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Abstract

This article deals with the use of an appropriate model in determining the induced current distribution
on finite-width strip electromagnetic scatterer. For this purpose, electric field integral equation (EFIE)
as a mathematical model is surveyed and used for modeling of the problem. An appropriate numerical
method is then proposed to obtain the approximate numerical results for the EFIE. The results are
given in both TM and TE polarizations.
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1 Introduction

V
aluable efforts have been spent, by re-
searchers, on introducing novel ideas for the

solution of various functional equations (for ex-
ample, see [3, 4, 10, 16, 17]). Integral equation
technique is a well-known approach for model-
ing of scattering problems. Traditionally, most of
the numerical methods for the solution of these
models use basis functions including, for example,
characteristic basis functions [18], Rao, Wilton,
and Glisson (see references of [13]), radial basis
functions [11], Fourier series [12], wavelets [8, 9],
etc. Some methods solve the integral equation
model using entire domain basis functions [14]
and some of them use the singular integral equa-
tion approach [19, 15]. Some researchers have
proposed modified or hybrid methods to increase
the computational efficiency of the traditional ap-
proaches. A regularized combined field integral
equation (CFIE) pertinent to the analysis of scat-
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tering from 2-D perfect electrically conducting
objects is presented in [2], in which the regu-
larization is achieved via analytical inversion of
the hypersingular part of the CFIE. An alter-
nate form of the CFIE is introduced in [1] which
is free of many of the deficiencies of traditional
formulations for smooth, convex geometries. A
mixed-domain Galerkin expansion is shown in [7]
to lead to a computationally efficient formulation
for classes of scattering problems involving elec-
trically large two-dimensional scatterers with lo-
calized discontinuities.

This article focuses on using the integral equa-
tion model to survey the problem of electromag-
netic scattering from finite-width strips. Firstly,
the EFIE is surveyed as a mathematical model for
electromagnetic scattering from arbitrary bodies
and then it is simplified to be matched with the
main problem. Since the obtained model has
no analytical solution, hence an approximation
method is presented for solution of the problem.
For determining the scattered field we must know
the current density on the strip, therefore the
plots of surface current are given for different con-
ditions.
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2 EFIE model

The EFIE is based on the boundary condition
that the total tangential electric field on a per-
fectly electric conducting (PEC) surface of scat-
terer is zero [5]. This can be expressed as

Et
t(r = rs) = Ei

t(r = rs) +Es
t(r = rs)

= 0, on S,
(2.1)

or

Es
t(r = rs) = −Ei

t(r = rs), on S, (2.2)

where S is the conducting surface of the scat-
terer, r = rs is the position vector of any point
on the surface of the scatterer, and Ei, Es, and
Et are respectively the incident, scattered, and
total electric fields. Also, subscript t indicates
tangential components.

The incident field that impinges on the surface
of the scatterer induces on it an electric current
density Js which in turn radiates the scattered
field. The scattered field everywhere can be found
using the following equation [5]:

Es(r) = −jωA− j
1

ωµϵ
∇(∇ ·A)

= −j
1

ωµϵ

[
ω2µϵA+∇(∇ ·A)

]
,

(2.3)

where ϵ is the permittivity of the medium, µ is
the permeability of the medium, ω is the angle
frequency of the incident field, ∇ is the gradient
operator, j is imaginary unit, and A is the mag-
netic vector potential defined as

A(r) = µ

∫∫
S
Js(r

′)
e−jβR

4πR
ds′, (2.4)

where R is the distance from source point to the
observation point.

Equations (2.3) and (2.4) can also be expressed
as [5]

(2.5)
Es(r) = −j

η

β

[
β2

∫∫
S
Js(r

′)G(r, r′)ds′

+∇
∫∫

S
∇′ · Js(r

′)G(r, r′)ds′
]
,

where η is the intrinsic impedance of the medium,
β is the phase constant, r and r′ are position vec-
tors of the observation point and source point re-
spectively, and

G(r, r′) =
e−jβR

4πR
, (2.6)

and

R = |r− r′|. (2.7)

In Eq. (2.5), ∇ and ∇′ are respectively the gra-
dients with respect to the observation and source
coordinates, and G(r, r′) is referred to as Green’s
function for a three-dimensional scatterer.

