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Abstract

In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to
approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary
kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical
stability of the computed values with respect to small perturbations in the first iteration. Finally,
to show the efficiency of the proposed method, we present some test problems, for which the exact
solutions are known.
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1 Introduction

F
uzzy linear integral equations arise frequently
in physical problems as a result of the pos-

sibility of super-imposing the effects due to sev-
eral reasons. The most important contribution of
the theory of fuzzy integral equations consists in
the solution of fuzzy initial and boundary value
problems. Also, the theory of fuzzy Volterra inte-
gral equations makes it possible to solve an initial
value problem for a linear fuzzy ordinary differ-
ential equation of an arbitrary order [39].
The concept of integration of fuzzy functions was
introduced by Dubois and Prad [13] for the first
time and then investigated by Goetschel and Vox-
man [22], Kaleva [26], Matloka [29], Nanda [30]
and others. One numerical method for solving
fuzzy integrals is presented in [8]. The fuzzy-
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Riemann integral and its numerical integration
was investigated by Wu in [36]. Some appli-
cations of the fuzzy integral equations to con-
trol models with fuzzy uncertainties are presented
in[12]. In [15], the authors gave one of the
applications of fuzzy integral for solving fuzzy
Fredholm integral equation of the second kind
(FFIE-2). On of the main fuzzy equations, ad-
dressed by many researchers, is fuzzy Fredholm
integral equation. Generally, the complexity of
fuzzy integral equations hinders analytical solu-
tions. Therefore, some numerical methods have
been recently proposed to fuzzy fredholm inte-
gral equation. The iterative techniques are ap-
plied to FFIE-2 in [10, 16, 33, 38]. Friedman et
al. [18] presented one successive approximations
method for solving FFIE-2. Also, Friedman et al.
[17] investigated numerical procedures for solv-
ing FFIE-2 using the embedding method. Babo-
lian et al. [7] used the Adomian decomposition
method (ADM) to solve FFIE-2. Abbssbandy et
al. [1, 27] obtained the solution of fuzzy Fred-
holm integral equations by using the Nystrom
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method. Recently,the authors used Lagrange in-
terpolation [6], divided and finite differences [32],
Bernstein polynomials [14, 31],Chebyshev inter-
polation [9], Legendre wavelets [24], Splines in-
terpolation [25],fuzzy Haar wavelets [35], and
Galerkin type techniques [28]. Also, the authors
of[36] proved the convergence of the method of
successive approximations used to approximate
the solution of nonlinear Hammerstein fuzzy in-
tegral equations.
Here, by using fuzzy wavelet like operator, we
propose a numerical approach for solving linear
(FFIF-2):

F̃ (t) = f̃(t)⊕ λ⊙
∫ b

a
K(x, t)⊙ F̃ (x)dx, (1.1)

where λ > 0,K(x, t) is an arbitrary kernel func-
tion over the square a ≤ x, t ≤ b and f̃(t) is a
fuzzy real valued function of t. Also, we present,
the error estimation for approximating the solu-
tion of linear FFIF-2.
This paper includes the following parts: In Sec-
tion 2, we review some elementary concepts of the
fuzzy set theory and modulus of continuity. In
Section 3, the algorithm is given. In Section 4, the
convergence analysis is presented. In Section 5,
the numerical stability with respect to the choice
of the first iteration is demonstrated. In Section
6, we present two numerical examples for applica-
bility of the proposed method to obtain numerical
solution of linear FFIF-2 based on fuzzy wavelet
like operator. Finally, Section 7 gives our con-
cluding remarks.

2 Preliminaries

Definition 2.1 [21] A fuzzy number is a func-
tion u : ℜ −→ [0, 1]. with the following properties:

(i) u is normal, i.e. ∃x0 ∈ ℜ with u(x0) = 1,

(ii) u is a convex fuzzy set,

(iii) u is upper semi-continuous on ℜ,

(iv) {x ∈ ℜ : u(x) > 0} is compact, where A de-
notes the closure of A.

