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Abstract

In this paper, the numerical technique based on hybrid Bernoulli and Block-Pulse functions has
been developed to approximate the solution of system of linear Volterra integral equations. System
of Volterra integral equations arose in many physical problems such as elastodynamic, quasi-static
visco-elasticity and magneto-electro-elastic dynamic problems. These functions are formed by the
hybridization of Bernoulli polynomials and Block-Pulse functions which are orthonormal and have
compact support on [0, 1]. By these orthonormal bases we drove new operational matrix which was a
sparse matrix. By use of this new operational matrix we reduces the system of integral equations to
a system of linear algebraic equations that can be solved easily by any usual numerical method. The
numerical results obtained by the presented method have been compared with some existed methods
and they have been in good agreement with the analytical solutions and other methods that prove
the profit and efficiency of the proposed method.

Keywords : System of Volterra integral equations; Bernoulli polynomials; Hybrid functions; Opera-
tional matrix.
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1 Introduction

S
ystem of linear Volterra integral equations
arises in many physical applications, e.g.,

linear quasi-static visco-elasticity problem [2],
magneto-electro-elastic dynamic problems [3] and
the elastodynamic problems of piezoelectric [4].

We consider the following system of linear
Volterra integral equations

G(x)U(x) +

∫ x

0
K(x, s)U(s)ds = F (x),

i = 1, 2, ..., q, (1.1)
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that

U(x) = [u1(x), ..., uq(x)]
T ,

F (x) = [f1(x), ..., fq(x)]
T , (1.2)

and

G(x) =

 g11(x) · · · g1q(x)
...

. . .
...

gq1(x) · · · gqq(x)

 ,

K(x, s) =

 k11(x, s) · · · g1q(x)
...

. . .
...

gq1(x) · · · gqq(x)

 ,

where the functions gij(t), fi(x) ∈ L2[0, 1) and
the kernels kij(x, s) ∈ L2([0, 1)× [0, 1)) for i, j =
1, 2, ..., q are known and ui(x) for i = 1, 2, ...q
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are solutions to be determined. The theory on
existence and uniqueness of a continuous solu-
tion for such equations was already established
by Volterra and Brunner [2, 11].

Some existed numerical methods for approx-
imating the solution of Eq.(1) are as follows.
Maleknejad, Rabbani and Aghazadeh in [9] used
expansion method to solve Volterra integral equa-
tions system of the second kind, in [8] Mirzaee
obtained a numerical solution of these equations
by using rationalized Haar functions, Saeed and
Ahmed in [10] produced a method for numerical
solution of the System of linear Volterra Integral
equations of the second kind using Monte-Carlo
method, in [1] Biazar and Pourabd solved these
system of integral equations numerically based on
Adomian decomposition method, Hashemizadeh
and Basirat in [5] solved these equations by hy-
brid Block-Pulse and Legendre polynomials and
in [6] Jiang and Chen used reproducing kernel
method for solving this system of integral equa-
tions.
In this paper we construct orthonormal Bernoulli
polynomial and hybrid them with Block-Pulse
functions. By this new basis, we drive integral op-
erational matrix and product matrix to discrete
vollterra type of system of integral equation at
collocation point.
The paper is organized as six sections includ-
ing the introduction. In Section 1, we intro-
duce Bernoulli polynomials and their properties.
In Section 2, we would implement the hybrid of
Block-Pulse functions and orthonormal Bernoulli
polynomials operational matrix on the system
of linear Volterra integral equations and convert
them to a linear algebraic system of equations. In
Section 3, we present error bound for solution of
these systems. In Section 4, we present numerical
examples that show the efficiency and accuracy
of proposed method in analogy to some existed
method. Finally Section 5, concludes the paper.

2 Hybrid of Bernoulli polyno-
mials and Bock-pulse function

In this section, we introduce Bernoulli polynomi-
als and their properties. We orthonormal these
polynomial by Gram-Schmidt algorithm, then we
hybrid these functions with Block-Pulse func-
tions. Some properties of this set of functions
are presented.

