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Abstract
In this paper, we propose a bounded DEA based model to measure the overall risk of fail-
ure modes. In the proposed model risk is measured within the range of an interval, whose
performance is definitely superior to any one. The risks, obtained from bounded DEA
models, turn out to be all intervals and are referred to as interval risk, which combine the
best and the worst relative risk in a reasonable manner to give an overall assessment of
performances for all failure modes. Assessor’s preference information on input and output
weights is also incorporated into bounded DEA models reasonably and conveniently. A
practical example is provided to compare the proposed model with those in the literature.

Keywords : Failure mode and effect analysis (FMEA); Data envelopment analysis (DEA); Risk

priority number.

——————————————————————————————————

1 Introduction

Failure mode and effects analysis (FMEA) has proven to be a useful and powerful
tool in assessing potential failures and preventing them from occurring. According to
definition of Chrysler [7] failure mode and effect analysis can be described as a set of
purposeful activities to identify and evaluate potential failures in productions, processes
and their effects. Failure means unability to fulfill to desired process or necessity function
that results in a low quality a bind of problem or service as perceived as a reason of
dissatisfication by the customer. FMEA is a preventation methodology that have the
capacity to with engineering and permanent method. This method is very significant in
showing potential failures in production, process and provides effective management for
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risk factors [12]. FMEA was first proposed by NASA in 1963 for their obvious reliability
requirements [15]. Since then, it has been extensively used as a powerful technique for
system safety and reliability analysis of products and processes in wide range of industries–
particularly aerospace, nuclear, automotive and medical [8, 9]. This technique is yet
another powerful tool used by system safety and reliability engineers/analysts to identify
critical parts, functions and components whose failure will lead to undesirable outcomes
such as production loss, injury or even an accident. The main objective of FMEA is to
discover and prioritize the potential failure modes by computing risk priority numbers
(RPNs),which is a product of the risk factors occurrence (O), severity (S) and detection
(D) [18].Occurrence and severity are the frequency and seriousness (effects) of the failure,
and detection is the ability to detect the failure before it reaches the customer. The three
risk factors are evaluated using the ratings (also called ranks or scores) from 1 to 10.
Generally, the higher RPN of a failure mode, the more important degree it should be
assigned. With respect to the scores of RPNs, the failure modes can be ranked and then
proper actions will be preferentially taken on the high-risk failure modes. In fact, different
combinations of O, S and D may produce exactly the same value of RPN, but their hidden
risk implications may be totally different. For example, two different events with the values
of 2, 3, 2 and 4, 1, 3 for O, S and D, respectively, have the same RPN value of 12. However,
the hidden risk implications of the two events may not necessarily be the same. This may
cause a waste of resources and time, and in some cases a high risk event may go noticed.
The relative importance among O, s and D is not taken into consideration. The three risk
factors are assumed to be equally important. This may not be the case when considering
a practical application of FMEA. To overcome the drawbacks listed above, a number of
approaches have been suggested in the literature. For Example, Bevilacqua et al. [2]
defined RPN as the weighted sum of six parameters (safety, machine importance for the
process, maintenance costs, failure frequency, downtime length, and operating conditions)
multiplied by a seventh factor (machine access difficulty), where the relative importance
of the six attributes was estimated using pairwise comparisons. Braglia et al. [3] presented
the method of technique for order preference by similarity to ideal solution (TOPSIS) for
prioritizing failure modes. In the method, fuzzy logic theory was used to evaluate O, S,
D and their relative importance weights. In [4], the authors utilized the grey theory for
FMEA, but the grey relational degrees were computed using the traditional scores 1–10 for
the three risk factors rather than fuzzy linguistic terms. Bowles and Pelez [13] described a
fuzzy logic based approach for prioritizing failures in a system FMEA, which uses linguistic
terms to describe O, S, D, and the risks of failures. The relationships between the risks
and O, S, D were characterized by fuzzy if–then rules extracted from expert knowledge
and expertise. Crisp rankings for O, S, D were fuzzified to match the premise of each
possible if−then rule. All the rules that have any truth in their premises were fired
to contribute to a fuzzy conclusion. The fuzzy conclusion was then defuzzified by the
weighted mean of maximum method (WMoM) as the ranking value of the risk priority.
Yang et al. [22] presented an efficient fuzzy rule–based Bayesian reasoning (FuRBaR)
approach for prioritizing failures in FMEA. The technique was specifically developed to
deal with some of the drawbacks concerning the use of conventional fuzzy logic (i.e. rule–
based) methods in FMEA. In their approach, subjective belief degrees were assigned to
the consequent part of the rules to model the incompleteness encountered in establishing
the knowledge base. A Bayesian reasoning mechanism was then used to aggregate all
relevant rules for assessing and prioritizing potential failure modes. The applicability of
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the proposed approach was demonstrated by studying a maritime collision risk due to
technical failures. Sharma et al. [17] used a fuzzy rule-based inference method and the
grey theory for prioritizing failure modes. Fuzzy linguistic terms are used to represent
the risk degree for O, S, D and RPNs in the fuzzy rule base. Chin et al. [14] proposed
an FMEA using the group-based evidential reasoning (ER) approach to capture FMEA
team members’ diversity opinions and prioritize failure modes under different types of
uncertainties such as incomplete assessment, ignorance and intervals. The risk priority
model was developed using the group-based ER approach, which includes assessing risk
factors using belief structures, synthesizing individual belief structures into group belief
structures, aggregating the group belief structures into overall belief structures, converting
the overall belief structures into expected risk scores, and ranking the expected risk scores
using the minimax regret approach (MRA). Wang et al. [21] proposed a definition for
the fuzzy RPNs using fuzzy weighted geometric means (FWGM). The fuzzy RPNs can
be calculated by using α-level sets and a linear programming model and defuzzified by
the centroid defuzzification method for the final ranking of the failure modes. In the
method, different combinations of O, S and D can produce different fuzzy RPNs only when
assigning different importance weights to O, S and D. In spite of the fact that much effort
has been paid to the improvement of RPN, the improved methods either need to specify
or determine the weights of risk factors in advance or take no account of them at all. It is
argued that the specification or determination of risk factor weights is not easy because
different decision makers (DMs) may have distinct judgments or preferences. Different
failure modes have different consequences. The specification or determination of a fixed
set of risk factor weights for all the failure modes might be inappropriate, particularly in
the case with a large number of failure modes. In other words, it might be a better choice
to use different sets of risk factor weights for different failure modes when there are a
large number of failure modes to be prioritized. In this aspect, Garcia et al. [11] proposed
a fuzzy data envelopment analysis (DEA) approach for FMEA, which does not require
specifying or determining risk factor weights subjectively. Their approach, however, was
computationally very complicated and also could not produce a full ranking for the failure
modes to be prioritized. In this study we present an integrated model based on a new
DEA model and Chin’s approach [6] to prioritize the risk factors. It is shown that the
proposed model has better discriminating power than the traditional DEA efficiency and
Chin’s model [6].
The rest of the paper is organized as follows. In the following section, we review DEA
models for FMEA. In section 3, we illustrate our proposed method. A numerical examples
is provided in section 4 to demonstrate the potential applications of the proposed FMEA
and its advantages. Conclusions appear in section 5.

