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Abstract
In this paper, the propagation of electro-magneto-thermoelastic disturbances produced
by thermal shock in a perfectly-conducting half-space is studied based on Green and
Naghdi (G-N) theory. Normal mode analysis is used to obtain the exact expressions of
temperature, displacement and stresses. Comparisons are made with the results predicted
by G-N theory of type II and type III in the presence and absence of the magnetic field.
Keywords : Generalized thermoelasticity; Green-Naghdi theory; Types II; Type III; Normal mode
analysis; Magnetic field.
————————————————————————————————–

1 Introduction

Much attention has been devoted for generalizing the equations of coupled thermo-
elasticity due to Biot [1], mainly because the heat equation of this theory is parabolic, and
hence automatically predicts an infinite speed of propagation for heat waves. Clearly, this
contradicts physical observations that the maximum wave speed can not exceed that of
light in vacuum. Two generalizations about the coupled theory were introduced. The first
is due to Lord and Shulman [11], who introduced the theory of generalized thermoelasticity
with one relaxation time that is based on a new law of heat conduction to replace the
classical Fourier’s law.
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This new law contains the heat flux vector as well as its time derivative. It also contains
a new constant acting as a relaxation time. The heat equation of this theory is of the
wave type, ensuring finite speeds of propagation for heat wave. The remaining governing
equations for this theory, namely, the equation of motion and constitutive relations remain
the same as those for the coupled and uncoupled theories. The second generalization to the
coupled theory of thermoelasticity is what is known as the theory of thermoelasticity with
two relaxation times or the theory of temperature-rate-dependent thermoelasticity. [12], in
a review of the thermodynamics of thermoelastic solids, proposed an entropy production
inequality with the help of which he considered restrictions on a class of constitutive
equations.

A generalization about this inequality was proposed by Green and Laws [3]. Green and
Lindsay [4] obtained another version of the constitutive equations. These equations were
also obtained independently and more explicitly by Suhubi [22]. This theory contains two
constants that act as relaxation times and modify all the equations of the coupled theory,
not only the heat equation. The Classical Fourier’s law of heat conduction is not violated
if the medium under consideration has a center of symmetry.

Investigation of the interaction between magnetic field and stress and strain in a ther-
moelastic solid is very important due to its many applications in the field of geophysics,
plasma physics and related topics, especially in the nuclear field, where the extremely
high temperature and temperature gradients, as well as the magnetic fields originating
inside nuclear reactors, influence their design and operations.The theory of magneto-
thermoelasticity is concerned with the influence of the magnetic field on the elastic and
thermoelastic deformations of a solid body. This theory has aroused much interest in
recent years, because of its application in various branches of science and technology.
Othman et al. [13] formulated the magneto-thermoelastic coupled two-dimensional prob-
lem of thermally and perfect conducting half-space solid in the presence of moving internal
heat source. In the context of the Green and Lindsay generalized thermoelasticity with
two relaxation times, the problem of the propagation of electro-magneto-thermoelastic
disturbances produced by a thermal shock in a perfectly conducting elastic half-space was
discussed by Othman [14]. The development of the interaction of the electro-magnetic
field, the thermal field and the elastic field are available in many works [15]-[21]. In the
1990’s Green and Naghdi [5]-[10], proposed three new thermoelastic theories based on
entropy balance rather than the usual entropy inequality. The constitutive assumptions
for the heat flux vector are different in each theory. Thus, they obtained three theories
which are called thermoelasticity of type I, of type II and of type III. When the type I
theory is linearized we obtain the classical system of thermoelasticity. The type II the-
ory (is limiting case of type III) does not admit energy dissipation. In the recent papers
of Chandrasekharaiah and Srinath [2], Othman and Song [17], the theory proposed by
Green and Naghdi [6], [7], is considered as an alternative way for the formulation of the
propagation of heat. Othman et al. [18], studied the effect of rotation on the generalized
magneto-thermo-viscoelastic plane waves without energy dissipation. This theory is de-
veloped in a relative way to produce a fully consistent theory, which is able to incorporate
thermal pulse transmission in a very logical manner.

