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Abstract

In this paper, the concept of pseudoconvexity and quasiconvexity for continuous -time functions are
studied and an equivalence condition for pseudoconvexity is obtained. Moreover, under pseudoconvex-
ity assumptions, some relationships between Minty and Stampacchia vector variational inequalities
and continuous-time programming problems are presented. Finally, some characterizations of the
solution sets of a single-valued continuous-time programming problem are obtained.
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1 Introduction

A
n optimization problem is characterized by its
objective function that is to be minimized

or maximized, depending upon the problem and,
for a constrained problem, a given set of con-
straints. Both constrained and unconstrained
problems can be considered and formulated as
a variational inequality problem. Variational in-
equality theory was presented by Stampacchia [1]
and applied in [2] to study for partial differential
equations with applications in mechanics. Varia-
tional inequalities are closely related with many
problems of nonlinear analysis, such as equilib-
rium problems, complementarity and fixed point
problems, see e.g. [3, 4, 5, 6].
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In 1980, vector variational inequality was intro-
duced by Giannessi [7] in the setting of finite
dimensional Euclidean space. Crespi et al. [8]
obtained that under pseudoconvexity functions,
any solution of Minty vector variational inequal-
ity is also a solution of vector optimization prob-
lem and the same result can not be extended to
quasiconvex functions. In [9], Nobakhtian consid-
ered a nonsmooth multiobjective continuous-time
problem and obtained some optimality conditions
under generalized convexity. Very recently, Ruiz-
Garzon et al. [10] studied the relationships be-
tween the Minty and the Stampacchia vector vari-
ational inequalities and vector continuous-time
programming problems under generalized convex-
ity and monotonicity assumptions.
In this paper, motivated by Ruiz-Garzon et al.
in [10], we consider Minty and Stampacchia vari-
ational inequalities and obtain some relationships
between them and multiobjective continuous-
time programming problems. The paper is or-
ganized as follows: In Section 2, some basic def-
initions and preliminary results are presented.
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Section 3 is devoted to study pseudoconvex and
quasiconvex continuous-time functions and rela-
tions between them. In Section 4, we show the
equivalence of efficient and weak efficient solu-
tions for Minty and Stampacchia variational in-
equality problems, and solutions of multiobjec-
tive continuous-time programming problems un-
der pseudoconvexity condition. Finally, in Sec-
tion 5, some conclusions are presented, which
summarize this work.

2 Preliminaries

Let I = [a, b] be a real interval and f : I ×
Rn 7→ Rp be a p-dimensional continuously dif-
ferentiable function with respect to each of its ar-
guments. For notational convenience, write x for
x(t), where x : I → Rn is continuous. The partial
derivatives of f with respect to x is defined by

fx = (
∂f

∂x1
, · · · , ∂f

∂xn
).

In this paper, we consider that X is a nonempty
convex subset of the Banach space C0[a, b] with
the norm ∥x∥= ∥x∥∞, for all x ∈ X. Consider the
following multiobjective continuous-time problem
(MCTP):

min
∫ b
a f(t, x)dt

= (
∫ b
a f1(t, x)dt, · · · ,

∫ b
a fp(t, x)dt),

such that x ∈ X.

Definition 2.1 [11] A point y ∈ X is said to be

1. an efficient solution of (MCTP), if for all
x ∈ X, the following cannot hold∫ b

a
f i(t, x)dt ≤

∫ b

a
f i(t, y)dt,

with strict inequality for at least one i ∈ P ,
that P = {1, · · · , p}.

2. a weak efficient solution of (MCTP), if for
all x ∈ X, the following cannot hold∫ b

a
f i(t, x)dt <

∫ b

a
f i(t, y)dt, ∀i ∈ P.

Now, we recall some known concepts of general-
ized convexity. Let g : I ×X 7→ R be a differen-
tiable function.

Definition 2.2 A functional
∫ b
a g(t, x)dt is said

to be

1. pseudoconvex on X, if for any x, y ∈ X, one
has ∫ b

a gx(t, y)(x− y)dt ≥ 0

⇒
∫ b
a g(t, x)dt ≥

∫ b
a g(t, y)dt

2. quasiconvex on X, if for any x, y ∈ X, one
has ∫ b

a g(t, y)dt ≤
∫ b
a g(t, x)dt

⇒
∫ b
a gx(t, x)(y − x)dt ≤ 0.

3. prequasiconvex on X, if for any x, y ∈ X and
λ ∈ [0, 1], one has∫ b

a g(t, y + λ(x− y))dt

≤ max {
∫ b
a g(t, x)dt,

∫ b
a g(t, y)dt}.

In the next theorem, we present a version of
mean-value theorem for integral of differentiable
functional. The proof is similar to the standard
mean-value theorems.

Theorem 2.1 Let g : I × X 7→ R be a differ-
entiable function. Then for any x, y ∈ X, there
exists x0 ∈ (x, y) such that the following inequal-
ity holds ∫ b

a g(t, y)dt−
∫ b
a g(t, x)dt

=
∫ b
a gx(t, x0)(y − x)dt

Proof. Set φ : [0, 1] → R to be a real-valued
function defined by

φ(λ) =
∫ b
a g(t, x+ λ(y − x))dt

−
∫ b
a g(t, x)dt− λ[

∫ b
a g(t, y)dt

−
∫ b
a g(t, x)dt].

