertices are all non-trivial submodules of M and
two distinct vertices are adjacent if and only if
the corresponding submodules ofM have nonzero
intersection. This study helps to illuminate the
structure of M , for example, if Γ(M) is a planar
graph, then M is both Noetherian and Artinian.

Recall that a simple graph is finite if its vertices
set is finite, and we use the symbol |Γ(M)| to de-
note the number of vertices in graph Γ(M). Also,
a graph G is connected if there is a path between
any two distinct vertices. The distance, d(x, y)
between connected vertices x, y is the length of
the shortest path from x to y, (d(x, y) = ∞ if
there is no such path). An isolated vertex is a
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vertex that has no edges incident to it. A com-
plete r-partite graph is one in which each ver-
tex is joined to every vertex that is not in the
same subset. The complete bipartite graph (2-
partite graph) with part sizes m and n is de-
noted by Km,n. A graph in which each pair of
distinct vertices is joined by an edge is called a
complete graph. We use Kn for the complete
graph with n vertices. The complement G of G
is the graph with vertex set V (G) = V (G), and
E(G) = {uv : uv ̸∈ E(G)}. The complement of a
complete graph is the null graph. A graph is said
to be planar if it can be drawn in the plane so that
its edges intersect only at their ends. A remark-
ably simple characterization of planar graphs was
given by Kuratowski in [5], p.153. Kuratowski’s
Theorem says that a graph is planar if and only
if it contains no subdivision of K5 or K3,3.

An R-module M is a multiplication module
if for every R-submodule K of M there is an
ideal I of R such that K = IM . Note that
I ⊆ [N : M ], hence N = IM ⊆ [N : M ]M ⊆ N .
So N = [N : M ]M . An R-module M is called a
cancellation module if IM = JM for any ide-
als I and J of R implies that I = J . Also,
an R-module M is a weak-cancellation module
if IM = JM for any ideals I and J of R im-
plies that I + Ann(M) = J + Ann(M). Finitely
generated multiplication modules are weak can-
cellation, Theorem 3 [2]. Let P be a maximal
ideal of R. An R-module M is called P -torsion
if for each m ∈ M there exists p ∈ P such that
(1 − p)m = 0. On the other hand, M is called
P -cyclic if there exists x ∈ M and q ∈ P such
that (1 − q)M ⊆ Rx. Theorem 1.2 [6] showed
that an R-module M is multiplication if and only
if for every maximal ideal P of R either M is
P -torsion or P -cyclic.

In this paper, we study the number of maximal
and minimal prime submodule of multiplication
modules. It is shown that if Γ(M) is a planar
graph, then |Max(M)|≤ 4 and |Min(M)|≤ 4.
Also, we show that, if M is a multiplication R-
module with |Max(M)|≠ 1 and Γ(M) is a planar
graph, then M ∼= M1 ⊕M2.

Throughout the paper, Max(M) is a set of
the maximal submodules H of M , we use sym-
bol |Max(M)| to denote the number of maximal
submodule of M . As a consequence of Theorem
2.5 [6], for any non-zero multiplication R-module
Max(M) ̸= ∅. Also, Min(M) is a set of the min-

imal prime submodules N of M . let J(R) be the
Jacobson radical of R and

J(M) := ∩H∈Max(M)H.

We follow standard notation and terminology
from graph theory [5] and module theory [3].

2 Planar intersection graph

This section is concerned with some basic and
important results in the theory of planar torsion
graphs over a module.

Lemma 2.1 Let M be an R-module. If Γ(M) is
a planar graph, then M is both Noetherian and
Artinian.

Proof. Let N1 ⊂ N2 ⊂ N3 ⊂ N4 ⊂ N5 ⊂ . . . be a
chine of nontrivial proper submodule of M . Then
vertices Ni, 1 ≤ i ≤ 5 form K5 as an induced sub-
graph, which is a contradiction. So every chain of
nontrivial proper submodule of M is stationary.
Therefore M is both Noetherian and Artinian.

Lemma 2.2 Let M be a multiplication R-module
and N be a prime submodule of M . If

∩n
i=1Ni ⊆

N , where Ni be a submodule of M , then there is
1 ≤ i ≤ n such that Ni ⊆ N .

Proof. Let
∩n

i=1Ni ⊆ N , where Ni be a sub-
module of M . Then [N1 : M ][N2 : M ] . . . [Nn :
M ]M ⊆ N. Since N is a prime submodule of M ,
there is 1 ≤ i ≤ n such that [Ni : M ] ⊆ [N : M ].
Therefore Ni ⊆ N .

Lemma 2.3 Let M be a Q-cyclic R-module for
all maximal ideal Q of R. Then [N : M ] is a
prime ideal of R for any proper submodule N of
M if and only if [N : M ]M is a prime submodule
of M .