In the present paper, we formulate the normal mode analysis of a two-dimensional
problem of electro-magneto-thermoelasicity under Green-Naghdi theory in a perfectly con-
ducting medium. The exact expressions for temperature distribution, thermal stress and
displacement components are obtained, and represented graphically in the presence and



M.A. Othman, S.Y. Atw / IJIM Vol. 3, No. 3 (2011) 213-226 215

absence of the magnetic field for the different types of Green-Naghdi theory.

2 Formulation of the problem

We consider the problem of a thermoelastic half-space (x ≥ 0). A magnetic field with
constant intensity H = (0, 0,H0) , acting parallel to the boundary plane (taken as the
direction of the z-axis). The surface of the half-space is subjected to a thermal shock
which is a function of y and t . Thus, all the quantities considered, will be functions
of the time variable t, and of the coordinates x and y. We begin our consideration with
linearized equations of slowly moving medium

J = curl h − ε0Ė, (2.1)

curl E = − µ0ḣ, (2.2)

E = − µ0 ( u̇ × H ), (2.3)

∇.h = 0. (2.4)

These equations are supplemented by the displacement equations of the theory of elasticity,
taking into consideration the Lorentz force

ρ üi = σij,j + µ0(J × H )i, (2.5)

σi j = 2 µ ei j + λ e δi j − γ (T − T0 ) δi j, (2.6)

Where µ0 is magnetic permeability, ε0 is electric permeability and u̇ is the particle velocity
of the medium, and the small effect of temperature gradient on J is also ignored, ρ is
the density, σij are the components of stress tensor, and λ, µ are Lam’s constants, e is the
dilatation, T is the temperature above reference temperature T0 , γ = ( 3λ+ 2µ )αT, in
which αT is the coefficient of linear thermal expansion and δij is the Kronecker delta. The
dynamic displacement vector is actually measured from a steady-state deformed position
and the deformation is supposed to be small. Due to the application of the initial magnetic
field H, there results an induced magnetic field h = (0, 0,h)and an induced electric field
E, as well as, the simplified equations of electro-dynamics of a slowly moving medium
for a homogeneous, thermal and electrically conducting elastic solid. Strain-displacement
constitutive relations are:

exy=
1
2

(
∂ u
∂ y

+
∂ v
∂ x

) , exx=
∂ u
∂ x

, eyy=
∂ v
∂ y

, exz= eyx= 0. (2.7)

and e, the dilatation, is given by

e =
∂ u
∂ x

+
∂ v
∂ y

. (2.8)

In the above equations a dot denotes differentiation with respect to time, and a comma
followed by a subscript denotes partial differentiation with respect to the corresponding
coordinates. The summation notation is used. We shall consider only the simplest case of
the two-dimensional problem. We assume that all cases producing the wave propagation
are independent of the variable z, and that waves are propagated only in the xy-plane.
Thus, all quantities appearing in Eqs (2.1)-(2.8) are independent of the variable z. Thus,
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the displacement vector has components(u(x, y, t), v(x, y, t), 0). Substituting for σij into
Eq. (2.5) and using Eq. (2.8), one obtains

ρ üi = (λ+ µ ) uj,j i + µui,jj − γ T,i + µ0(J × H)i, (2.9)

Expressing the components of the vector J = ( J1, J2, J3 ) in terms of displacement, where,
J1 = H0(− ∂ e

∂ y + µ0ε0v̈), J3 = 0, J2 = H0( ∂ e
∂ x − µ0ε0ü), by eliminating the quantities h and

E from Eq. (2.1) and introducing them into the displacement Eq. (2.9), we arrive at

ρ ü = (λ+ µ )
∂ e
∂ x

+ µ∇2u − γ
∂ T
∂ x

− µ0H0
∂ h
∂ x

− µ2
0H

2
0 ε0ü, (2.10)

ρ v̈ = (λ+ µ )
∂ e
∂ y

+ µ∇2v − γ
∂ T
∂ y

− µ0H0
∂ h
∂ y

− µ2
0H

2
0 ε0v̈, (2.11)

we introduce the displacement potentials φ, ψ and by the relations

u = φ,x + ψ,y , v = φ,y − ψ,x, (2.12)

from Eqs. (2.1)-(2.4) and (2.8), we can obtain

h = −H0∇2φ. (2.13)

