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Abstract

In this paper based on the interval type-2 fuzzy sets, we introduce an extension of fuzzy
TOPSIS for handling fuzzy multiple attributes group decision making problems. In the
proposed method the fuzzy positive ideal solution and fuzzy negative ideal solution are
obtained in the form of interval type-2 fuzzy sets without ranking the elements of decision
matrix, using the proposed method the solution of decision problem is obtained with less
computational attempt than existing methods.
Keywords : Fuzzy TOPSIS; Fuzzy positive ideal solution; Fuzzy negative ideal solution; Fuzzy

group decision making; Fuzzy multiple attributes group decision making; Interval type-2 fuzzy set.

————————————————————————————————–

1 Introduction

Multiple attributes decision making (MADM) is an approach employed to solve problems
involving selection from among a finite number of alternatives [8]. Among the many
existing methods for solving MADM problems TOPSIS that was introduced by Hwang
and Yoon in 1981 [8] is one of the well-known methods. The basic principle of TOPSIS
is that the chosen alternative should have the shortest distance from the positive ideal
solution and the farthest from the negative ideal solution. In TOPSIS the performance
ratings and the weights of the attributes are given as crisp values [1]. Chen [2] introduced
an extension of TOPSIS under fuzzy environment. Triantaphyllou and Lin [9] developed
a fuzzy version of TOPSIS method based on fuzzy arithmetic operations. Wang and Lee
[10] generalized TOPSIS to fuzzy multiple criteria group decision making (FMCGDM) in
a fuzzy environment. Ashtiani et.al [1] introduced an extension of fuzzy TOPSIS based
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on interval-valued fuzzy sets. Chen and Lee [3] developed TOPSIS for fuzzy multiple
attributes group decision making based on the interval type-2 fuzzy sets. In this paper we
develop the type-2 fuzzy TOPSIS based on the type-2 fuzzy positive and negative ideal
solutions to handle MADM problems. The rest of this paper is organized as following:
In the next section required definitions are introduced. Section 3 is allocated to classic
TOPSIS method, proposed method is presented in section 4, finally in section 5 two
numerical examples are introduced, as will be seen the proposed method leads to correct
solutions with less computational attempt than the methods in references [3, 4].

2 Type-2 Fuzzy Sets

Definition 2.1. A type-2 fuzzy set ˜̃A in universe of discourse X can be represented by
type-2 fuzzy membership function µ ˜̃A

as follows:

˜̃A = {((x, u), µ ˜̃A
(x, u))|∀x ∈ X,∀u ∈ Jx ⊆ [01], 0 ≤ µ ˜̃A

≤ 1}

Type-2 fuzzy set ˜̃A also can be represented as follows:

˜̃A =

∫

x∈X

∫

u∈Jx

µ ˜̃A
(x, u)/(x, u) , Jx ⊆ [0, 1]

where
∫ ∫

denotes the union over all admissible x and u.

Definition 2.2. Let ˜̃A be a type-2 fuzzy set in universe of discourse X which is represented

by type-2 membership function µ ˜̃A
. ˜̃A is an interval type-2 fuzzy set if all µ ˜̃A

(x, u) =1.
This special case of a type-2 fuzzy set can be represented as follows:

˜̃A =

∫

x∈X

∫

u∈Jx

1/(x, u) , Jx ⊆ [0, 1]

Definition 2.3. The interval type-2 fuzzy set ˜̃A, can be represented as ˜̃A=(ÃU , ÃL) where
ÃU , ÃL are upper membership function and lower membership function, respectively. Note
that ÃU and ÃL are type-1 fuzzy sets.

Definition 2.4. The trapezoidal interval type-2 fuzzy set ˜̃A can be represented as follows:

˜̃A = (ÃU , ÃL) = ((aU
1 , aU

2 , aU
3 , aU

4 ;H1(Ã
U ),H2(Ã

U )), (aL
1 , aL

2 , aL
3 , aL

4 ;H1(Ã
L),H2(Ã

L)))

where aU
i and aL

i , (1 ≤ i ≤ 4) are the parameters of aU
i and aL

i respectively, and Hi(Ã
U )

and Hi(Ã
L) ,(1 ≤ i ≤ 2) denote the membership values of elements aU

i and aL
i , (2 ≤ i ≤ 3)

respectively, Hi(Ã
U ) ∈ [0, 1] and Hi(Ã

L) ∈ [0, 1] ,(1 ≤ i ≤ 2).