Proof. Let[N : M ] be a prime ideal of R. Clearly
[N : M ]M is a proper submodule of M . Suppose
ax ∈ [N : M ]M such that a ̸∈ [N : M ], for
some a ∈ R and x ∈ M . Let k = {r ∈ R|rx ∈
[N : M ]M}. If k ̸= R, then there is a maximal
ideal Q of R such that k ⊆ Q. Since M is a
Q-cyclic R-module, (1 − q)M ⊆ Rm for some
q ∈ Q and m ∈ M . Hence (1 − q)ax ∈ (1 −
q)[N : M ]M ⊆ [N : M ]m. So (1− q)x = sm and
(1 − q)ax = αm for some s ∈ R and α ∈ [N :
M ]. Thus (α − sa)m = 0. It is clear that (1 −
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q)ann(m) ⊆ Ann(M). Therefore (1−q)(α−sa) ∈
Ann(M) ⊆ [N : M ]. Then (1 − q)sa ∈ [N : M ].
Hence (1− q) ∈ k ⊆ Q, which is a contradiction.
This contradiction implies that k = R and so
x ∈ [N : M ]M . Therefore [N : M ]M is a prime
submodule of M .

Conversely, let N be a prime submodule of M .
Thus [N : M ] is a proper ideal of R. Suppose
st ∈ [N : M ]. So sM ⊆ N or tM ⊆ N . Therefore
[N : M ] is a prime ideal of R.

Theorem 2.1 Let M be a Q-cyclic R-module for
all maximal ideal Q of R. If Γ(M) is a planar
graph, then |Min(M)|≤ 3.

Proof. Let Γ(M) be a planar graph. Suppose
|Min(M)|≥ 4 and N1, N2 . . . N4 be distinct mini-
mal submodules ofM , such thatN1∩N2∩N3 = 0.
Then [N1 : M ][N2 : M ][N3 : M ]M ⊆ N4. Hence
[N1 : M ][N2 : M ][N3 : M ] ⊆ [N4 : M ]. It
is clear that [N4 : M ] is a prime ideal of R.
So [Ni : M ]M ⊆ [N4 : M ]M ⊆ N4, for some
1 ≤ i ≤ 3. By Lemma 2.3, [N : M ]M is a
prime submodule of M . Also, since N is a min-
imal prime submodule of M , [N : M ]M = N.
Therefore Ni = N4 for some 1 ≤ i ≤ 3, which is
a contradiction. Hence N1 ∩N2 ∩N3 ̸= 0. There-
fore, vertices N1 ∩N2, N1 ∩N3, N2 ∩N3, N1, N2

and N3 form K6 as an induced subgraph, which
is a contradiction. Consequently |Min(M)|≤ 3.

Corollary 2.1 Let M be a multiplication R-
module. If Γ(M) is a planar graph, then∩

N∈Min(M)N = 0.

Proposition 2.1 Let M be a multiplication R-
module. If Γ(M) is a planar graph, then 1 ≤
|Max(M)|≤ 3.

Proof. Let Γ(M) be a planar graph. Sup-
pose |Max(M)|≥ 4 and H1,H2, . . . H4 be distinct
maximal submodules of M , such that H1 ∩H2 ∩
H3 = 0. Then H1 ∩ H2 ∩ H3 ⊆ H4. Sine ev-
ery maximal submodule of multiplication mod-
ules is prime, by Lemma 2.2, Hi ⊆ H4, for some
1 ≤ i ≤ 3. But Hi is a maximal submodule of
M implies that Hi = H4 for some 1 ≤ i ≤ 3,
which is a contradiction, hence H1∩H2∩H3 ̸= 0.
Therefore, vertices H1 ∩ H2, H1 ∩ H3, H2 ∩ H3,
H1, H2 and H3 form K6 as an induced sub-
graph, which is a contradiction. Consequently
1 ≤ |Max(M)|≤ 3.

Corollary 2.2 Let M be a multiplication R-
module. If Γ(M) is a planar graph, then J(M) =
0.

Proposition 2.2 Let M = M1 × M2 be an R-
module. Then Γ(M) is planar if and only if
Γ(M1) or Γ(M2) is empty and another is null.

Proof. Let Γ(M) be a planar graph. Suppose
that Γ(M1) and Γ(M2) are not empty. So there
exist nontrivial proper submodules N1 of M1 and
N2 of M2. Therefore 0 × N2, 0 ×M2, N1 ×M2,
N1 × N2 and M1 × N2 form K5 as an induced
subgraph, which is a contradiction. Hence one of
Γ(M1) or Γ(M2) is empty. Let Γ(M2) be empty.
Now we show that Γ(M1) is null. If N1 is a
proper nontrivial submodule of M1 such that it
is adjacent to H1 for some H1 ∈ V (Γ(M1)), then
N1∩H1 ̸= 0. So N1×0, H1×0, M1×0, N1×M2

and H1 × M2 form K5 as an induced subgraph,
which is a contradiction. This contradiction im-
plies that Γ(M1) is null.

Corollary 2.3 Γ(M1×M2×M3) is planar if and
only if Mi is a simple Ri-module for i ∈ {1, 2, 3}.