The set of all fuzzy numbers is denoted by ℜF .

Definition 2.2 [19] Suppose that u ∈ ℜF . The

r-level set of u is denoted by [u]r = [u
(r)
− , u

(r)
+ ]

and defined by [u]r = {x ∈ ℜ;u(x) ≥ r}, where

0 < r ≤ 1. Also, [u]0 is called the support of u
and it is given as [u]0 = {x ∈ ℜ;u(x) > 0}. It fol-
lows that the level sets of u are closed and bounded
intervals in ℜ.
It is well-known that the addition and multiplica-
tion operations of real numbers can be extended
to ℜF . In other words, for u, v ∈ ℜF and λ ∈ ℜ,
we define uniquely the sum u⊕ v and the product
λ⊙ u by

[u⊕ v]r = [u]r + [v]r, [λ⊙ u]r = λ[u]r,∀r ∈ [0, 1],

where [u]r + [v]r means the usual addition of two
intervals (as subsets of ℜ) and λ[u]r means the
usual product between a scalar and a subset of ℜ.
We use the same symbol

∑
both for the sum of

real numbers and for the sum ⊕ (when the terms
are fuzzy numbers).

Definition 2.3 [19] An arbitrary fuzzy number
is represented, in parametric form, by an ordered
pair of functions (u(r), u(r)), 0 ≤ r ≤ 1, which
satisfy the following requirements:

(i) u(r) is a bounded left continuous nondecreas-
ing function over [0, 1],

(ii) u(r) is a bounded left continuous nonincreas-
ing function over [0, 1],

(iii) u(r) ≤ u(r), 0 ≤ r ≤ 1.

The addition and scaler multiplication of fuzzy
numbers in ℜF are defined as follows:

(i) u⊕ v = (u(r) + v(r), u(r) + v(r)),

(ii) (λ⊙ u) =

{
(λu(r), λu(r)) λ ≥ 0,
(λu(r), λu(r)) λ < 0.

Definition 2.4 [20] For arbitrary fuzzy numbers
u, v, the quantity

D(u, v) = sup
r∈[0,1]

max{|u(r)− − v
(r)
− | , |u(r)+ − v

(r)
+ | }

is the distance between u and v. It is proved that
(ℜF , D) is a complete metric space with the prop-
erties ([23, 34]).

(i) D(u⊕ w, v ⊕ w) = D(u, v) ∀ u, v, w ∈ ℜF ,

(ii) D(k ⊙ u, k ⊙ v) = |k|D(u, v) ∀ u, v ∈
ℜF ∀k ∈ R,

(iii) D(u ⊕ v, w ⊕ e) ≤ D(u,w) +
D(v, e) ∀ u, v, w, e ∈ ℜF .
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Definition 2.5 [20] Let f, g : [a, b] → ℜF , be
fuzzy real number valued functions. The uniform
distance between f, g is defined by

D∗(f, g) = sup{D(f(x), g(x))| x ∈ [a, b]}.

Definition 2.6 [20] Let f : [a, b] → ℜF . f is
fuzzy-Riemann integrable to J ∈ ℜF if for any
ε > 0, there exists δ > 0 such that for any division
P = {[u, v]; ξ} of [a, b] with the norms ∆(p) < δ,
we have

D(
∑
P

∗(v − u)⊙ f(ξ), I) < ε,

where
∑∗ denotes the fuzzy summation. In this

case it is denoted by I = (FR)
∫ b
a f(x)dx.

Definition 2.7 [3] A fuzzy real number valued
function f : ℜ → ℜF is said to be continuous in
x0 ∈ ℜ, if for each ε > 0 there is δ > 0 such
that D(f(x), f(x0)) < ε, whenever x ∈ ℜ and
|x− x0| < δ. We say that f is fuzzy continuous on
ℜ if f is continuous at each x0 ∈ ℜ, and denote
the space of all such functions by CF (ℜ).