Definition 2.5. The addition operation between two trapezoidal interval type-2 fuzzy sets

˜̃A1 = (ÃU
1 , ÃL

1 ) = ((aU
11, a

U
12, a

U
13, a

U
14;H1(Ã

U
1 ),H2(Ã

U
1 )), (aL

11, a
L
12, a

L
13, a

L
14;H1(Ã

L
1 ),H2(Ã

L
1 )))
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and

˜̃A2 = (ÃU
2 , ÃL

2 ) = ((aU
21, a

U
22, a

U
23, a

U
24;H1(Ã

U
2 ),H2(Ã

U
2 )), (aL

21, a
L
22, a

L
23, a

L
24;H1(Ã

L
2 ),H2(Ã

L
2 )))

is defined as follows:

˜̃A1 ⊕
˜̃A2 = (ÃU

1 , ÃL
1 ) ⊕ (ÃU

2 , ÃL
2 )

= ((aU
11 ⊕ aU

21, a
U
12 ⊕ aU

22, a
U
13 ⊕ aU

23, a
U
14 ⊕ aU

24;min(H1(Ã
U
1 ),H1(Ã

U
2 )),min(H2(Ã

U
1 )

,H2(Ã
U
2 )); (aL

11 ⊕ aL
21, a

L
12 ⊕ aL

22, a
L
13 ⊕ aL

23, a
L
14 ⊕ aL

24;min(H1(Ã
L
1 ),H1(Ã

L
2 ))

,min(H2(Ã
L
1 ),H2(Ã

L
2 ))))

Definition 2.6. The multiplication operation between type-2 fuzzy sets ˜̃A1 and ˜̃A2 is
defined as follows:

˜̃A1 ⊗
˜̃A2 = (ÃU

1 , ÃL
1 ) ⊗ (ÃU

2 , ÃL
2 )

= ((aU
11 ⊗ aU

21, a
U
12 ⊗ aU

22, a
U
13 ⊗ aU

23, a
U
14 ⊗ aU

24;min(H1(Ã
U
1 ),H1(Ã

U
2 ),min

(H2(Ã
U
1 ),H2(Ã

U
2 ))), (aL

11 ⊗ aL
21, a

L
12 ⊗ aL

22, a
L
13 ⊗ aL

23, a
L
14 ⊕ aL

24;min(H1

(ÃL
1 ),H1(Ã

L
2 ),H2(Ã

L
2 )))

3 Classic TOPSIS Method

The TOPSIS method was developed by Hwang and Yoon (1981). This method is based
on the concept that chosen alternative should have the shortest Euclidean distance from
the ideal solution, and the farthest from the negative ideal solution. The ideal solution
and negative ideal solutions are hypothetical solutions have in the best and worst cases
respectively. TOPSIS thus gives a solution that is not only closest to the hypothetically
best, that is also the farthest from the hypothetically worst. The mail procedure of the
TOPSIS method for the selection of the best alternative from among those available is
described bellow [8]:

Step 1: The first step is to determine the objective, and to identify the pertinent
evaluation attributes.

Step 2: This step represents a matrix based on all the information available on at-
tributes. Each row of this matrix is allocated to one alternative, and each column to one
attribute. Let there exist m attributes and n alternatives so the decision matrix is as
following:

D = (dij)m×n

Step 3: Normalize the decision matrix as following:

R = (rij)m×n ; rij = dij/(

m
∑

i=1

d2
ij)

1/2

Step 4: Decide on the relative importance (i.e. weights) of different attributes with
respect to the objective. A set of weight wi (for j = 1, 2, . . . ,m) such that

∑

wi = 1 may
be decided upon.
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Step 5: Obtain the weighted normalized matrix V. This is done by the multiplication
of each element of the column of the matrix R with associated weight wi:

V = (vij)m×n ; vij = wi × rij

Step 6: Obtain the ideal (best) and negative ideal (worst) solution in this step. The
ideal and negative ideal solutions can be expressed as:

x+ = (v+
1 , v+

2 , . . . , v+
m) , x− = (v−1 , v−2 , . . . , v−m)

where

v+
i =

{

max vij , fi ∈ F1

min vij , fi ∈ F2
, v−i =

{

min vij , fi ∈ F1

max vij , fi ∈ F2

Step 7: Obtain the separation measures. The separation of each alternative from the
ideal one is given by the Euclidean distance in the following equations:

S+
j = (

m
∑

i=1

(vij − v+
j )2)1/2 ; j = 1, 2, . . . , n

S−

j = (
m

∑

i=1

(vij − v−j )2)1/2 ; j = 1, 2, . . . , n

Step 8: The relative closeness of a particular alternative to the ideal solution, Pi, can
be expressed in this step as follows:

Pj = S+
j /(S+

j + S−

j ) ; j = 1, 2, . . . , n

Step 9: A set of alternatives is generated in the descending order in this step, according
to the value of Pj indicating the most preferred and least preferred feasible solution. Pi

may also be called the overall or composite performance score of alternative Aj.

4 Proposed Method

In this section our proposed TOPSIS for group decision making is introduced. The pro-
posed method is as following:

Step 1: Construct decision matrix Yp for pth decision maker and then construct the
average decision matrix Y , as following:

Yp = (
˜̃
f

p

ij)m×n
=













x1 x2 . . . xn

f1
˜̃f
p

11
˜̃f
p

12 . . . ˜̃f
p

1n

f2
˜̃
f

p

21
˜̃
f

p

22 . . .
˜̃
f

p

2n
...