2.1 Hybrid Orthonormal Bernoulli
Polynomials with Block-Pulse
Functions and their properties

The Bernoulli polynomials of degree n are defined
by [7]

n∑
k=0

(
n+ 1

k

)
Bk (x) = (n+ 1)xn. (2.3)

The first few Bernoulli polynomials for n = 3 are:

B0(x) = 1,
B1 (x) = x− 1

2 ,
B2 (x) = x2 − x+ 1

6 ,
B3 (x) = x3 − 3

2x
2 + 1

2x,
...

An M-set of Block-Pulse function is defined
over the interval [0,T) as

bi(x) =

{
1 iT

m ≤ x < (i+1)T
m

0 otherwise
,

where i = 0, 1, ...,m − 1 with m as a positive
integer. Also, h = T

m and bi is the i-th BPF. In
this paper it is assumed that T = 1, so BPFs
are defined over [0, 1) and h = 1

m . There are
some properties for BPFs; the most important
properties are disjointness, orthogonality, and
completeness.

By using Gram-Schmidt algorithm we ob-
tain orthonormal Bernoulli polynomials to
construct new basis, we call this new base as
OBn(x). By orthonormal Bernoulli polynomials
and Block-Pulse functions and their properties
we can define hybrid of this function in the
interval [0, 1] as follow:

OBHi,j(x) =

{
OBn(mx− i+ 1) i−1

m ≤ x < i
m

0 otherwise
,

(2.4)

where i = 1, 2, ...,m and j = 0, 1, ..., n. These new
functions have useful properties of orthonormal func-
tions and Block-Pulse functions together. Thus, our
new basis is {OBH1,0, OBH1,1, ..., OBHm,n} and we
can approximate the functions with this base. In Fig.
1. The behavior of several Orthonormal Bernoulli Hy-
brid polynomials in the interval [0, 1] is depicted. The

property of
∫ 1

0
OBHn(x)dx = 0 could be observed ge-

ometrically.
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Figure 1: The graph of the first six of Orthonor-
mal Bernoulli Hybrid polynomials.

2.2 Function approximation

Suppose that H = L2[0, 1] and
{OBH1,0, OBH1,1, ..., OBHm,n} ⊂ H be the set
of hybrid of Block-Pulse and orthonormal Bernoulli
polynomials and

Y = Span{OBH1,0, OBH1,1, ..., OBHm,n} (2.5)

and f be an arbitrary element in H. Since Y is a
finite dimensional vector space, f has the unique best
approximation out of Y such as f0 ∈ Y , that is

∀y ∈ Y, ∥ f − f0 ∥≤∥ f − y ∥ .

Since f0 ∈ Y , there exists the unique coefficients
C10, C11, ..., Cmn such that

f ≃ f0 =
m∑
j=1

n∑
i=0

cijOBHij(t) = CTOBH(t), (2.6)

where

OBH(t) = Span{OBH1,0, OBH1,1, ..., OBHm,n}
(2.7)

and
C = [c1,0, c1,1, ..., cm,n]

T . (2.8)

By using Eq.(2.6) we obtain

fij = ⟨
n∑

l=0

m∑
k=1

cklOBHkl(t), OBHkl(t)⟩ =

n∑
l=0

m∑
k=1

ckld
ij
kl, i = 1, 2, ...n, j = 0, 1, ...m, (2.9)

where fij = ⟨f,OBHij(t)⟩, dijkl =
⟨OBHK!(t), OBHij(T )⟩, and ⟨, ⟩ denotes inner
product.
Therefore

fij = CT [dij10, d
ij
11, ..., d

ij
1n, ..., d

ij
m0, d

ij
m1, ..., d

ij
mn],

i = 1, 2, ...n, j = 0, 1, ...m, (2.10)

So we get

Φ = DTC, (2.11)

with

Φ = [f10, f11, ..., f1n, ..., fm0, fm1, ..., fmn], (2.12)

and

D = [dijmn], (2.13)

where D is a product matrix of integration of
order (nm)× (nm) and is given by

D =

∫ 1

0

OBH(t)OBHT (t)dt. (2.14)