If the observations are restricted on the surface
of the scatterer (r = rs), then Eq. (2.5) through
Eqs. (2.6) and (2.7) can be expressed using
Eq. (2.2) as

j η
β

[
β2
∫ ∫

S Js(r
′)G(rs, r

′)ds′+

∇
∫ ∫

S
∇′ · Js(r

′)G(rs, r
′)ds′] = Ei

t(r = rs).

(2.8)
Because the right side of Eq. (2.8) is expressed
in terms of the known incident electric field, it is
referred to as the electric field integral equation.
It can be used to find the current density Js(r

′)
at any point r = r′ on the scatterer. It should
be noted that Eq. (2.8) is actually an integro-
differential equation, but usually it is referred to
as an integral equation.

Equation (2.8) is a general surface EFIE for
three-dimensional problems and its form can be
simplified for two-dimensional geometries. Con-
sidering cylindrical coordinates system, it is as-
sumed that the scatterer is very long in the ±z
direction and is parallel to the z-axis. After sev-
eral steps of mathematical operations, the two-
dimensional EFIE for the case of TM polarization
can be concluded form (2.8) as [5]

βη

4

∫
C
Iz(ρ

′)H
(2)
0

(
β|ρm − ρ′|

)
dc′ = Ei

z(ρm),

(2.9)

where H
(2)
0 is Hankel function of the second kind

of zero order, ρm is position vector of any observa-
tion point on the scatterer, ρ′ is position vector of
any source point on the scatterer, C is perimeter
of the scatterer, I is the surface current distribu-
tion on the scatterer, Ei is the incident electric
field, β is the phase constant, and η is intrinsic
impedance of the medium. For the TE polariza-
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tion we have [5]

η

4β

{
β2

∫
C
Ic(ρ

′)
[
ĉm.ĉ′H

(2)
0

(
β|ρm − ρ′|

)]
dc′

+
d

dc

[
∇.

∫
C
Ic(ρ

′)
[
ĉ′H

(2)
0

(
β|ρm − ρ′|

)]
dc′
]}

= −Ei
c(ρm),

(2.10)

where ĉm and ĉ′ are unit vectors tangent to the
scatterer perimeter at the observation and source
points, respectively. We see that the EFIE, for
both TM and TE polarizations, has the form of
Fredholm integral equation of the first kind.

In general, (2.9) and (2.10) do not have ana-
lytical solutions. Therefore, we have to obtain
approximate solutions for them by using a nu-
merical method.

Figure 1: Finite-width strip encountered by
an incoming plane wave.

3 Approximate solution of
EFIE for finite-width con-
ducting strip

Now, the problem of electromagnetic scattering
from a strip is solved. In Figure 1, there is a per-
fect electrically conducting strip that is very long
in the ±z direction. This strip is encountered by
an incoming plane wave. Both TM and TE polar-
izations are analyzed here. If the incoming plane
wave has a polarization with its electric field par-
allel to the z-axis and the magnetic field of this
wave is entirely in the x− y plane (and is there-
fore transverse to the z-axis), then such a wave is

called transverse magnetic (TM) polarized wave.
This polarization therefore produces a current on
the strip that flows along the z-axis [6]. If it has a
polarization with its magnetic field parallel to the
z-axis and the electric field of this wave is entirely
in the x − y plane , then it is called transverse
electric (TE) polarized wave. This polarization
produces a current on the strip that flows along
the x-axis.

For determining the current density in TM or
TE polarization, we must find an approximate
solution for (2.9) or (2.10), respectively. For this
purpose, we use an appropriate set of basis func-
tions surveyed in the following subsection.

3.1 Basis functions

Let us consider an m-set of truncated cosines for
any positive integer m over real interval [a, b) as

Ti(t) =
cos (γ(t− a− ih− h

2 )), a+ ih 6 t,

t < a+ (i+ 1)h,

0, otherwise,

(3.11)
where h = b−a

m , i = 0, 1, . . . ,m − 1, and γ has a
real value and may be considered as a regulariza-
tion factor.