...
...

...
fm

˜̃f
p

m1
˜̃f
p

m2 . . . ˜̃f
p

mn













,

Y = ( ˜̃f ij)m×n ; ˜̃f ij =

˜̃
f

1

ij ⊕
˜̃
f

2

ij ⊕ · · · ⊕
˜̃
f

k

ij

k
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where ˜̃f ij is an interval type-2 fuzzy set, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ p ≤ k and k denotes
the number of decision-makers.

Step 2: Construct the weighting matrix Wp of the attributes for pth decision-maker
and then obtain the average weighting matrix W as following:

Wp = ( ˜̃w
p
i )1×m =

(

f1 f2 . . . fn

˜̃w
p
1

˜̃w
p
2 . . . ˜̃w

p
m

)

,

W 1×m = ( ˜̃wi) ; ˜̃wi =
˜̃w

1
i ⊕ ˜̃w

2
i ⊕ · · · ⊕ ˜̃w

k
i

k

where ˜̃wi is an interval type-2 fuzzy set, 1 ≤ i ≤ m, 1 ≤ p ≤ k and k denotes the number
of decision-makers.

Step 3: Construct the weighted decision matrix Y w,

Y w = (˜̃vij)m×n =











x1 x2 . . . xn

f1
˜̃v11

˜̃v12 . . . ˜̃v1n

f2
˜̃v21

˜̃v22 . . . ˜̃v2n
...

...
...

...
fm

˜̃vm1
˜̃vm2 . . . ˜̃vmn











,

where ˜̃vij = ˜̃wi ⊗
˜̃f ij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Step 4: Obtain fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution
(FNIS) as following (FPIS and FNIS are represented as S+ and S− respectively):

S+ =

{

(1, 1, 1, 1; 1, 1) , for benefit attributes

(0, 0, 0, 0; 1, 1) , for cost attributes

S− =

{

(0, 0, 0, 0; 1, 1) , for benefit attributes

(1, 1, 1, 1; 1, 1) , for cost attributes

Step 5: According to [1, 3, 6] and using the fact that interval-valued fuzzy sets and
interval type-2 fuzzy sets are equivalent [4] the normalized Euclidean distance between
each alternative xj and FPIS can be calculated as following:

dU+(xj) =

m
∑

i=1

dU+(S+, ṽU
ij) , dL+(xj) =

m
∑

i=1

dL+(S+, ṽL
ij)

where

˜̃vij = (ṽU
ij , ṽ

L
ij) = ((v1U

ij , v2U
ij , v3U

ij , v4
ijU ;H1(ṽ

U
ij),H2(ṽ

U
ij)), (v

1L
ij , v2L

ij , v3L
ij , v4L

ij ;H1(ṽ
L
ij),H2(ṽ

L
ij)))

So for benefit attributes we have:

dU+(S+, ṽU
ij) =

√

√

√

√

1

4

4
∑

k=1

(vkU
ij − 1)2 , dL+(S+, ṽL

ij) =

√

√

√

√

1

4

4
∑

k=1

(vkL
ij − 1)2
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and for cost attributes we have:

dU+(S+, ṽU
ij) =

√

√

√

√

1

4

4
∑

k=1

(vkU
ij − 0)2 , dL+(S+, ṽL

ij) =

√

√

√

√

1

4

4
∑

k=1

(vkL
ij − 0)2

Similarly the distance between each alternative xj and FNIS is obtained as following:

dU−(xj) =
m

∑

i=1

dU−(S−, ṽU
ij) , dL−(xj) =

m
∑

i=1

dL−(S−, ṽL
ij)

where for benefit attributes we have:

dU−(S−, ṽU
ij) =

√

√

√

√

1

4

4
∑

k=1

(vkU
ij − 0)2 , dL−(S+, ṽL

ij) =

√

√

√

√

1

4

4
∑

k=1

(vkL
ij − 0)2

and for cost attributes we have:

dU−(S−, ṽU
ij) =

√

√

√

√

1

4

4
∑

k=1

(vkU
ij − 1)2 , dL−(S−, ṽL

ij) =

√

√

√

√

1

4

4
∑

k=1

(vkL
ij − 1)2

Step 6: Calculate the relative degree of closeness C∗(xj) of alternative xj with respect
to the step 5 as follows:

C∗(xj) =
C1(xj) + C2(xj)

2

where C1(xj) =
dU−(xj)

dU+(xj)+dU−(xj)
, C2(xj) =

dL−(xj)
dL+(xj)+dL−(xj)

and 1 ≤ j ≤ n.

Step 7: Sort the values of C∗(xj) , (1 ≤ j ≤ n) in an ascensional sequence. The larger
value of C∗(xj) the higher preference of the corresponding alternative xj,(1 ≤ j ≤ n) .