Theorem 2.1 [2] If f, g : [a, b] ⊆ ℜ → ℜF are
fuzzy continuous functions, then the function F
: [a, b] → ℜ+ defined by F (x) = D (f (x) , g (x))
is continuous on [a, b], and

D

(
(FR)

∫ b

a
f (x) dx, (FR)

∫ b

a
g (x) dx

)
≤

∫ b

a
D (f (x) , g (x)) dx.

Definition 2.8 [3] Let f : ℜ → ℜF . One call f
a uniformly continuous fuzzy real number valued
function, if and only if for any ϵ > 0 there exists
δ > 0 whenever |x− y|≤ δ;x, y ∈ ℜ, implies that
D(f(x), f(y)) ≤ ϵ. One denotes it as f ∈ CU

F (ℜ).

Definition 2.9 [20, 4] Let f : ℜ → ℜF be a
bounded function, then function

ω ℜ (f, .) : ℜ+ ∪ {0} → ℜ+,

.

ω ℜ(f, δ) = sup{D(f(x), f(y))| x, y ∈ ℜ,

|x− y| ≤ δ}, where ℜ+ is the set of positive real
numbers, is called the modulus of continuity of f
on ℜ.
Some properties of the modulus of continuity are
presented below:

Theorem 2.2 [4] The following properties
holds:

(1) D(f(x), f(y)) ≤ ω [a,b](f, |x − y|) for any
x, y ∈ [a, b],

(2) ω [a,b] (f, δ) is increasing function of δ,

(3) ω [a,b] (f, 0) = 0,

(4) ω [a,b] (f, δ1 + δ2) ≤ ω [a,b] (f, δ1) +
ω [a,b] (f, δ2) for any δ1, δ2 ≥ 0, and
f : ℜ → ℜF ,

(5) ω [a,b] (f, nδ) ≤ nω [a,b] (f, δ) for any δ ≥
0, n ∈ N, and f : ℜ → ℜF ,

(6) ω [a,b] (f, λδ) ≤ [λ]ω [a,b] (f, δ) ≤ (λ +
1)ω [a,b] (f, δ) for any δ, λ ≥ 0, where [.] is
the ceiling of the number, any f : ℜ → ℜF .

(7) If [c, d] ⊆ [a, b] then ω [c,d] (f, δ) ≤
ω [a,b] (f, δ) .

In [5], the following theorem is proved.

Theorem 2.3 [4] Let f ∈ CF (ℜ) and the scaling
function φ(x) a real-valued bounded function with
suppφ(x) ⊆ [−a, a], 0 < a < +∞, φ(x) ≥ 0, such
that

+∞∑
j=−∞

φ(x− j) = 1

on ℜ. For k ∈ Z, x ∈ R, put

(Bkf)(x) :=
+∞∑

j=−∞

∗

f(
j

2k
)⊙ φ(2kx− j),

which is a fuzzy-wavelet-like operator. Then

D((Bkf)(x), f(x)) ≤ ωR(f,
a

2k
),

D∗((Bkf), f) ≤ ωR(f,
a

2k
),

for all x ∈ ℜ and k ∈ Z. If f ∈ CU
F (ℜ),

then as k → +∞ one gets ωℜ(f,
a
2k
) → 0 and

limk→+∞Bkf = f, pointwise and uniformly with
rates.
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3 The algorithm

Suppose that for all x ∈ [a, b] there exist j ∈ Z
such that 2mx − j ∈ [−a, a]. Now apply fuzzy
wavelet like operator in the computation of the
terms of the sequence of successive approxima-
tions

F̃0(t) = f̃(t),

F̃k(t) = f̃(t)⊕ λ⊙
∫ b

a
K(x, t)⊙ F̃k−1(x)dx,

k ≥ 1. Moreover we suppose that scaling function
is as follow:

φ(x) =


1 −1

2 ≤ x ≤ 1
2 ,

0 o.w.