For example for m = 2 and n = 3, D is

D =
1

2


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Obviously, matrix D is a sparse matrix. We can also
approximate the function k(x, t) ∈ L2([0, 1]× [0, 1]) as
follows

k(x, t) ≃ OBHT (x).K OBH(t), (2.15)

where K is an mn×mn matrix that

kij =
⟨OBHi(x), ⟨k(x, t), OBHj(t)⟩⟩

⟨OBHi(x), OBHi(x)⟩⟨OBHj(t), OBHj(t)⟩
,

(2.16)
for i, j = 1, 2, ...,mn. So we have

k = D−1⟨OBH(x), ⟨k(x, t), OBH(t)⟩⟩D−1. (2.17)

2.3 Operational matrix of integration

The integration of the OBH(t) defined in Eq.(2.7) is
given by ∫ 1

0

OBH(t
′
)dt

′
≃ P OBH(t), (2.18)

where P is the (mn) × (mn) operational matrix of
integration and is given by

P =
1

2m

(
P0 O
O P0

)
, (2.19)

where O is N×N zero matrix and P0 is N×N matrix.
Obviously, P is a sparse matrix too.
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2.4 Product operational matrix

It is always necessary to evaluate the product of
OBH(x) and OBHT (x), that is called the product
matrix of hybrid functions. Let

obh(x) = OBH(x)OBHT (x), (2.20)

where obh(x) is mn × mn matrix. Multiplying the
matrix obh(x) by vector C that is defined in Eq. (2.8),
we obtain

obh(x)× C = C̃ ×OBHT (x) (2.21)

where C̃ is mn×mn matrix which is called the coef-
ficient matrix. To illustrate the calculation procedure
in Eq. (2.21), we consider that n = 2,m = 7, so we
have

C̃ =

(
C̃1 O

O C̃2

)
, (2.22)

where C̃1, i = 1, 2 are 7× 7 matrices given by

C̃i =



ci0 ci1 · · · ci6

ci2
ci1

+2
√
5

5 ci3
· · · 6

√
429

143 ci6

ci3
2
√
5

5 ci2

+3
√
105
35 ci4

· · ·
15

√
65

143 ci5

+ 14
√
5

55 ci7

ci4
3
√
105
35 ci3

+ 4
√
21

21 ci5
· · ·

100
√
13

429 ci4

+ 7
√
1001
429 ci6

...
...

...
...

ci7
15

√
65

143 ci5

+ 14
√
5

55 ci7
· · ·

ci1 +
14

√
5

55 ci3
+ 84

187ci5

+ 400
√
13

3553 ci7



.

With the powerful properties of Eq. (2.21), we can
convert the Volterra part of Integral equations to an
algebraic equation.

3 Implementation of hybrid
Bernoulli function method on
system of linear volterra inte-
gral equations

Consider the system of linear Volterra integral equa-
tion Eq. (1.1), we can show this system in the follow-
ing form

q∑
j=1

gij(x)ui(x) +

q∑
j=1

∫ x

0

kij(x, s)uj(s)ds =

fi(x); i = 1, 2, ..., q. (3.23)

We put

ui(x) ≃ UT
i OBH(x), i = 1, ..., q, (3.24)

where Ui for i = 1, ..., q are unknown nm-vectors
and OBH(x) is given by Eq. (2.7). Likewise,
gij(x), kij(x, s) and fi(x) for i, j = 1, ..., q are ex-
panded into the hybrid functions as follows

kij(x, s) ≃ OBHT (x)KijOBH(s), gij(x) ≃

GT
ijOBH(x), i, j = 1, ..., q, (3.25)

fi(x) ≃ FT
i OBH(x), i = 1, ..., q, (3.26)

where Kij for i, j = 1, ..., q are known mn × mn-
matrices and Gij , Fi for i, j = 1, ..., q, are known
nm-vectors. After substituting the approximate Eqs.
(3.24), (3.25), (3.26) in (3.23) we get

q∑
j=1

(GT
ijOBH(x)OBHT (x)Uj)+

q∑
j=1

∫ x

0

OBHT (x)KijOBH(s)OBHT (s)Uj ds

= OBHT (x)Fi, i = 1, ..., q, (3.27)

by using Eqs. (2.18) and (2.21) we can convert Eq.
(3.27) to the following equations