5 Numerical examples

In this section we introduce 2 numerical examples and solve them using our proposed
TOPSIS method, the results are attractive.

Example 5.1. , [7]. Table 1 shows the linguistic terms ”Very Low” (VL), ”low” (L),
” Medium Low” (ML), ”Medium” (M), ”Medium High” (MH),”High” (H), ”Very High”
(VH), and their corresponding type-1 fuzzy sets, respectively. Table 2 shows the linguis-
tic terms, ”Very Poor” (VP), ”Poor” (P), ”Medium Poor” (MP), ”Fair” (F), ”Medium
Good” (MG), ”Good” (G), ”Very Good” (VG) and their corresponding type-1 fuzzy sets,
respectively. Assume that there are three decision-makers D1,D2 and D3of a software
company to hire a system analysis engineer and assume that there are three alternatives
x1, x2 and x3 and five attributes ”Emotional Steadiness”, ”Oral Communication Skill”,
”Personality”, ”Past Experience”, ”Self-Confidence”. Let X be the set of alternatives,
where X = {x1, x2, x3} and let F be the set of attributes, where F=Emotional Steadiness,
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Oral Communication Skill, Personality, Past Experience, Self-Confidence. Assume that
the three decision-makers D1,D2 and D3 use the linguistic terms shown in Table 1 to
represent the weights of the five attributes, respectively, as shown in Table 3. In Table 3,
five benefit attributes are considered, including ”Emotional Steadiness”, ”Oral Communi-
cation Skill”, ”Personality”, ”Past Experience” and ”Self Confidence”. Assume that three
decision-makers D1,D2 and D3 use the linguistic terms shown in Table 2 to represent
the evaluating values of the alternatives with respect to different attributes, respectively,
as shown in Table 4. Based on the interval type-2 fuzzy set representation method, the
linguistic terms shown in Table 1 and Table 2 can be represented by interval type-2 fuzzy
sets, as shown in Table 5 and Table 6 respectively.
Table 1
Linguistic terms of weights of the attributes and their corresponding type-1 fuzzy sets.

Linguistic terms Type-1 fuzzy sets

Very Low(VL) (0,0,0,0.1;1,1)

Low(L) (0,0.1,0.1,0.3;1,1)

Medium Low(ML) (0.1,0.3,0.3,0.5;1,1)

Medium(M) (0.3,0.5,0.5,0.7;1,1)

Medium High(MH) (0.5,0.7,0.7,0.9;1,1)

High(H) (0.7,0.9,0.9,0.1;1,1)

Very High(VH) (0.9,1,1,1;1,1)

Table 2
Linguistic terms for the ratings and their corresponding type-1 fuzzy sets.

Linguistic terms Type-1 fuzzy sets

Very Poor(VP) (0,0,0,1;1,1)

Poor(P) (0,1,1,3;1,1)

Medium Poor(MP) (1,3,3,5;1,1)

Fair(F) (3,5,5,7;1,1)

Medium Good(MG) (5,7,7,9;1,1)

Good(G) (7,9,9,10;1,1)

Very Good(VG) (9,10,10,10;1,1)

Table 3
Weights of the attributes evaluated by decision-makers.

Attributes Decision-makers
D1 D2 D3

Emotional Steadiness H VH MH

Oral Communication Skill VH VH VH

Personality VH H H

Past Experience VH VH VH

Self-Confidence M MH MH
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Table 4
Evaluating values of the alternatives given by the decision-makers with respect to different at-

tributes.
Attributes Alternatives Decision-makers

x1 MG G MG
Emotional Steadiness x2 G G MG

x3 VG G F

x1 G MG F
Oral Communication Skill x2 VG VG VG

x3 MG G VG

x1 G G G
Personality x2 VG VG G

x3 G MG VG

x1 VG G VG
Past Experience x2 VG VG VG

x3 G VG MG

x1 F F F
Self-Confidence x2 VG MG G

x3 G G MG

Table 5
Linguistic terms of weights of the attributes and their corresponding type-2 fuzzy sets.

Linguistic terms Type-2 fuzzy sets

Very Low(VL) ((0,0,0,0.1;1,1),(0,0,0,0.1;1,1))

Low(L) ((0,0.1,0.1,0.3;1,1),(0,0.1,0.1,0.3;1,1))

Medium Low(ML) ((0.1,0.3,0.3,0.5;1,1),(0.1,0.3,0.3,0.5;1,1))

Medium(M) ((0.3,0.5,0.5,0.7;1,1),(0.3,0.5,0.5,0.7;1,1))

Medium High(MH) ((0.5,0.7,0.7,0.9;1,1),(0.5,0.7,0.7,0.9;1,1))

High(H) ((0.7,0.9,0.9,0.1;1,1),(0.7,0.9,0.9,0.1;1,1))

Very High(VH) ((0.9,1,1,1;1,1),(0.9,1,1,1;1,1))

Table 6
Linguistic terms for the ratings and their corresponding type-2 fuzzy sets.