It obtains the following iterative algorithm:
Step 0: There are introduced the a, b,m, ϵ and
functions f̃(t), λ,K(x, t).
Step 1:

Ỹ0,m(t) = f̃(t),

Step 2: (the first iterative Step):
For k = 1 compute

Ỹk,m(t) = f̃(t)⊕ λ⊙∫ b

a
K(x, t)⊙

∞∑
j=−∞

Ỹk−1,m(
j

2m
)⊙ φ(2mx− j)dx,

Step 3: (the generic iterative Step):
By induction for k ∈ N, k ≥ 2, we use Step 2.
Step 4:(a condition if ”do-while” type ):If

D∗(Ỹk,m, Ỹk−1,m) < ϵ,

and
D∗(Ỹk,m, f̃) < ϵ,

then we stop to this ”k” and computed at this last
iterative retain the values Ỹk,m(t, r) computed
|Ỹk,m(t, r)− f̃(t, r)| for r ∈ [0, 1] and t = 0.5.
Step 5: Print ”k”. STOP.

4 The convergence analysis

Definition 4.1 We say that the algorithm of
successive approximations applied to the integral
equation (1) is numerically stable with respect to
the choice of the first iteration iff there exist a
natural number k ≥ 1,m ∈ Z and two constants
K1,K2 > 0 such that

D∗(F̃ , Ỹk,m) ≤ K1ϵ
k
1 +K2ϵ

m
2 , forϵ1 > 0, ϵ2 > 0.

Theorem 4.1 [22, 26] Let K(x, t) be continu-
ous for a ≤ x, t ≤ b and f̃(t) a fuzzy con-
tinuous function. If λ < 1

M(b−a) , where M =

max|K(x, t)|, a ≤ x, t ≤ b, then the iterative pro-
cedure

F̃0(t) = f̃(t)

F̃k(t) = f̃(t)⊕ λ⊙
∫ b

a
K(x, t)⊙ F̃k−1(x)dx,

k ≥ 1 converges to the unique solution of above
fuzzy integral equation. Specifically,

sup
a≤t≤b

D(F̃ (t), F̃k(t))

≤ Lk

1− L
sup
a≤t≤b

D(F̃1(t), F̃0(t)),

where L = λM(b− a).

Theorem 4.2 Under the hypotheses of Theorem
4.1, we consider the following iterative procedure

Ỹ0,m(t) = f̃(t),

Ỹk,m(t) = f̃(t)⊕ λ⊙
∫ b

a
K(x, t)⊙

∞∑
j=−∞

Ỹm,k−1(
j

2m
)⊙ φ(2mx− j)dx, k ≥ 1,m ∈ Z

where Ỹk,m ∈ C(ℜ), k ≥ 0,m ∈ Z the scaling
function φ(x) a real valued bounded function with
suppφ(x) ⊆ [−a, a], 0 < a < +∞, φ(x) ≥ 0, x ∈
ℜ such that

j=+∞∑
j=−∞

φ(x− j) ≡ 1

on ℜ. Then

D(F̃ (t), Ỹk,m(t)) ≤ Lk

1− L
sup
a≤t≤b

D(F̃1(t), F̃0(t))

+D(F̃0(t), Ỹm,0(t)) +
L

1− L
ω(Ỹmax,

a

2m
)),

where

ω(Ỹmax,
a

2m
) = max{ω(Ỹm,0,

a

2m
),

ω(Ỹm,1,
a

2m
), ω(Ỹm,2,

a

2m
), · · · , ω(Ỹm,k,

a

2m
)},
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Table 1: Numerical results on the level sets for Example 6.1