2 DEA models for FMEA

In this section we give a brief description of DEA and the geometric average method-
ology. Suppose we have a set of n peer DMUs, {DMUj : j = 1, 2, ..., n}, which produce
multiple outputs yrj (r = 1, 2, ..., s), by utilizing multiple inputs xij (i = 1, 2, ...,m). Let
the inputs and outputs for DMUj be Xj = (x1j , x2j , ..., xmj)

t and Yj = (y1j , y2j , ..., ysj)
t,
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respectively. The efficiency of the DMUo(o = 1, 2, ..., n) is measured as follow:

θ =

s∑
r=1

µryro

m∑
i=1

υixio

, (2.1)

where µr is the output weight and υi is the input weight. The optimistic efficiency and
pessimistic efficiency of DMUo is measured by the following DEA models, respectively:

max θo =

s∑
r=1

µryro

m∑
i=1

υixio

s.t. θj =

s∑
r=1

µryrj

m∑
i=1

υixij

≤ 1 j = 1, ..., n

µr, υi ≥ ε r = 1, ..., s, i = 1, ...,m

(2.2)

min φo =

s∑
r=1

µryro

m∑
i=1

υixio

s.t. φj =

s∑
r=1

µryrj

m∑
i=1

υixij

≥ 1 j = 1, ..., n

µr, υi ≥ ε r = 1, ..., s, i = 1, ...,m

(2.3)