The heat conduction equation in the absence of heat sources under G-N III theory is

K∗ T,i i + K Ṫ,i i= ρCET̈ + γ Toüi,i. (2.14)

Where CE is the specific heat at constant strain, K∗and K are respectively the thermal
conductivity and material constant characteristic of the theory. When K → 0, Eq. (2.14)
reduces to the heat conduction equation based on G-N theory of type II. Eq. (2.14)
together with Eq. (2.5) and (2.6) constitutes the complete system of generalized magneto-
thermo-elasticity based on G-N theory of type III. For convenience, the following non-
dimensional variables are used:

x̄i = xi/c1ω1, ūi = ui/c1ω1, φ̄ = φ
/

(c1ω1)
2, ψ̄ = ψ

/
(c1ω1)

2,

t̄ = t/ω1, σ̄i j = σi j/µ, h̄ = h/H0, T̄ = γ T
/
ρ c2

1.

(2.15)

where c2
1 = (λ+ 2µ)/ρ , ω1 = K

/
ρCEc2

1.
Applying Eq. (2.15) on Eqs. (2.6), (2.10), (2.11), (2.13) and (2.14) we get (dropping

the bar for convenience).

σxx = β2∇2φ− 2φ,yy + 2ψ,xy − β2θ, (2.16)

σyy = β2∇2φ− 2φ,xx − 2ψ,xy − β2θ, (2.17)

σxy = 2φ,xy + ψ,yy − ψ,xx, (2.18)

β2
0 u,xx + (β2

0 − 1 ) v,xy + u,yy − β2θ,x = α0 u,t t, (2.19)

β2
0 v,yy + (β2

0 − 1 ) u,xy + v,xx − β2θ,y = α0 v,t t, (2.20)

ε2θ,ii + ε3θ̇,ii − θ̈ = ε1∇2ϕ̈, (2.21)

h = −∇2φ. (2.22)
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ε1 is usually the thermoelastic coupling factor, ε2 is the characteristic parameter of the
G-N theory (of type II) and ε3 is the characteristic parameter of the G-N theory (of type
III), where

a2
0 = µ0H2

0

/
ρ, c2

0 = c2
1 + a2

0, c2
2 = µ

ρ ,

β2 = c2
1

/
c2
2, β2

0 = c2
0

/
c2
2, c2 = 1/µ0ε0,

θ = T + T0, α = 1 + a2
0

/
c2, α0 = αβ2,

ε1 = γ2T0

/
ρ2c2

1CE, ε2 = K∗/ρ c2
1CE, ε3 = K

/
ρ c2

1CEω1

Introducing the potential functions defined by Eq. (2.12) in Eqs. (2.19) and (2.20), we
obtain

(∇2 − α1
∂2

∂ t2
) φ− β2

1θ = 0, (2.23)

(∇2 − α0
∂2

∂ t2
) ψ = 0, (2.24)

where α1 = α
/
β2

0 , β
2
1 = β2

/
β2

0 .

3 Normal Mode Analysis

The solution of the considered physical variable can be decomposed in terms of normal
modes as follows:[

θ,φ, ψ, σij

]
(x, y, t) =

[
θ∗, φ∗, ψ∗, σ∗ij

]
(x) exp(ω t + i ay ), (3.25)

where ω is the (complex) time constant, and a is the wave number in the y-direction. By
using Eq. (3.25), we can obtain the following equations from Eqs. (2.23), (2.24) and (2.21)
respectively. [

D2 − a2 − α1 ω
2
]
ϕ∗(x) − β2

1 θ
∗(x) = 0 , (3.26)[

D2 − a2 − α0 ω
2
]
ψ∗(x) = 0 , (3.27)[

ε2(D
2 − a2) + ε3ω (D2 − a2) − ω2

]
θ∗(x) = ε1ω

2 ( D2 − a2)ϕ∗(x). (3.28)