k=2, m=4 r-level |Y k,m − f | |Y k,m − f | k=4, m=16 |Y k,m − f | |Y k,m − f |

0.0 0.000000000 0.460913000 0.000000000 0.150909000
0.1 0.023045700 0.437868000 0.007545470 0.143364000
0.2 0.046091300 0.414822000 0.015090900 0.135818000
0.3 0.069137000 0.391776000 0.022636400 0.128273000
0.4 0.092182600 0.368731000 0.030181900 0.120727000
0.5 0.115228000 0.345685000 0.037727300 0.113182000
0.6 0.138276000 0.322639000 0.045272800 0.105637000
0.7 0.161320000 0.299594000 0.052818300 0.098091100
0.8 0.184365000 0.276548000 0.060363700 0.090545600
0.9 0.207411000 0.253502000 0.067909200 0.083000100
1.0 0.230457000 0.230457000 0.075454700 0.075454700

Table 2: Numerical results on the level sets for Example 6.1

k=6,m=64 r-level |Y k,m − f | |Y k,m − f | k=8,m=256 |Y k,m − f | |Y k,m − f |

0.0 0.000000000 0.080381700 0.000000000 0.010791500
0.1 0.005855430 0.076362600 0.000539573 0.010251900
0.2 0.004822860 0.072343500 0.001079150 0.009712320
0.3 0.003682420 0.068324400 0.001618720 0.009172750
0.4 0.002422790 0.064305300 0.002158290 0.008633180
0.5 0.001031470 0.060286300 0.002697870 0.008093600
0.6 0.000505347 0.056267200 0.003237440 0.007554030
0.7 0.002202910 0.052248100 0.003777010 0.007014460
0.8 0.004078110 0.048229000 0.004316590 0.006852580
0.9 0.006149550 0.044209900 0.004856160 0.005935310
1.0 0.008437820 0.040190800 0.005395730 0.005395730

Table 3: Numerical results on the level sets for Example 6.2

k=2,m=4 r-level |Y k,m − f | |Y k,m − f | k=4,m=16 |Y k,m − f | |Y k,m − f |

0.0 0.000000000 0.080045200 0.000000000 0.024050900
0.1 0.004002260 0.076043000 0.001202550 0.022848400
0.2 0.008004520 0.072040700 0.002405090 0.021645900
0.3 0.012006800 0.068038400 0.003607640 0.020443300
0.4 0.016009000 0.064036200 0.004810190 0.019240800
0.5 0.020011300 0.060033900 0.006127400 0.018038200
0.6 0.024013600 0.056317000 0.007215280 0.016835700
0.7 0.028015800 0.052029400 0.008417830 0.015633100
0.8 0.032018100 0.048027100 0.009620380 0.014430600
0.9 0.036020300 0.044024900 0.010822900 0.013228000
1.0 0.040022600 0.040022600 0.012025500 0.012025500

and

D∗(F̃ , Ỹk,m) ≤

Lk

1− L
D∗(F̃1, F̃0) +

L

1− L
ω(Ỹmax,

a

2m
)).

If Ỹk,m ∈ CU
F (ℜ), then as m → +∞ we get

ω(Ỹmax,
a
2m ) → 0 , pointwise and uniformly with

rates.

Proof.

D(F̃k(t), Ỹk,m(t)) =

D(f̃(t)⊕ λ⊙
∫ b

a
K(x, t)⊙ F̃k−1(x)dx, f̃(t)

⊕λ⊙
∫ b

a
K(x, t)⊙

∞∑
j=−∞

Ỹm,k−1(
j

2m
)⊙φ(2mx−j)dx)
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Table 4: Numerical results on the level sets for Example 6.2

k=6,m=64 r-level |Y k,m − f | |Y k,m − f | k=8,m=256 |Y k,m − f | |Y k,m − f |

0.0 0.000000000 0.006444650 0.000000000 0.001648600
0.1 0.000322233 0.006122420 0.000082430 0.001566170
0.2 0.000644465 0.005800190 0.000164860 0.001483740
0.3 0.000966698 0.005477960 0.000247290 0.001401310
0.4 0.001288930 0.005155720 0.000329720 0.001318880
0.5 0.001611160 0.004833490 0.000412149 0.001236450
0.6 0.001933400 0.004511260 0.000494579 0.001154020
0.7 0.002255630 0.004189020 0.000577009 0.001071590
0.8 0.002577860 0.003866790 0.000659439 0.000989159
0.9 0.002900090 0.003544560 0.000741869 0.000906729
1.0 0.003222330 0.003222330 0.000824299 0.000824299