It is a common knowledge that optimistic efficiency and pessimistic efficiency should form

an interval when measured under the same constraints such as α ≤
n∑

r=1

uryrj ≤ 1, (j =

1, . . . , n) with 0 < α < min
{
θ∗j
/
φ∗
j

}
, j = 1, . . . , n. The efficiency interval of DMUj

could accordingly be expressed as [αφ∗
j , θ

∗
j ] if the value of α is small enough. To avoid the

difficulty in determining the value of α, Wang et al. [21] suggested a geometric average
efficiency, determined by

ϕ∗
j =

√
αφ∗

jθ
∗
j j = 1, ..., n, (2.4)

where θ∗j and ϕ∗
j are respectively the optimistic and pessimistic efficiencies of DMUj(j =

1, ..., n). The geometric average efficiency considers not only the optimistic efficiency of a
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DMU, but also its pessimistic efficiency. It measures the overall efficiency of a DMU and
considers both sides of a coin. The integration of two extreme efficiencies, optimistic and
pessimistic, into a geometric average efficiency is undoubtedly more meaningful and more
comprehensive than the use of either of the two efficiencies.
When efficiency intervals [αφ∗

j , θ
∗
j ], j = 1, . . . , n, are compared through their geometric

midpoints
√

φ∗
jθ

∗
j , the rankings among the n DMUs depend only upon their geometric

average efficiencies ϕ∗
j =

√
φ∗
jθ

∗
j , j = 1, . . . , n, and have nothing to do with the value of α.

This good property enables the decision maker not to worry about how to determine the
value of α. He/She can therefore leave it alone and compare directly the geometric average
efficiencies of the n DMUs to determine their overall performances and rankings [6].
Suppose there are n failure modes denoted by FMi(i = 1, . . . , n) to be prioritized, each
being evaluated against m risk factors denoted by RFj(j = 1, . . . ,m). Let rij , (i =
1, . . . , n; j = 1, . . . ,m) be the ratings of FMi on RFj and wj be the weight of risk factor
RFj , (j = 1, . . . ,m). Since the RPN defined as the product of three risk factors O, S and
D has been largely criticized for its mathematical formula and equal treatment of the risk
factors, we define in this paper the risks of failures with a different mathematical form,
which can be either of the following:

Ri =
m∑
j=1

wjrij , i = 1, ..., n, (2.5)

Ri =

m∏
j=1

r
wj

ij . i = 1, ..., n, (2.6)

Eq.(2.5) defines the risk of each failure mode as the weighted sum ofm risk factors, whereas
Eq.(2.6) as the weighted product of m risk factors. For convenience to distinguish between
the two risks, we refer to the risk determined by Eq.(2.5) as additive risk and the risk by
Eq.(2.6) as multiplicative risk, respectively. It is worthwhile to point out that the defini-
tion for additive risks was first proposed by Braglia et al. [1], who defined the RPN as
the weighted sum of O, S and D, whereas the definition for multiplicative risks was first
proposed by Wang et al [21], who defined the RPN as the fuzzy weighted geometric mean
of the three risk factors O, S, and D, which they referred to as fuzzy risk priority number
(FRPN).
The traditional DEA often assigns too many zeros to input and output weights, leading
to optimistic efficiency being unreasonably high and pessimistic efficiency being extraor-
dinarily low. To avoid this from happening in FMEA, we consider imposing a constraint
on the ratio of maximum weight to minimum weight. According to Saaty’s AHP [19]
method, the maximum value, as a ratio of the comparative importance of a criterion over
another, can assume to be 9. We therefore constrain the ratio of maximum weight to
minimum weight within the range of one and nine. That is,

1 ≤ max(w1, ..., wm)

min(w1, ..., wm)
≤ 9 (2.7)