Here, D = d/dx. On decomposing Eqs. (3.26) and (3.28), we obtain[
D4 − AD2 + B

]
[ϕ∗(x), θ∗(x)] = 0 . (3.29)

Where A and B are defined in Appendex I.
Equation (3.29) can be factorized as

( D2 − k2
1 ) ( D2 − k2

2 ) [ϕ∗(x), θ∗(x)] = 0. (3.30)

where
k2

1,2=
1
2
(A ±

√
A2 − 4B ) , (3.31)

are the roots of the following characteristic equation

k4 − Ak2 + B = 0. (3.32)
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The solution of (3.30) which are bounded for x > 0, are given by:

ϕ∗(x) =
2∑

j=1

Rje−kjx, (3.33)

θ∗(x) =
2∑

j=1

R′
je
−kjx, (3.34)

where Rj and R′
j are some parameters depending on a and ω. Substituting Eqs. (3.33)

and (3.34) into Eq. (3.26), we obtain the following relation

R′
j = [(k2

j − a2 − α1ω
2)

/
β2

1 ] Rj, j = 1, 2, (3.35)

then, Eq. (3.34) becomes

θ∗(x) =
2∑

j =1

[(k2
j − a2 − α1ω

2)
/
β2

1 ] Rje−kjx, (3.36)

The solution of Eq. (3.27), bounded as x → ∞,is given by

ψ∗(x) = C e− mx, (3.37)

where C(a, ω) is some parameter depending on a and ω, and

m =
√

a2 + α0 ω2. (3.38)

Normal mode analysis of the stresses yields the following:

σ∗xx(x) =
2∑

j =1

{β2( k2
j − a2) + 2a2 − [β2( k2

j − a2 − α1ω
2)

/
β2

1 ] }Rj e− kjx − 2 i a mC e− mx,

(3.39)

σ∗yy(x) =
2∑

j =1

{ β2(k2
j − a2) − 2 k2

j − [β2( k2
j − a2 − α1ω

2)
/
β2

1 ] }Rje−kjx + 2 i a m Ce− mx,

(3.40)

σ∗xy(x) = −
2∑

j=1

2 i a kjRj e− kjx − (a2 + m2) Ce− mx. (3.41)

In order to determine the parameters Rj( j = 1, 2 ) and C, we need to consider the bound-
ary conditions at x = 0 as follows: Thermal boundary condition: The surface of the
half-space is subjected to a thermal shock:

θ (0, y, t) = n (y, t). (3.42)

Mechanical boundary condition: The surface of the half-space is traction free

σxx (0, y, t) = σxy (0, y, t) = 0. (3.43)
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Using Eq. (3.25) and substituting the expressions of considered variables into the above
boundary conditions, we can obtain the following equations satisfied by the parameters :

2∑
j =1

[(k2
j − a2 − α1ω

2)
/
β2

1 ] Rj = n∗, (3.44)

2∑
j =1

{β2( k2
j −a2)+2a2 − [β2( k2

j − a2 − α1ω
2)

/
β2

1 ] }Rj e− kjx −2 i a mC e−mx = 0, (3.45)

2∑
j = 1

2 i a kjRj + (a2 + m2)C = 0. (3.46)

By solving Eqs. (3.44)-(3.46) we get the parameters Rj( j = 1, 2 ) and C as defined in
Appendix II.

4 Numerical results

Aiming to illustrate the problem, we will present some numerical results. The material
chosen for the purpose of numerical computation is copper, the physical data for which in
SI units is given by:

T0 = 293 K, ρ = 8954 kg/m3, CE = 383.1 J/(kg.K), αT = 1.78 × 10−5K−1,

ε0 = 0.3, K = 386 W/(m.K), λ = 7.76 × 1011kg/(m.s2), µ = 3.86 × 1011kg/(m.s2),

µ0 = 1.7

Since we have ω = ω0 + i ζ, the real parts of the functions θ (x, y, t),u (x, y, t), σxx (x, y, t)
and σyy (x, y, t) are calculated by numerical techniques under different conditions on the
plane y = 0 at t = 0.1, where