= D(λ⊙
∫ b

a
K(x, t)⊙F̃k−1(x)dx, λ⊙

∫ b

a
K(x, t)⊙

∞∑
j=−∞

Ỹm,k−1(
j

2m
)⊙ φ(2mx− j)dx) = |λ|

D(

∫ b

a
K(x, t)⊙ F̃k−1(x)dx,

∫ b

a
K(x, t)⊙

∞∑
j=−∞

Ỹm,k−1(
j

2m
)⊙ φ(2mx− j)dx)

≤ |λ|MD(

∫ b

a

∞∑
j=−∞

F̃k−1(x)⊙ φ(2mx− j)dx,

∫ b

a

∞∑
j=−∞

Ỹm,k−1(x)⊙ φ(2mx− j)dx)+

|λ|MD(

∫ b

a

∞∑
j=−∞

Ỹm,k−1(x)⊙ φ(2mx− j)dx,

∫ b

a

∞∑
j=−∞

Ỹm,k−1(
j

2m
)⊙ φ(2mx− j)dx)

≤ |λ|M
∫ b

a
D(F̃k−1(x), Ỹm,k−1(x))dx⊙

∞∑
j=−∞

φ(2mx− j) + |λ|M

∫ b

a
D(

∞∑
j=−∞

Ỹm,k−1(x)⊙ φ(2mx− j),

∞∑
j=−∞

Ỹm,k−1(
j

2m
)⊙ φ(2mx− j))dx

≤ |λ|M(b− a)D∗(F̃k−1, Ỹm,k−1)+

|λ|M(b− a)ω(Ỹm,k−1,
a

2m
) (∗ ∗ ∗)

Since

D(
∞∑

j=−∞
Ỹm,k−1(x)⊙ φ(2mx− j),

∞∑
j=−∞

Ỹm,k−1(
j

2m
)⊙ φ(2mx− j))

≤
∞∑

j=−∞
φ(2mx− j)D(Ỹm,k−1(x), Ỹm,k−1(

j

2m
))

≤
∑

(2mx−j)∈[−a,a]

φ(2mx− j)ω(Ỹm,k−1, |x− j

2m
|)

≤ ω(Ỹm,k−1,
a

2m
),

we conclude that

(∗ ∗ ∗) ≤ LD∗(F̃k−1, Ỹm,k−1) + Lω(Ỹm,k−1,
a

2m
)

⇒ D∗(F̃k, Ỹm,k) ≤ LD∗(F̃k−1, Ỹm,k−1)

+Lω(Ỹm,k−1,
a

2m
)

Then

D∗(F̃k−1, Ỹm,k−1) ≤ LD∗(F̃k−2, Ỹm,k−2)

+Lω(Ỹm,k−2,
a

2m
).

Hence, we have

D∗(F̃k, Ỹm,k) ≤ L2D∗(F̃k−2, Ỹm,k−2)

+L2ω(Ỹm,k−2,
a

2m
) + Lω(Ỹm,k−1,

a

2m
)

...
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≤ LkD∗(F̃0, Ỹm,0) + Lω(Ỹm,k−1,
a

2m
))+

L2ω(Ỹm,k−2,
a

2m
)) + · · ·+ Lkω(Ỹm,0,

a

2m
)

So,

D∗(F̃k, Ỹm,k) ≤ LkD∗(F̃0, Ỹm,0) +

Lω(Ỹm,k−1,
a

2m
) + L2ω(Ỹm,k−2,

a

2m
) + · · ·+

Lkω(Ỹm,0,
a

2m
)