Linguistic terms Type-2 fuzzy sets

Very Poor(VP) ((0,0,0,1;1,1),(0,0,0,1;1,1))

Poor(P) ((0,0,0,1;1,1),(0,0,0,1;1,1))

Medium Poor(MP) ((1,3,3,5;1,1),(1,3,3,5;1,1))

Fair(F) ((3,5,5,7;1,1),(3,5,5,7;1,1))

Medium Good(MG) ((5,7,7,9;1,1),(5,7,7,9;1,1))

Good(G) ((7,9,9,10;1,1),(7,9,9,10;1,1))

Very Good(VG) ((9,10,10,10;1,1),(9,10,10,10;1,1))

Step 1: Based on Tables 4, 5 and 6 construct the decision matrices Y1, Y2 and Y3 and
obtain the average decision matrix as follows:(Since in Table 2 the universe of discourse
of the linguistic terms is [0,10] the decision matrices can be reconstructed by division all



F. Ghaemi Nasab, M. Rostamy-Malkhalifeh. / IJIM Vol. 2, No. 3 (2010) 199-213 207

elements of them by 10 so the average decision matrix obtain as following:)

Y =

















x1 x2 x3

Emotional Steadiness ˜̃f11
˜̃f12

˜̃f13

Oral Communication Skill ˜̃f21
˜̃f22

˜̃f23

Personality
˜̃
f31

˜̃
f32

˜̃
f33

Past Experience ˜̃f41
˜̃f42

˜̃f43

Self -Confidence
˜̃
f51

˜̃
f52

˜̃
f53

















where

˜̃
f11 = ((0.57, 0.77, 0.77, 0.93; 1, 1), (0.57, 0.77, 0.77, 0.93; 1, 1))
˜̃
f12 = ((0.63, 0.83, 0.83, 0.97; 1, 1), (0.63, 0.83, 0.83, 0.97; 1, 1))
˜̃f13 = ((0.63, 0.8, 0.8, 0.9; 1, 1), (0.63, 0.8, 0.8, 0.9; 1, 1))
˜̃
f21 = ((0.5, 0.7, 0.7, 0.87; 1, 1), (0.5, 0.7, 0.7, 0.87; 1, 1))
˜̃
f22 = ((0.9, 1, 1, 1; 1, 1), (0.9, 1, 1, 1; 1, 1))
˜̃f23 = ((0.7, 0.87, 0.87, 0.97; 1, 1), (0.7, 0.87, 0.87, 0.97; 1, 1))
˜̃f31 = ((0.57, 0.77, 0.77, 0.9; 1, 1), (0.57, 0.77, 0.77, 0.9; 1, 1))
˜̃
f32 = ((0.83, 0.97, 0.97, 1; 1, 1), (0.83, 0.97, 0.97, 1; 1, 1))
˜̃
f33 = ((0.7, 0.87, 0.87, 0.97; 1, 1), (0.7, 0.87, 0.87, 0.97; 1, 1))
˜̃f41 = ((0.83, 0.97, 0.97, 1; 1, 1), (0.83, 0.97, 0.97, 1; 1, 1))
˜̃
f42 = ((0.9, 1, 1, 1; 1, 1), (0.9, 1, 1, 1; 1, 1))
˜̃
f43 = ((0.7, 0.87, 0.87, 0.97; 1, 1), (0.7, 0.87, 0.87, 0.97; 1, 1))
˜̃f51 = ((0.3, 0.5, 0.5, 0.7; 1, 1), (0.3, 0.5, 0.5, 0.7; 1, 1))
˜̃
f52 = ((0.7, 0.87, 0.87, 0.97; 1, 1), (0.7, 0.87, 0.87, 0.97; 1, 1))
˜̃
f53 = ((0.63, 0.83, 0.83, 0.97; 1, 1), (0.63, 0.83, 0.83, 0.97; 1, 1))

Step 2: Based on Tables 3, 5 and 6 construct weighting matrices W1, W2 and W3 and
then obtain the average weighting matrix Was following:

W = [ ˜̃w1
˜̃w2

˜̃w3
˜̃w4

˜̃w5]

where

˜̃w1 = ((0.7, 0.87, 0.87, 0.97; 1, 1), (0.7, 0.87, 0.87, 0.97; 1, 1))
˜̃w2 = ((0.9, 1, 1, 1, ; 1, 1), (0.9, 1, 1, 1, ; 1, 1))
˜̃w3 = ((0.77, 0.93, 0.93, 1; 1, 1), (0.77, 0.93, 0.93, 1; 1, 1))
˜̃w4 = ((0.9, 1, 1, 1; 1, 1), (0.9, 1, 1, 1; 1, 1))
˜̃w5 = ((0.43, 0.63, 0.63, 0.83; 1, 1), (0.43, 0.63, 0.63, 0.83; 1, 1))