The main reasons for us to set the maximum ratio as 9 are based on the following obser-
vations:
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• The pairwise comparison matrices in the AHP are the most widely used approaches for
estimating the relative importance weights of decision attributes or criteria, in which the
maximum ratio scale between the importance of two attributes or criteria are usually not
greater than 9.
• Risk factors O, S and D are all evaluated using the ratings between 1 and 10, where 1
represents no risk. Accordingly, their relative importance should also be evaluated using
similar ratings. Due to the fact that no importance makes no sense, the ratings used for
evaluating the relative importance of risk factors should therefore be defined as 1–9 rather
than 1–10. As a result, the maximum ratio between the importance of two risk factors is
less than or equal to 9.
The left-hand-side of Eq.(2.7) is trivial and holds always. Its right hand side is equivalent
to the following:

max

{
wj

wk
, j, k = 1, ...,m; j ̸= k

}
(2.8)

which can be further rewritten as

wj − 9wk ≤ 0, j, k = 1, ...,m; j ̸= k (2.9)

According to the DEA models introduced,we know that optimistic efficiency and pes-
simistic efficiency of DMUo is measured by (2.10) and (2.11):

max θo =

s∑
r=1

uryr0

m∑
i=1

vixi0

s.t. θj =

s∑
r=1

uryrj

m∑
i=1

vixij

≤ 1, j = 1, ..., n,

ur, vi ≥ ε, r = 1, ..., s; i = 1, ...,m (2.10)

min φo =

s∑
r=1

uryr0

m∑
i=1

vixi0

s.t. φj =

s∑
r=1

uryrj

m∑
i=1

vixij

≥ 1, j = 1, ..., n,

ur, vi ≥ ε, r = 1, ..., s; i = 1, ...,m (2.11)
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According to above models , FMEA models built for measuring the maximum and mini-
mum risks of each failure mode, as shown below:

Rmax
o = max Ro

s.t.

{
Ri ≤ 1, i = 1, ..., n,
wj − 9wk ≤ 0, j, k = 1, ...,m; k ̸= j

(2.12)

Rmin
o = min Ro

s.t.

{
Ri ≥ 1, i = 1, ..., n,
wj − 9wk ≤ 0, j, k = 1, ...,m; k ̸= j

(2.13)

where Ro is the risk of the failure mode under evaluation. The overall risk of each failure
mode is defined by Eq.(2.4) as the geometric average of the maximum and minimum risks
of the failure mode. That is,

R̄i =
√

Rmax
i .Rmin

i , i = 1, ..., n (2.14)

Therefor, n failure modes FMi (i = 1, . . . , n) can be easily prioritized by their geometric
average risks Ri (i = 1, . . . , n). The above models (2.12) and (2.13) are developed for
additive risks. For multiplicative risks defined by Eq.(2.6), the maximum and minimum
risk models can be built in the same way, but the ratings and risks need to be transformed
into logarithmic scales for linearity. The two models are constructed as follows:

ln Rmax
o = max ln Ro

s.t.

{
lnRi ≤ 1, i = 1, ..., n,
wj − 9wk ≤ 0, j, k = 1, ...,m; k ̸= j

(2.15)

ln Rmin
o = min ln Ro

s.t.

{
lnRi ≥ 1, i = 1, ..., n,
wj − 9wk ≤ 0, j, k = 1, ...,m; k ̸= j

(2.16)

Accordingly, the geometric average risk is defined as

R̄i =
√

exp(lnRmax
i ). exp(lnRmin

i ), i = 1, ..., n. (2.17)

where EXP(.) is the exponential function.

3 Proposed model

In order to apply DEA method in determining α value for FMEA risk methods, first we
should define ideal failure item and anti-ideal one. It is known that in FMEA, failure item
has the first priority an high risk. In other word it has the highest degree for risk factors.
Definition 1. Anti-ideal failure item is a virtual item that has the lowest degree among
risk factors.
Definition 2. Ideal failure item is a virtual item that has the highest degree among risk
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factors.
Based on the above definitions, we denote the input and output values of ideal DMU
(IDMU) by xmin

i (i = 1, ...,m) & ymax
r (i = 1, ..., s) and denote the input and output values

of anti-ideal dMU (ADMU) by xmax
i (i = 1, ...,m), ymin

r (i = 1, ..., s). These values are
determined as follows:

xmin
i = min

j
{xij} and xmax

i = max
j

{xij} , i = 1, ...,m (3.18)

ymin
r = min

r
{yrj} and ymax

r = max
r

{yrj} , r = 1, ..., s (3.19)

According to the concept of efficiency, the efficiency of ADMU is defined as follows:

θADMU =

s∑
r=1

ury
min
r

m∑
i=1

vix
min
i

(3.20)

Let θ∗
ADMU

be the optimistic efficiency of ADMU; then it can be obtained from the follow-
ing fractional programming model:

max θADMU =

s∑
r=1

ury
min
r

m∑
i=1

vix
max
i

s.t. θj =

s∑
r=1

uryrj

m∑
i=1

vixij

≤ 1, j = 1, ..., n,

ur, vi ≥ ε, r = 1, ..., s; i = 1, ...,m, (3.21)

The fractional programming model (3.21) is converted to the following LP model, which
can be solved readily.

max θADMU =

s∑
r=1

ury
min
r

s.t.

s∑
r=1

uryrj −
m∑
i=1

vixij ≤ 0 , j = 1, ..., n,

m∑
i=1

vix
max
i = 1

ur, vi ≥ ε, r = 1, ..., s; i = 1, ...,m, (3.22)
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Similarly, efficiency of IDMU is defined as

φIDMU =

s∑
r=1

ury
max
r

m∑
i=1

vix
min
i

(3.23)

Assuming that φ∗
IDMU is the pessimistic efficiency of IDMU, it can be obtained from the

following fractional programming model

min φIDMU =

s∑
r=1

ury
max
r

m∑
i=1

vix
min
i

s.t. φj =

s∑
r=1

uryrj

m∑
i=1

vixij

≥ 1, j = 1, ..., n,

ur, vi ≥ ε, r = 1, ..., s; i = 1, ...,m, (3.24)

which can be solved using the following LP model:

min φIDMU =
s∑

r=1

ury
max
r

s.t.
s∑

r=1

uryrj −
m∑
i=1

vixij ≥ 0 , j = 1, ..., n,

m∑
i=1

vix
min
i = 1

ur, vi ≥ ε, r = 1, ..., s; i = 1, ...,m, (3.25)

Based on the above discussion, we have θ∗
ADMU

≤ min
j=1,...,n

{
θ∗j
}
and θ∗

IDMU
≥ max

j=1,...,n

{
θ∗j
}
.

Now we determine the parameter for all intervals [αφ∗
o, θ

∗
o ] (j = 1, . . . , n).

min
j=1,...,n

{
θ∗j

/
φ∗
j

}
≥

min
j=1,...,n

{
θ∗j
}

max
j=1,...,n

{
φ∗
j

} ≥
θ∗
ADMU

φ∗
IDMU

(3.26)

If we set α = θ∗
ADMU

/
φ∗

IDMU , then we will have no problem in determining α. After

determining α, we will see that the efficiencies of DMUs cannot be smaller than it.
The above method based of interval DEA is defined for determination of α value. So our
proposed method is identified for application of DEA in FMEA.
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In additive risk mode, Rmax
o is calculated for ideal and anti-ideal failure item by using

model (2.12). So the following eqnarray is used to calculate α value:

α = Rmax
AFM

/
Rmax

IFM
(3.27)

After determining α value, model (2.13) is rewritten by adding a new constraint.

Rmax
o = max Ro

s.t.


Ri ≤ 1, i = 1, ..., n,
Ri ≥ α, i = 1, ..., n
wj − 9wk ≤ 0, j, k = 1, ...,m; k ̸= j

(3.28)

So the above model is used for determining values of Rmax
o failure modes. As it is seen in

model (2.13), α value has no roles in this model. So model (3.28) is used for calculating
maximum risk and model (2.13) is used for calculating minimum risk by considering α.
According to the results, the following eqnarray is used to calculate interval risk[

RL
j , R

U
j

]
=

[
αRmin

j , Rmax
j

]
(3.29)

But the question is how we rank interval numbers? Various methods have been presented
for ranking interval numbers.Yue method [23] is used for ranking interval numbers in the
present study. This method is on the basis of degree magnitude possibility of an interval
number rather than another.
The advantage of Yue method against Wang method [21] in ranking interval numbers
is that interval magnitude, lower bound and upper bound of comparative numbers have
significant effect on the ranking of interval numbers.While in Wang method, two interval
number with the same lower bound have the same ranking only if upper bound of these
two numbers would not be the maximum upper bound of ranking numbers.
The above model is developed for additive risks. For multiplicative risks defined by
Eq.(2.6), we should calculate values Rmax

o for Anti-ideal Item and Ideal Item of failure
modes in the same way. Then α value is determined by using Eq.(3.27). Regarding to the
estimated α, model (2.15) is rewritten to determine Rmax

o for each item as follows:

ln Rmax
o = max Ro

s.t.