D∗(F̃k, Ỹm,k) ≤ LkD∗(F̃0, Ỹm,0) +

(L+ L2 + L3 + · · ·+ Lk)ω(Ỹmax,
a

2m
)

≤ LkD∗(F̃0, Ỹm,0) +
L(1− Lk)

1− L
ω(Ỹmax,

a

2m
),

Since

0 < L < 1 ⇒ 0 < Lk < 1 ⇒ D∗(F̃k, Ỹm,k)

≤ D∗(F̃0, Ỹm,0) +
L

1− L
ω(Ỹmax,

a

2m
).

Using properties of metrics space, we have:

D(F̃ (t), Ỹk,m(t)) ≤

D(F̃ (t), F̃k(t)) +D(F̃k(t), Ỹk,m(t))

Then

D∗(F̃ , Ỹk,m) ≤ D∗(F̃ , F̃k) +D∗(F̃k, Ỹk,m).

Hence

D∗(F̃ , Ỹk,m) ≤ Lk

1− L
D∗(F̃1, F̃0) +

D∗(F̃0, Ỹm,0) +
L

1− L
ω(Ỹmax,

a

2m
))

=
Lk

1− L
D∗(F̃1, F̃0) +

L

1− L
ω(Ỹmax,

a

2m
)).

Remark 4.1 Since 0 < L < 1, it follows that
limk→∞Lk = 0. In addition, from Theorem 15
we have when m → +∞ then ω(Ỹmax,

a
2m ) → o

So,

lim
k→∞,m→∞

D∗(F̃ , Ỹk,m) = 0.

that shows the convergence of the method.

5 The numerical stability anal-
ysis

In order to investigate the numerical stability of
the computed values with respect to small pertur-
bations in the firs iteration we consider another
first iteration term G0 ∈ CF (ℜ) such that there
exists ϵ > 0 for which D∗(F0, G0) < ϵ, for all
t ∈ [a, b]. The new sequence of successive ap-
proximation is:

G̃k,m(t) = f̃(t)⊕ λ⊙
∫ b

a
K(x, t)⊙

∞∑
j=−∞

G̃m,k−1(
j

2m
)⊙ φ(2mx− j)dx,

k ≥ 1,m ∈ Z

we redefine the new numerical iterative algorithm
as follows:

Ỹ 0,m(t) = G̃0,m(t)

Ỹ k,m(t) = f̃(t)⊕λ⊙
∫ b

a
K(x, t)

⊙
∞∑

j=−∞
Ỹ m,k−1(

j

2m
)⊙φ(2mx−j)dx,

k ≥ 1,m ∈ Z

Definition 5.1 We say that the method of suc-
cessive approximation applied for solving the
fuzzy linear FFIF-2 is numerically stable with re-
spect to the choice of the first iteration term iff

for each ϵ > 0, such that D∗(Ỹk,m, Ỹ k,m) < ϵ.

In order to obtain the numerical stability using

given iterative procedure Ỹk,m(t), Ỹ k,m(t) for k ≥
1,m ∈ Z and t ∈ [a, b] we have

D(Ỹk,m(t), Ỹ k,m(t)) ≤

D(f̃(t)⊕ λ⊙
∫ b

a
K(x, t)⊙

∞∑
j=−∞

Ỹm,k−1(
j

2m
)

⊙φ(2mx− j)dx, , f̃(t)⊕ λ⊙
∫ b

a
K(x, t)⊙

∞∑
j=−∞

Ỹ m,k−1(
j

2m
)⊙ φ(2mx− j)dx)
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≤ D(f̃(t), f̃(t)) +D(λ⊙
∫ b

a
K(x, t)