L = 2, ω0 = 2, ζ = 1, n∗ = 1, a = 1.2

The results are shown in Figs. 1(a, b, c, d)-4(a, b,c, d). Figures 1(a, b, c, d) depict
the influence of the magnetic field on the temperature θ , the horizontal component of
displacement u and the stress components σxx,σyy based on G-N theory of type II. Here,
ε1 = 0.0168, ε2 = 0.4,ε3 = 0 , when α = 1,(i.e. H0 = 0) has been shown by solid line,
α = 1.4,(i.e. H0 = 60) as shown by dashed and dot line, α = 1.8, (i.e. H0 = 90) as
shown by dot line. We see from Fig. 1(a) that the magnetic field has increasing effect
on the temperature for x > 1.6 and converges to zero with increasing the distance x for
x > 1.6. Fig. 1(b) shows that the magnetic field has decreasing effect on the horizontal
component of displecement for x < 1.3 and converges to zero with increasing the distance
x for x > 1.3. Fig. 1(c) depicts that the magnetic field has decreasing effect on the
stress component σxx for x > 1.7 and converges to zero with increasing the distance x for
x > 1.7. It is evident from Fig.1(d) that the magnetic field has decreasing effect on the
stress component σyy for x < 1.6 and converges to zero with increasing the distance x for
x > 1.6. Clearly, the magnetic field plays an important role in the field quantities.
Figures 2(a, b, c, d) show the influence of the magnetic field on the temperature θ , the
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horizontal component of displacement u and the stress components σxx, σyy based on
G-N theory of type III. Here, ε2 = 0.4,ε3 = 0.6 , when α = 1, has been shown by solid line,
dashed and dot line when α = 1.4 and dot line when α = 1.8. We see from Fig. 2(a) that
the magnetic field has increasing effect on the temperature for x < 2 and converges to zero
with increasing the distance x for x > 2. Fig. 2(b)-2(d) show that the magnetic field has
decreasing effect on the horizontal component of displecement and the stress components
σxx , σyy for 0< x < 2 and converges to zero with increasing the distance x for x > 2.
The variations of the temperature θ , the horizontal component of displacement u and the
stress components σxx, σyywith x in the presence of magnetic field for different values of
ε2are shown in Figs. 3(a, b, c, d). Here α = 1.4,ε1 = 0.0168, ε2 = 0.2, 0.4 , 0.6 and
ε3 = 0. Fig. 3(a) shows that the temperature decreases with increase ε2 for 0< x< 0.8
but for 0.8< x < 1.7 the temperature increases with increase ε2 and converges to zero with
increasing the distance x for x > 1.7. Fig. 3(b) depicts that the horizontal component of
displacement u increases with increasing ε2 for 0< x < 0.4 but decreases for 0.4 < x < 1.5
and converges to zero with increasing the distance x for x > 1.5. Fig. 3(c) shows that
the stress component σxx, increases with increasing ε2 for 0< x < 0.9 and decreases for
0.9 < x < 1.9 and converges to zero with increasing the distance x for x > 1.9. Fig. 3(d)
shows that the stress component σyy, increases with increasing ε2 for 0< x < 0.8 and
decreasing effect for 0.8 < x < 1.7 and converges to zero with increasing the distance x
for x > 1.7.

Fig. 1. (a) Temperature distribution for y = 0, ε2 = 0.4 and ε3 = 0

Fig. 1. (b) Displacement distribution for y = 0, ε2 = 0.4 and ε3 = 0
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Fig. 1. (c) Stress distribution σxx for y = 0, ε2 = 0.4 and ε3 = 0

Fig. 1. (d) Stress distribution σyy for y = 0, ε2 = 0.4 and ε3 = 0

Figs. 4(a, b, c, d) give the variations of the temperature, the horizontal component
of displacement and the stress components with x for different values of frequencyω0.
Here, we have α = 1.8,ε1 = 0.0168,ε2 = 0.4,ε3 = 0(G-N II theory) and ε1 = 0.0168,
ε2 = 0.4,ε3 = 0 .6 (G-N III theory). We observed from Fig. 4(a) that the frequency has
increasing effect on the temperature for type II and type III when 0< x < 1.4 and in
type II is greater than that in type III for 0< x < 1. However, it converges to zero with
increasing the distance x. Fig. 4(b) shows that the horizontal component of displacement
decreases with increasing ω0 for 0< x < 1.6, and converges to zero with increasing the
distance x for x > 1.6. Figs. 4(c), 4(d) show that the stress components σxx,σyy decrease
as ω0 increases and type III is greater than type II for 0< x < 1.1, while type II is greater
than type III for x > 1.1, then converges to zero with increasing the distance x.