lnRi ≤ 1, i = 1, ..., n,
lnRi ≥ ln(α), i = 1, ..., n,
wj − 9wk ≤ 0, j, k = 1, ...,m; k ̸= j

(3.30)

After determination of maximum and minimum values by model (2.16), interval risk is
calculated according to eqnarray (3.29) and the suggested method is used to prioritize
failure items.

4 An illustrative example

In this section we provide a numerical example we illustrate the potential application
of the proposal fuzzy FMEA.This example is taken from Pillay and Wang [16].
Example. The FMEA for the fishing vessel investigates four different systems which
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are structure, propulsion, electrical, and auxiliary systems. Each system is considered for
different failure modes that could lead to an accident with undesired consequences. The
effects of each failure mode on the system and vessel are studied along with the provisions
that are in place or available to mitigate or reduce risk. For each of the failure modes, the
system is investigated for any alarms or condition monitoring arrangements, which are in
place. Table 1 show the 21 identified failure modes and their ratings on the three risk
factors O, S, and D.

Table 1.
FMEA for the fishing vessel by RPN

Failure mode O S D RPN Priority ranking

Seizure 1 8 3 24 14
Breakage 1 8 3 24 14
Structural 2 8 4 64 10
Loss of output 8 8 5 320 2
Auto 6 8 6 288 3
Shaft 2 8 1 16 19
Shaft seizure 2 9 2 36 12
Gearbox 1 4 3 12 20
Hydraulic 3 2 3 18 18
Prop. blade 1 2 4 8 21
No start air 4 2 3 24 14
Generator fail 9 3 7 189 4
Complete loss 8 3 6 144 7
Complete loss 3 7 4 84 9
Loss of output 3 3 4 36 12
Loss of output 1 8 3 24 14
Contamination 4 8 5 160 6
No fuel to 2 7 7 98 8
No cooling 7 2 4 56 11
System loss 9 8 9 648 1
Loos of 9 3 6 162 5

Table 2 shows the obtained results from the models (2.12) and (2.13) as well as (2.15)
and (2.16) for additive risk and multiplicative risk, respectively, using geometric average
method.
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Table 2.
FMEA for the fishing vessel by DEA [6]

Failure Additive risks Multiplicative risks
Mode Max risk Min risk Geo ave risk Rank Max risk Min risk Geo ave risk Rank
1 0.84 1.12 0.97 12 2.36 2.95 2.64 13
2 0.84 1.12 0.97 12 2.36 2.95 2.64 13
3 0.87 1.60 1.18 9 2.46 5.46 3.66 7
4 0.94 2.16 1.43 3 2.64 7.27 4.38 3
5 0.93 2.32 1.47 2 2.62 7.73 4.51 2
6 0.83 1 0.91 16 2.32 2.72 2.51 17
7 0.94 1.23 1.08 11 2.5 4.06 3.18 11
8 0.44 1 0.67 18 1.8 2.72 2.21 19
9 0.33 1 0.57 21 1.64 2.72 2.11 21
10 0.40 1 0.63 20 1.73 2.72 2.17 20
11 0.42 1.02 0.65 19 1.81 2.76 2.24 18
12 0.93 1.85 1.31 5 2.58 5.43 3.75 6
13 0.83 1.74 1.20 8 2.46 5.11 3.54 10
14 0.78 1.60 1.12 10 2.38 5.43 3.59 9
15 0.43 1.27 0.74 17 1.84 3.75 2.63 16
16 0.84 1.12 0.97 12 2.36 2.95 2.64 13
17 0.90 1.96 1.33 4 2.56 6.69 4.14 4
18 0.80 2.05 1.28 6 2.41 6.82 4.05 5
19 0.70 1.22 0.93 15 2.26 3.22 2.7 12
20 1 3.16 1.78 1 2.72 10 5.21 1
21 0.92 1.78 1.28 7 2.57 5.14 3.63 8

4.1 Proposed model

In this case, first we should calculate values Rmax
o for Anti-ideal Item and Ideal Item.