Step 3: The weighted decision matrix Y W is obtained bellow:

Y W =













x1 x2 x3

Emotional Steadiness ˜̃v11
˜̃v12

˜̃v13

Oral Communication Skill ˜̃v21
˜̃v22

˜̃v23

Personality ˜̃v31
˜̃v32

˜̃v33

Past Experience ˜̃v41
˜̃v42

˜̃v43

Self -Confidence ˜̃v51
˜̃v52

˜̃v53












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where

˜̃v11 = ((0.4, 0.66, 0.66, 0.9; 1, 1), (0.4, 0.66, 0.66, 0.9; 1, 1))
˜̃v12 = ((0.44, 0.72, 0.72, 0.93; 1, 1), (0.44, 0.72, 0.72, 0.93; 1, 1))
˜̃v13 = ((0.44, 0.69, 0.69, 0.87; 1, 1), (0.44, 0.69, 0.69, 0.87; 1, 1))
˜̃v21 = ((0.45, 0.7, 0.7, 0.87; 1, 1), (0.45, 0.7, 0.7, 0.87; 1, 1))
˜̃v22 = ((0.81, 1, 1, 1; 1, 1), (0.81, 1, 1, 1; 1, 1))
˜̃v23 = ((0.63, 0.87, 0.87, 0.97; 1, 1), (0.63, 0.87, 0.87, 0.97; 1, 1))
˜̃v31 = ((0.43, 0.72, 0.72, 0.9; 1, 1), (0.43, 0.72, 0.72, 0.9; 1, 1))
˜̃v32 = ((0.64, 0.9, 0.9, 1; 1, 1), (0.64, 0.9, 0.9, 1; 1, 1))
˜̃v33 = ((0.54, 0.81, 0.81, 0.97; 1, 1), (0.54, 0.81, 0.81, 0.97; 1, 1))
˜̃v41 = ((0.75, 0.97, 0.97, 1; 1, 1), (0.75, 0.97, 0.97, 1; 1, 1))
˜̃v42 = ((0.81, 1, 1, 1; 1, 1), (0.81, 1, 1, 1; 1, 1))
˜̃v43 = ((0.63, 0.87, 0.87, 0.97; 1, 1), (0.63, 0.87, 0.87, 0.97; 1, 1))
˜̃v51 = ((0.13, 0.32, 0.32, 0.58; 1, 1), (0.13, 0.32, 0.32, 0.58; 1, 1))
˜̃v52 = ((0.3, 0.55, 0.55, 0.81; 1, 1), (0.3, 0.55, 0.55, 0.81; 1, 1))
˜̃v53 = ((0.27, 0.53, 0.53, 0.81; 1, 1), (0.27, 0.53, 0.53, 0.81; 1, 1))

Step 4: The FPIS and FNIS are as follows:

S+ = (1, 1, 1, 1; 1, 1) , S− = (0, 0, 0, 0; 1, 1)

Step 5: The values of dU+(xj) , dL+(xj), dU−(xj) and dL−(xj), (1 ≤ j ≤ 3) are listed
in the following table:

Table 7
The values of dU+(xj), dL+(xj), dU−(xj), dL−(xj)

j dU+(xj) dL+(xj) dU−(xj) dL−(xj)

1 1.9 1.9 3.39 3.39

2 1.19 1.19 4.09 4.09

3 1.55 1.55 3.74 3.74

Step 6: The values of C1(xj), C2(xj) and C∗(xj), (1 ≤ j ≤ 3) are listed bellow in
Table 8:

Table 8
The values of C1(xj), C2(xj) and C∗(xj)

j C1(xj) C2(xj) C∗(xj)

1 0.64 0.64 0.64

2 0.77 0.77 0.77

3 0.71 0.71 0.71

Step 7: We have C∗(x1) < C∗(x3) < C∗(x2) so the preference of alternatives is:
x1 < x3 < x2 as it can be seen the results are similar to the results of Chen’s method [7].
It should be noted that the number of operations of proposed algorithm in steps 4, 5 and 6
is about 120 while in the Chen’s method [7] it is about 1670.
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Example 5.2. , [7,8]. Table 9 shows the linguistic terms ”Very Low” (VL), ”low” (L),
”Medium” (M), ”Medium High” (MH),”High” (H), ”Very High” (VH), and their cor-
responding type-2 fuzzy sets, respectively. Assume that there are three decision-makers
D1,D2 and D3 to evaluate cars and assume that there are three alternatives x1, x2 and x3

and four attributes ”Safety”, ”Price”, ”Appearance”, ”performance”. Let X be the set of
alternatives, where X = {x1, x2, x3}, and let F be the set of attributes, where F= {Safety,
Price, Appearance, performance}. Assume that the three decision-makers D1, D2 and D3

use the linguistic terms shown in Table 9 to represent the weights of the four attributes,
respectively, as shown in Table 10. In Table 10, three benefit attributes are considered, in-
cluding ”Safety”, ”Appearance”, and ”Performance” and one cost attribute is considered,
i.e. ”Price”. Assume that the three decision-makers D1, D2 and D3 use the linguistic
terms shown in Table 9 to represent the evaluating values of the alternatives with respect
to different attributes, respectively, as shown in Table 11.