q∑
j=1

OBHT (x)G̃ijUj+

q∑
j=1

OBHT (x)KijŨjPOBH(x) =

OBHT (x)Fi, i = 1, ..., q, (3.28)

now we have q equations with q × n × m unknowns
U1, U2, ..., Uq (each of these vectors have nm un-
knowns). In order to find Ui, for i = 1, ..., q, we
collocate Eq. (3.28) in nm points xp, p = 1, ..., nm,
by Gauss-Legendre points in the interval [0, 1]. So we
have the following system of linear equations

q∑
j=1

OBHT (xp)G̃ijUj+

q∑
j=1

OBHT (xp)KijŨjPOBH(xp) =

OBHT (xp)Fi, i = 1, ..., q, p = 1, ...,mn. (3.29)

By solving linear system Eq. (3.29) we can drive
Ui, for i = 1, ..., q, so we can approximate Ui(x) as
UT
i OBH(x) for i = 1, ..., q, that they are the approx-

imate solution for system of linear Volterra integral
equations Eq. (3.23).
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Table 1: Absolute error for Example 4.1.

Absolute errors for u1(x) Absolute errors for u2(x)

OBH function by Method in [6] with OBH function by Method in [6] with
x m = 2, n = 4 N = 25,M = 30 m = 2, n = 4 N = 25,M = 30

0.0 1.0× 10−7 1, 12071E − 7 2.0× 10−7 7, 43647E − 8
0.1 1.0× 10−9 1, 93035E − 4 5.2× 10−7 2, 13517E − 6
0.2 1.0× 10−9 1, 93351E − 4 7.0× 10−7 1, 10363E − 4
0.3 0.0× 10−9 1, 60621E − 4 1.0× 10−7 1, 36687E − 4
0.4 1.0× 10−9 2, 85454E − 4 3.0× 10−7 3, 40355E − 4
0.5 2.0× 10−9 4, 46399E − 4 4.0× 10−7 6, 70169E − 4
0.6 2.0× 10−9 2, 85732E − 4 2.0× 10−7 5, 15149E − 4
0.7 3.0× 10−9 1, 60049E − 4 6.0× 10−7 3, 45906E − 4
0.8 5.0× 10−9 1, 91258E − 4 1.0× 10−7 4, 59884E − 4
0.9 1.0× 10−5 1, 80286E − 5 2.0× 10−7 5, 67914E − 5
1.0 2.0× 10−5 1, 79989E − 6 2.0× 10−7 1, 15123E − 6

Table 2: Absolute error for Example 4.2.

Absolute errors for u1(x) Absolute errors for u2(x)

OBH function by Method in [8] OBH function by Method in [8]
x m = 2, n = 3 with k = 32 m = 2, n = 3 with k = 32

0.0 4.7× 10−10 0.0× 10−4 1.4× 10−11 0.0× 10−4

0.1 3.0× 10−11 0.9× 10−4 5.0× 10−11 0.1× 10−4

0.2 1.0× 10−10 0.6× 10−4 3.0× 10−11 0.7× 10−4

0.3 4.0× 10−10 0.2× 10−4 3.0× 10−10 0.4× 10−4

0.4 2.2× 10−10 0.3× 10−4 0.0× 10−11 0.5× 10−4

0.5 5.1× 10−10 0.2× 10−4 6.7× 10−11 0.1× 10−4

0.6 3.1× 10−10 0.6× 10−4 5.0× 10−10 0.2× 10−4

0.7 4.1× 10−10 0.9× 10−4 4.2× 10−10 0.8× 10−4

0.8 5.3× 10−10 0.1× 10−4 3.7× 10−10 0.8× 10−4

0.9 6.0× 10−10 0.9× 10−4 6.4× 10−10 0.2× 10−4

1.0 7.5× 10−10 0.1× 10−4 6.7× 10−10 0.8× 10−4

Table 3: Absolute error for Example 4.3.