Proof. Let Γ(M1 ×M2 ×M3) be a planar graph
and M1 not simple. So there exists 0 ̸= N <
M1. Then N × M2 × M3, 0 × M2 × M3, N ×
M2 × 0, M1 × M2 × 0 and M1 × 0 × M3 form
K5 as an induced subgraph of Γ(M), which is
a contradiction. Therefore Mi is a simple Ri-
module for i ∈ {1, 2, 3}.

Proposition 2.3 Let M be a multiplication R-
module with |Max(M)|= 3. If Γ(M) is planar,
then M ∼= M1⊕M2 where M1 and M2 are simple.

Proof. Let |Max(M)|= 3 and Hi, 1 ≤ i ≤ 3 be
distinct maximal submodules of M . By Corollary
2.2, H1 ∩ H2 ∩ H3 = 0. If H2 ∩ H3 = 0, then
H2 ∩ H3 ⊆ H1 and by Lemma 2.2, H1 = H2 or
H1 = H3, which is a contradiction. Hence M =
H1⊕H2∩H3. By Proposition 2.2, one of Γ(H1) or
Γ(H2∩H3) is null another is empty. Suppose that
Γ(H1) be null. If H1 is not a simple submodule of
M . Then there is a nontrivial submoddule N1 of
H1 such that N1 is adjacent to N1 +H2 ∩H3. So
Γ(H1) is not null, which is a contradiction. Thus
H1 and H2 ∩H3 are simple.

Lemma 2.4 Let M be a faithful finitely gener-
ated multiplication R-module. Then J(R)M =
J(M).
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Proof. Let M be a faithful finitely generated
multiplication R-module and H be a maximal
submodule of M . By Theorem 3.1 of [6], hM ̸=
M for all maximal ideal h of M . Also, by Theo-
rem 2.5 of [6], H = hM for some maximal ideal
h of M . On the other hand by Theorem 1.6 of
[6], J(M) = ∩H∈Max(M)H = ∩h∈Max(R)(hM) =
(∩h∈Max(R)h)M = J(R)M

Theorem 2.2 Let M be a faithful multiplication
R-module with |Max(M)|= 2. Then Γ(M) is a
planar graph if and only if M ∼= [H1 : M ]4M ⊕
[H2 : M ]4M such that Γ([H1 : M ]4M) or Γ([H1 :
M ]4M) is empty another is null, where H1,H2

are maximal submodule of M .

Proof. Let H1 and H2 be distinct maximal sub-
modules of M . Suppose that [H1 : M ]4M + [H2 :
M ]4M ̸= M . By Theorem 2.5 of [6], there is
a maximal submodule H of M such that [H1 :
M ]4M + [H2 : M ]4M ⊆ H. Since |Max(M)|= 2,
we have H = H1 or H = H2. It follows that
[H1 : M ]4M ⊆ H2 or [H2 : M ]4M ⊆ H1.
Thus H1 = H2, which is a contradiction. So
M = [H1 : M ]4M + [H2 : M ]4M . Assume [H1 :
M ]4M ∩ [H2 : M ]4M ̸= 0. Hence H1 ∩ H2 ̸= 0.
On the other hand By Theorem 1.6 [6], [H1 :
M ]iM ∩ [H2 : M ]iM = ([H1 : M ]i∩ [H2 : M ]i)M,
for all positive integer i. Since M is a cyclic faith-
ful multiplication module, by Lemma 2.4, we have
J(R)M = J(M). Now Nakayama’s lemma fol-
lows that ([H1 : M ]4 ∩ [H2 : M ]4)M ⊂ . . . ⊂
([H1 : M ] ∩ [H2 : M ])M ⊂ H1. Hence Γ(M) con-
tains an induced subgraph K5, which is a contra-
diction. Therefore [H1 : M ]4M ∩ [H2 : M ]4M =
0. Consequently M ∼= [H1 : M ]4M ⊕ [H2 : M ]4M
and by Proposition 2.2, the result follows.

Proposition 2.4 Let M be a multiplication R-
module with |Max(M)|= 1. If Γ(M) is a planar
graph, then |M |≤ 5 or [H : M ]5M = 0 where H
is a maximal submodule of M .

Proof. Suppose M be a faithful multiplica-
tion R-module. If Γ(M) is a planar graph, then
by Lemma 2.1, M is finitely generated and by
Lemma 2.4, R is a local ring with unique max-
imal ideal [H : M ]. By Nakayama’s lemma, we
have [H : M ]iM ̸= [H : M ]jM for all positive
integer i ̸= j. Since Γ(M) is a planar graph, then
[H : M ]5M = 0. If M is not faithful, then Γ(M)
is a complete graph. Hence |M |≤ 5.

Now we obtain the central results of this sec-
tion.

Corollary 2.4 Let M be a multiplication R-
module with |Max(M)|≠ 1. If Γ(M) is a planar
graph, then M ∼= M1 ⊕M2.
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