⊙
∞∑

j=−∞
Ỹm,k−1(

j

2m
)⊙ φ(2mx− j)dx,

λ⊙
∫ b

a
K(x, t)⊙

∞∑
j=−∞

Ỹ m,k−1(
j

2m
)⊙φ(2mx−j)dx)

≤ |λ|M
∫ b

a
D(Ỹm,k−1(

j

2m
), Ỹ m,k−1(

j

2m
))dx

≤ |λ|M(b− a)D(Ỹm,k−1(
j

2m
), Ỹ m,k−1(

j

2m
))

Then

D(Ỹm,k−1(t), Ỹ m,k−1(t)) ≤

(|λ|M(b− a))2D(Ỹm,k−2(
j

2m
), Ỹ m,k−2(

j

2m
))

...

D(Ỹk,m(t), Ỹ k,m(t)) ≤

(|λ|M(b− a))kD(Ỹm,0(
j

2m
), Ỹ m,0(

j

2m
))

D∗(Ỹk,m, Ỹ k,m) ≤ (|λ|M(b− a))kD∗(Ỹm,0, Ỹ m,0)

regarding to

D∗(Ỹm,0, Ỹ m,0) = D∗(F̃0, G̃0,m) < ϵ

we deduce that

D∗(Ỹk,m, Ỹ k,m) ≤ ϵ(|λ|M(b− a))k

and since (|λ|M(b − a)) < 1, we conclude that
the stability of the numerical method is proved.
Indeed we have

limk→∞D∗(Ỹk,m, Ỹ k,m) = 0.

6 Numerical Examples

In this section, we apply the proposed method in
Section 3 for solving the fuzzy linear FFIE-2 in
some examples . We compare numerical results
with exact solutions. Also, we apply the following
scaling function

φ(x) =


1 −1

2 ≤ x ≤ 1
2 ,

0 o.w.

Example 6.1 Consider the following fuzzy Fred-
holm integral equation

F̃ (t) = f̃(t)⊕(FR)

∫ 1

0
k(x, t)⊙F̃ (x)dx,

f̃(t) = (f(t, r), f(t, r) =

((t+ 1)r − 7r(1 + t2)/12,

(t+ 1)(2− r)− 7(2− r)(1 + t2)/12),

t, r ∈ [0, 1],

k(x, t) = t2/(1 + x2), t, x ∈ [0, 1]

by exact solution F̃ (t) = (F (t, r), F (t, r)) = ((t+
1)r, (t+ 1)(2− r)), t, r ∈ [0, 1]. By using proposed
algorithm in Section 3, we present approximate
solution to this example in t = 0.5 for different
values of k ,m in Tables 1, 2.

Example 6.2 Consider the following fuzzy Fred-
holm integral equation

F̃ (t) = f̃(t)⊕(FR)

∫ 1

0
k(x, t)⊙F̃ (x)dx,

f̃(t) = (f−(t, r), f
−(t, r) =

(tr − 5/52r − t2r/26,

2t−rt−t2/13+t2r/26−10/52+5r/42),

t, r ∈ [0, 1],

k(x, t) = (t2 + x2 + 2)/13, t, x ∈ [0, 1]

by exact solution

F̃ (t) = (F−(t, r), F
−(t, r)) = (tr, t(2− r)),

t, r ∈ [0, 1].

By using proposed algorithm in Section 3, we
present approximate solution to this example in
t = 0.5 for different values of k ,m in Tables 3, 4.

7 Conclusion

In this paper, we proposed a successive approxi-
mation method to solve linear FFIE-2 with arbi-
trary kernels based on fuzzy wavelet like operator.
Also, we have developed an iterative algorithm
based on fuzzy wavelet like operator. In Theorem
4.1, by presenting the convergence conditions, we
obtained an error estimate in terms of uniform
and partial modulus of continuity with respect to
the choice of the first iteration. Also, the numeri-
cal stability with respect to the choice of the first
iteration is demonstrated. Finally, some numeri-
cal examples are give to show the validity of the
presented algorithm.
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