Anti-ideal Item and Ideal Item equals minimum and maximum failure modes. However
risk factor raying of Anti-ideal Item and Ideal Item are as follow

Table 3
Ratings of Anti-ideal Item and Ideal Item factor risks

Failure modes O S D

Anti-ideal Item 1 2 1
ideal Item 9 9 9

By solving (3.22) and (3.25) for Anti-ideal Item and ideal Item, respectively,we get the
following results for additive risk:
θ∗A−Ideal = 0.2222 and φ∗

Ideal = 1.1, hence α = 0.2222
1.1 = 0.202. Regarding to the estimated

α, the following linear programming has been solved to determine Rmax
o for each 21 items:

Rmax
o = maxRo

s.t.


Ri ≤ 1, i = 1, ..., n,
Ri ≥ 0.202, i = 1, ..., n,
wj − 9wk ≤ 0, j, k = 1, ...,m; k ̸= j

Since α value has no role in evaluating Rmin
o , we use estimated values of Rmin

o in Table
2. Table 4 shows results of maximum and minimum evaluation, interval efficiency, and
priority ranking of failure mode.
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Table 4
Interval efficiency evaluation for additive and multiplicative risk.

Failure Additive risks Multiplicative risks
Mode Max risk Min risk Interval risk pi Rank Rank
1 0.84 1.12 [0.2262, 0.8443] 10.98075 12 14
2 0.84 1.12 [0.2262, 0.8444] 10.98044 13 15
3 0.87 1.60 [0.3232, 0.8666] 12.37335 8 7
4 0.94 2.16 [0.4363, 0.9444] 14.37248 3 3
5 0.93 2.32 [0.4686, 0.9333] 14.61795 2 2
6 0.83 1 [0.202, 0.8333] 10.61201 15 17
7 0.94 1.23 [0.2484, 0.9444] 12.07564 9 11
8 0.44 1 [0.202, 0.4444] 5.062353 18 19
9 0.33 1 [0.202, 0.3294] 2.727613 21 21
10 0.40 1 [0.202, 0.3964] 4.074229 20 20
11 0.40 1.02 [0.2060, 0.399] 4.162893 19 18
12 0.89 1.85 [0.3737, 0.8942] 13.25079 5 6
13 0.79 1.74 [0.3514, 0.7901] 12.05094 10 10
14 0.78 1.60 [0.3232, 0.7777] 11.5493 11 9
15 0.43 1.27 [0.2565, 0.4280] 5.293842 17 13
16 0.84 1.12 [0.2262, 0.8446] 10.98014 14 16
17 0.90 1.96 [0.3959, 0.9] 13.60016 4 4
18 0.80 2.05 [0.4141, 0.8] 12.99997 6 5
19 0.65 1.22 [0.2464, 0.6471] 8.955935 16 12
20 1 3.16 [0.6383, 1] 16.98319 1 1
21 0.86 1.78 [0.3595, 0.8610] 12.79693 7 8

In order to estimate multiplicative risk, we solved model (2.15) for Anti-ideal Item and
Ideal Item that following results were obtained
θ∗A−Ideal = 1.3098 and φ∗

Ideal = 2.8458 then α = 1.3098
2.8458 = 0.4630. Rankings prevented in

the last column of Table 4 is calculated by determining α value and solving model (3.30)
for 21 failure modes. It is clear from Table 3 that the Chin’s method could not provide a
robust ranking. For example, FM1, FM2 and FM16 have the same additive risk rank. A
similar situation holds for multiplicative risk ranking. While our method overcomes this
shortcoming. Out of 21 failure modes 12 modes have the same additive risk rank in both
methods. Whereas, when we consider multiplicative risk 17 modes have the same rank in
both methods.

5 Conclusion

In this paper we proposed a DEA based methodology for ranking failure mode risk
in FMEA. In the proposed model each FM is considered as a DMU and its best and
worse relative efficiency computed. Furthermore, theoretically the best and worst relative
efficiency showed as an interval. For this purpose, a parameter called as α used to moderate
the worst relative efficiency of DMUs. So it seems that the proposed model that uses α
measure to determine failure risk items is more effective and efficient than geometric
average method.
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