Fig. 2. (a) Temperature distribution θ for y = 0, ε2 = 0.4 and ε3 = 0.6
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Fig. 2. (b) Displacement distribution u for y = 0 ε2 = 0.4 and ε3 = 0.6

Fig. 2. (c) Stress distribution σxx for y = 0, ε2 = 0.4 and ε3 = 0.6

Fig. 2. (d) Stress distribution σyy for y = 0, ε2 = 0.4 and ε3 = 0.6

Fig. 3. (a) Temperature distribution θ for y = 0, α = 1.4 and ε3 = 0
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Fig. 3. (b) Displacement distribution u for y = 0, α = 1.4 and ε3 = 0

Fig. 3. (c) Stress distribution σxx for y = 0, α = 1.4 and ε3 = 0

Fig. 3. (d) Stress distribution σyy for y = 0, α = 1.4 and ε3 = 0

Fig. 4. (a) Temperature distribution θ for y = 0, α = 1.8, ε2 = 0.4 and ε3 = 0
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Fig. 4. (b) Displacement distribution u for y = 0, α = 1.8, ε2 = 0.4, ε3 = 0 and ε2 = 0.4, ε3 = 0.6

Fig. 4. (c) Stress distribution σxx for y = 0, α = 1.8, ε2 = 0.4, ε3 = 0 and ε2 = 0.4, ε3 = 0.6

Fig. 4. (d) Stress distribution σyy for y = 0, α = 1.8, ε2 = 0.4, ε3 = 0 and ε2 = 0.4, ε3 = 0.6

5 Concluding remarks

In this paper normal mode method used to study the problem of the effect of mag-
netic field on a two-dimensional problem of a generalized thermoelastic half-space based
on Green-Naghdi theory (of both type II and III). The following conclusions have been
obtained according to the analysis above:

1. The electro-magneto-thermoelasticity that coupled two-dimensional problem of a
perfect

conductivity half-space solid can be described by a fourth-order characteristic
equation.

2. The magnetic field plays a dual role in the distribution of the field quantities.
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3. The magnetic field has great influence on field quantities and this influence produces
the same result with respect to G-N theory (of both type II and III).

4. ε2 (of type II) plays an important role in the distribution of the field quantities.

5. The effect of frequency is prodigious on the distribution of the field quantities based
on

G-N theory (of both type II and III).
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Appendix I

a1 = 2 a2 + α1ω
2,a2 = a4 + α1a2ω2,a3 = ε2 + ω ε3,a4 = a1 a3 + ω2 + ε1β

2
1ω

2,

a5 = a2 a3 + ω2(a2 + α1ω
2) + a2ε1β

2
1ω

2,A = a4/a3,B = a5/a3.

Appendix II

R1 = n∗ [M2(a
2 + m2) + 2 i a m L2]

/
[ (a2 + m2)(N1M2 − N2M1) − 2 i am (N2L1 − N1L2)],

R2 = −n∗ [M1(a
2 + m2) + 2 i a mL1]

/
[ (a2 + m2)(N1M2 − N2M1) − 2 i a m (N2L1 − N1L2)],

C = n∗ [M1L2 − M2L1 ]
/

[ (a2 + m2)(N1M2 − N2M1) − 2 i am (N2L1 − N1L2)],

Mj = β2( k2
j − a2) + 2a2 − [β2( k2

j − a2 − α1ω
2)

/
β2

1 ], j = 1, 2,

Lj = 2 i a kj,Nj = (k2
j − a2 − α1ω

2)
/
β2

1 , j = 1, 2.