The above definition can obviously make a set
of disjoint and orthogonal basis functions. For
arbitrary i and j, such that i = 0, 1, . . . ,m − 1
and j = 0, 1, . . . ,m− 1, we have

⟨Ti, Tj⟩ =
∫ b

a
Ti(t)Tj(t)dt

=

{
h
2 + 1

2γ sin(γh), i = j,

0, i ̸= j,

(3.12)

in which ⟨., .⟩ indicates the inner product.
Moreover, it is clear that function Ti may be

considered as follows:

Ti(t) = φi(t) cos (γ(t− a− ih− h

2
)), (3.13)

where φi is ith block-pulse function (BPF) de-
fined as

φi(t) =

{
1, a+ ih 6 t < a+ (i+ 1)h,

0, otherwise.
(3.14)

The disjointness and orthogonality properties
of Ti’s can make them very efficient for approxi-
mation of functions. The expansion of a function



202 Z. Masouri, et al /IJIM Vol. 5, No. 3 (2013) 199-204

f over [a, b) with respect to Ti, i = 0, 1, . . . ,m−1,
may be compactly written as

f(t) ≃
m−1∑
i=0

fiTi(t), (3.15)

where fi’s, the expansion coefficients, may be
computed by

fi = ⟨f, Ti⟩

=

∫ b

a
f(t)Ti(t)dt.

(3.16)

In the next subsection, we will formulate a nu-
merical method based on these functions for solv-
ing the EFIE for the strip problem.

3.2 Formulation of numerical method

Let us consider first kind Fredholm integral equa-
tion of the form∫ b

a
k(s, t)x(t)dt = f(s), a 6 s < b, (3.17)

where the functions k and f are known but x is
the unknown function to be determined. Also,
k ∈ L2([a, b)× [a, b)) and f ∈ L2([a, b)).

Approximating the unknown function x with
respect to the truncated cosines using (3.15) gives

x(t) ≃
m−1∑
i=0

xiTi(t), (3.18)

where xi’s are defined as in (3.16). Substituting
(3.18) into (3.17) results in∫ b

a
k(s, t)

(
m−1∑
i=0

xiTi(t)

)
dt = f(s), (3.19)

or

m−1∑
i=0

xi

∫ b

a
k(s, t)Ti(t)dt = f(s). (3.20)

Now, choosing m appropriate points sj , j =
0, 1, . . . ,m− 1, we obtain

m−1∑
i=0

xi

∫ b

a
k(sj , t)Ti(t)dt = f(sj), j = 0, 1, . . . ,m−1.

(3.21)
(3.21) is a linear system of m algebraic equa-

tions in terms of m unknown coefficients xi. Solu-
tion of this systems gives xi’s, and then we obtain
an approximate solution x(s) ≃

∑m−1
i=0 xiTi(s)

for (3.17).

3.3 Numerical results

The results of applying the proposed numerical
method in solving the EFIE for the finite-width
strip are given here. The medium is assumed to
be free space. Figure 2 shows the current distri-
bution across the strip obtained by the method
for β = 2π, ϕ0 = π

2 , a = 3λ
2 , and γ = 1, in

TM polarization. Also, Figure 3 gives the results
in TE polarization. For a = 6λ, the results in
TM and TE polarizations are respectively given
in Figures 4 and 5.

Figure 2: Current distribution across the
strip for β = 2π, ϕ0 = π

2 , a = 3λ
2 , and γ = 1,

in TM polarization.

Figure 3: The results in TE polarization.

4 Conclusion

We surveyed, in this article, an appropriate math-
ematical model for calculating the current density
on a finite-width strip scatterer. We saw that the
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Figure 4: Current distribution across the
strip for β = 2π, ϕ0 = π

2 , a = 6λ, and γ = 1,
in TM polarization.

Figure 5: The results in TE polarization.

analysis of the problem in TM and TE polariza-
tions needs different models. Two integral equa-
tions were mentioned for modeling of the problem
in both polarizations. A numerical method was
proposed for the solution of the two integral equa-
tions because they have no analytical solution.
Finally the results were given for both polariza-
tions.
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