Table 9
Linguistic terms and their corresponding interval type-2 fuzzy sets.

Linguistic terms Type-2 fuzzy sets

Very Low(VL) ((0, 0, 0, 0.1; 1, 1), (0, 0, 0, 0.05; 0.9, 0.9))

Low(L) ((0, 0.1, 0.1, 0.3; 1, 1), (0.05, 0.1, 0.1, 0.2; 0.9, 0.9))

Medium Low(ML) ((0.1, 0.3, 0.3, 0.5; 1, 1), (0.2, 0.3, 0.3, 0.4; 0.9, 0.9))

Medium(M) ((0.3, 0.5, 0.5, 0.7; 1, 1), (0.4, 0.5, 0.5, 0.6; 0.9, 0.9))

Medium High(MH) ((0.5, 0.7, 0.7, 0.9; 1, 1), (0.6, 0.7, 0.7, 0.8; 0.9, 0.9))

High(H) ((0.7, 0.9, 0.9, 1; 1, 1), (0.8, 0.9, 0.9, 0.95; 0.9, 0.9))

Very High(VH) ((0.9, 1, 1, 1; 1, 1), (0.95, 1, 1, 1; 0.9, 0.9))

Table 10
Weights of the attributes evaluated by decision-makers.

Attributes Decision-makers
D1 D2 D3

Safety VH H VH
Price VH VH VH

Appearance M MH MH
Performance VH H H
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Table 11
Evaluating values of the alternatives given by decision-makers with respect to different attributes.

Attributes Alternatives Decision-makers

x1 MH H MH
Safety x2 H MH H

x3 VH H MH

x1 H VH H
Price x2 MH H VH

x3 VH VH H

x1 VH H H
Appearance x2 H VH VH

x3 M MH MH

x1 VH H H
Performance x2 H VH H

x3 H VH VH

Step 1: Based on Table 11 construct the decision matrices Y1, Y2 and Y3 and obtain
the average decision matrix as follows:

Y =













x1 x2 x3

Safety ˜̃f11
˜̃f12

˜̃f13

Price
˜̃
f21

˜̃
f22

˜̃
f23

Appearance ˜̃f31
˜̃f32

˜̃f33

Performence
˜̃
f41

˜̃
f42

˜̃
f43













where

˜̃
f11 = ((0.57, 0.77, 0.77, 0.93; 1, 1), (0.67, 0.77, 0.77, 0.85; 0.9, 0.9))
˜̃
f12 = ((0.63, 0.83, 0.83, 0.97; 1, 1), (0.73, 0.83, 0.83, 0.9; 0.9, 0.9))
˜̃f13 = ((0.7, 0.87, 0.87, 0.97; 1, 1), (0.78, 0.87, 0.87, 0.92; 0.9, 0.9))
˜̃
f21 = ((0.77, 0.93, 0.93, 1.00; 1, 1), (0.85, 0.93, 0.93, 0.97; 0.9, 0.9))
˜̃
f22 = ((0.7, 0.87, 0.87, 0.97; 1, 1), (0.78, 0.87, 0.87, 0.92; 0.9, 0.9))
˜̃f23 = ((0.83, 0.97, 0.97, 1; 1, 1), (0.9, 0.97, 0.97, 0.98; 0.9, 0.9))
˜̃f31 = ((0.77, 0.93, 0.93, 1; 1, 1), (0.85, 0.93, 0.93, 0.97; 0.9, 0.9))
˜̃
f32 = ((0.83, 0.97, 0.97, 1; 1, 1), (0.90, 0.97, 0.97, 0.98; 0.9, 0.9))
˜̃f33 = ((0.43, 0.63, 0.63, 0.83; 1, 1), (0.53, 0.63, 0.63, 0.73; 0.9, 0.9))
˜̃f41 = ((0.77, 0.93, 0.93, 1; 1, 1), (0.85, 0.93, 0.93, 0.97; 0.9, 0.9))
˜̃
f42 = ((0.83, 0.97, 0.97, 1; 1, 1), (0.90, 0.97, 0.97, 0.98; 0.9, 0.9))
˜̃
f43 = ((0.77, 0.93, 0.93, 1.0; 1, 1), (0.85, 0.93, 0.93, 0.97; 0.9, 0.9))

Step 2: Based on Table 10 construct weighting matrices W1, W2 and W3 and then
obtain the average weighting matrix Was following:

W = [ ˜̃w1
˜̃w2

˜̃w3
˜̃w4]
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where

˜̃w1 = ((0.83, 0.97, 0.97, 1; 1, 1), (0.9, 0.97, 0.97, 0.98, 0.9, 0.9))
˜̃w2 = ((0.83, 0.97, 0.97, 1; 1, 1), (0.9, 0.97, 0.97, 0.98; 0.9, 0.9))
˜̃w3 = ((0.43, 0.63, 0.63, 0.83; 1, 1), (0.53, 0.63, 0.63, 0.73; 0.9, 0.9))
˜̃w4 = ((0.77, 0.93, 0.93, 1; 1, 1), (0.85, 0.93, 0.93, 0.97; 0.9, 0.9))

Step 3: The weighted decision matrix Y W is obtained bellow:

Y W =









x1 x2 x3

Safety ˜̃v11
˜̃v12

˜̃v13

Price ˜̃v21
˜̃v22

˜̃v23

Appearance ˜̃v31
˜̃v32

˜̃v33

Performance ˜̃v41
˜̃v42

˜̃v43









where

˜̃v11 = ((0.47, 0.74, 0.74, 0.93; 1, 1), (0.6, 0.74, 0.74, 0.84; 0.9, 0.9))
˜̃v12 = ((0.53, 0.81, 0.81, 0.97; 1, 1), (0.66, 0.81, 0.81, 0.89; 0.9, 0.9))
˜̃v13 = ((0.58, 0.84, 0.84, 0.97; 1, 1), (0.71, 0.84, 0.84, 0.9; 0.9, 0.9))
˜̃v21 = ((0.64, 0.9, 0.9, 1; 1, 1), (0.77, 0.9, 0.9, 0.95; 0.9, 0.9))
˜̃v22 = ((0.58, 0.84, 0.84, 0.97; 1, 1), (0.71, 0.84, 0.84, 0.9; 0.9, 0.9))
˜̃v23 = ((0.69, 0.93, 0.93, 1; 1, 1), (0.81, 0.93, 0.93, 0.97; 0.9, 0.9))
˜̃v31 = ((0.33, 0.59, 0.59, 0.83; 1, 1), (0.45, 0.59, 0.59, 0.71; 0.9, 0.9))
˜̃v32 = ((0.36, 0.61, 0.61, 0.83; 1, 1), (0.48, 0.61, 0.61, 0.72; 0.9, 0.9))
˜̃v33 = ((0.19, 0.4, 0.4, 0.69; 1, 1), (0.28, 0.4, 0.4, 0.54; 0.9, 0.9))
˜̃v41 = ((0.59, 0.87, 0.87, 1; 1, 1), (0.72, 0.87, 0.87, 0.93; 0.9, 0.9))
˜̃v42 = ((0.59, 0.87, 0.87, 1; 1, 1), (0.72, 0.87, 0.87, 0.93; 0.9, 0.9))
˜̃v43 = ((0.64, 0.9, 0.9, 1; 1, 1), (0.77, 0.9, 0.9, 0.95; 0.9, 0.9))

Step 4: The FPIS and FNIS are as follows:

S+ =

{

(1, 1, 1, 1; 1, 1) , for benefit attributes

(0, 0, 0, 0; 1, 1) , for cost attributes

S− =

{

(0, 0, 0, 0; 1, 1) , for benefit attributes

(1, 1, 1, 1; 1, 1) , for cost attributes

Step 5: The values of dU+(xj) , dL+(xj), dU−(xj) and dL−(xj), (1 ≤ j ≤ 3) are listed
in following table:

Table 12
The values of dU+(xj), dL+(xj), dU−(xj), dL−(xj)

j dU+(xj) dL+(xj) dU−(xj) dL−(xj)

1 1.87 1.76 2.39 2.32

2 1.75 1.62 2.51 2.45

3 1.93 1.84 2.31 2.23

Step 6: The values of C1(xj), C2(xj) and C∗(xj), (1 ≤ j ≤ 3) are listed bellow in
Table 13:
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Table 13
The values of C1(xj), C2(xj) and C∗(xj),

j C1(xj) C2(xj) C∗(xj)

1 0.56 0.57 0.565

2 0.59 0.6 0.595

3 0.54 0.55 0.545

Step 7: We have C∗(x3) < C∗(x1) < C∗(x2) so the preference of alternatives is:
x3 < x1 < x2, as can be seen the results are completely similar to the results in [7, 8]. It
should be noted that the number of operations of the proposed method in steps 4, 5 and 6
is about 108 while in Chen’s method [7] the number is about 1342 and in the method of [8]
is very bigger.

6 Conclusion

In this paper we have introduced an extension of fuzzy TOPSIS based on the interval
type-2 fuzzy sets, for handling fuzzy multiple attributes group decision-making problems.
The proposed method is based on obtaining FPIS and FNIS in the form of interval type-2
fuzzy sets without ranking the elements of decision matrix. As numerical examples have
shown the proposed method can cause to correct solution with less computational attempt
than existing methods.
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