Absolute errors for u1(x) Absolute errors for u2(x)

OBH function by Method in [6] with OBH function by Method in [6] with
x m = 2, n = 5 N = 25,M = 30 m = 2, n = 5 N = 25,M = 30

0.0 2.0× 10−6 3, 17983E − 6 1.1× 10−7 8, 41599E − 7
0.1 2.0× 10−6 2, 78782E − 6 2.5× 10−7 2, 72792E − 7
0.2 2.7× 10−7 3, 80744E − 7 1.6× 10−6 7, 24135E − 8
0.3 2.1× 10−6 1, 50503E − 6 3.6× 10−7 4, 63035E − 7
0.4 2.2× 10−6 2, 49236E − 6 2.0× 10−7 1, 05532E − 6
0.5 1.2× 10−6 2, 74089E − 6 1.0× 10−6 1, 49415E − 6
0.6 1.3× 10−7 2, 23777E − 6 1.2× 10−6 1, 52353E − 6
0.7 1.6× 10−7 1, 20489E − 7 1.2× 10−6 1, 01451E − 6
0.8 2.5× 10−6 2, 65504E − 6 3.6× 10−6 2, 79125E − 7
0.9 1.0× 10−6 1, 73647E − 6 4.0× 10−6 2, 19568E − 6
1.0 1.0× 10−6 1, 72341E − 6 3.0× 10−6 2, 67258E − 6

4 Numerical examples

To show the efficiency of the proposed numerical
method, we implement it on three system of Volterra
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integral equation as test problem. We note that

∥en∥∞= max(en),

that
en(xi) = f(xi)−OBH(fn(xi)),

where OBH(fn(xi)) and f(xi) are the approximate
solution of order n with hybrid of Bernstein and Block-
Pulse approximation and exact solutions of the inte-
gral equations, respectively.
For implementation of proposed method we used
”Maple” 15.

Example 4.1 Consider the following system of
Volterra integral equations of the second kind [6]:


u1(x) = f1(x) +

∫ x

0
(x− s)3u1(s)ds+∫ x

0
(x− s)2u2(s)ds,

u2(x) = f2(x) +
∫ x

0
(x− s)4u1(s)ds+∫ x

0
(x− s)3u2(s)ds,

u1(x) and u2(x) are chosen such that the exact solu-
tion is u1(x) = 1 + x2, u2(x) = 1 + x − x3. For this
example we take n = 4 and m = 2, then we compared
our results with [6]. The answers are tabulated in Ta-
ble 1. Also Fig. 1 shows u2(x) and its approximation.

Figure 2: Numerical and exact graph of the so-
lution for example 4.1 by n = 4 for u2(x).

Example 4.2 Consider the following system of
Volterra integral equations:

 u1(x)−
∫ x

0
u2(s)ds = 1− x2,

u2(x)−
∫ x

0
u1(s)ds = x,

the exact solution is u1(x) = 1, u2(x) = 2x. Table 2
gives the absolute errors for u1(x) and u2(x) by OBH
functions method with comparison by absolute errors
of rationalized Haar function method [8].

Example 4.3 Consider the following system of linear
Volterra integral equations of the second kind [6]:


u1(x) = f1(x) +

∫ x

0
(sin(x− s)− 1)u1(s)ds

+
∫ x

0
(1− s cosx)u2(s)ds,

u2(x) = f2(x) +
∫ x

0
u1(s)ds+∫ x

0
(x− s)u2(s)ds,

u1(x) and u2(x) are chosen such that the exact solu-
tion is u1(x) = cosx, u2(x) = sinx. For this example
we take n = 5 and m = 2, then we compared our
results by the results of paper [6]. The answers are
tabulated in Table 3. Also Fig. 2 shows u1(x) and its
approximation.

Figure 3: Numerical and exact graph of the so-
lution for example 4.3 by n = 5 for u1(x).

5 Conclusion

A new method based on Bernoulli polynomial and
Block-Pulse function has been formulated and em-
ployed for the numerical solution of system of Volterra
integral equations which arose in many physical prob-
lems such as elastodynamic. By these orthonormal
bases we drove new operational matrix which was a
sparse matrix. By use of this new operational ma-
trix we reduced the system of linear Volterra integral
equations to a system of linear algebraic equations
that can be solved easily by known methods. Us-
ing the proposed method in solving system of linear
Volterra integral equation shows the high capability of
this method compared to other methods and numeri-
cal results given in tables and figures.
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