Applying now Roll’s theorem to the function φ
and taking into account the chain rule, we can
deduce the proof.
Let K be a convex subset of a vector space X.
Then a mapping F : X ⇒ X is called a KKM
mapping iff for each nonempty finite subset A of
K, conv(A)⊆ F (A), where conv(A) denotes the
convex hull of A, and F (A) =

∪
{F (x) : x ∈ A}.

Lemma 2.1 (see e.g. [12]) Let K be a
nonempty and convex subset of a Hausdorff
topological vector space X. Suppose that
Γ, Γ̂ : K ⇒ K are two set-valued mappings such
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that the following conditions are satisfied:

(A1) Γ̂(x) ⊆ Γ(x), ∀x ∈ K,
(A2) Γ̂ is a KKM map,
(A3) Γ is a closed-valued,
(A4) there is a nonempty compact convex set

B ⊆ K, such that clK(
∩
x∈B

Γ(x)) is compact.

Then
∩
x∈K

Γ(x) ̸= ϕ.

3 Pseudoconvex and prequasi-
convex functional

In this section, we obtain some properties of
pseudoconvex and prequasiconvex functional
and present the relation between them.

Theorem 3.1 Let
∫ b
a g(t, x)dt be a pseudoconvex

functional on X. Then, it is a prequasiconvex on
X.

Proof. Suppose that
∫ b
a g(t, x)dt is a pseudocon-

vex functional on X and
∫ b
a g(t, x)dt is not pre-

quasiconvex. Hence, there exist z ∈ (x, y) such
that ∫ b

a g(t, z)dt

> max {
∫ b
a g(t, x)dt,

∫ b
a g(t, y)dt}.

Suppose that s to be a real number such that∫ b
a g(t, z)dt
> s

> max {
∫ b
a g(t, x)dt,

∫ b
a g(t, y)dt},

and set

r̂ := sup {r ∈ [0, 1] :∫ b
a g(t, x+ r(z − x))dt ≤ s},

x̂ := x+ r̂(z − x).

Since g is continuous∫ b

a
g(t, x̂)dt ≤ s and x̂ ̸= z. (3.1)

Moreover, from definition of r̂ and continuity of
g, it follows that∫ b

a
g(t, w)dt > s, ∀w ∈ (x̂, z]. (3.2)

By Theorem 2.1, there exists a0 ∈ (x̂, z) such that∫ b
a g(t, z)dt−

∫ b
a g(t, x̂)dt

=
∫ b
a gx(t, a0)(z − x̂)dt.

Thus, from (3.1) and (3.2), it follows that∫ b

a
gx(t, a0)(z − x̂)dt > 0. (3.3)

As a0 ∈ (x̂, z) ⊂ (x̂, y) and z ∈ (x̂, y), there exist
λ0, λ ∈ (0, 1) such that a0 = x̂ + λ0(y − x̂) and
z = x̂+ λ(y − x̂). Therefore

y − a0 = (1− λ0)(y − x̂),

z − x̂ = λ(y − x̂).

Hence, from (3.3), it follows that∫ b

a
gx(t, a0)(y − a0)dt > 0.

From this inequality, pseudoconvexity of∫ b
a g(t, x)dt and (3.2), we can deduce that∫ b

a g(t, y)dt ≥
∫ b
a g(t, a0)dt

> s

>
∫ b
a g(t, y)dt,

which is a contradiction.
Now, we present the relation between prequasi-
convex and quasiconvex functionals.

Theorem 3.2 Let
∫ b
a g(t, x)dt be prequasiconvex

on X. Then,
∫ b
a g(t, x)dt is quasiconvex function

on X.

Proof. Let
∫ b
a g(t, x)dt is a prequasiconvex func-

tion on X and
∫ b
a gx(t, x)(y−x)dt > 0. Therefore

lim
h→0+

∫ b
a [g(t, x+ h(y − x))− g(t, x)]dt

h
> 0.

Thus, there exist {hn} ↓ 0 and M ∈ N such that∫ b
a g(t, x+ hn(y − x))dt

>
∫ b
a g(t, x)dt,

for all n ≥ M . By this inequality and prequasi-
convexity of

∫ b
a g(t, x)dt we get∫ b

a g(t, x)dt

<
∫ b
a g(t, x+ hn(y − x))dt

≤ max {
∫ b
a g(t, x)dt,

∫ b
a g(t, y)dt}

=
∫ b
a g(t, y)dt.
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Therefore theorem is proved.

Applying Theorems 3.1 and 3.2, we obtain the
following result.

Corollary 3.1 Let
∫ b
a g(t, x)dt be a pseudocon-

vex functional on X. Then
∫ b
a g(t, x)dt is quasi-

convex on X.

In the following theorem, we obtain an equivalent
formulation of pseudoconvexity, that is used in
the next section.

Theorem 3.3 The functional
∫ b
a g(t, x)dt is

pseudoconvex on X, if and only if for any x, y ∈
X, one has∫ b

a gx(t, y)(x− y)dt ≥ 0

⇒
∫ b
a gx(t, x)(y − x)dt ≤ 0.

(3.4)

Proof. Suppose that
∫ b
a g(t, x)dt is pseudocon-

vex. Assume by the contradiction that, there ex-
ist x, y ∈ X such that∫ b

a
gx(t, y)(x− y) ≥ 0, (3.5)

∫ b

a
gx(t, x)(y − x)dt > 0. (3.6)

By Corollary 3.1,
∫ b
a g(t, x)dt is quasicon-

vex. Therefore by (3.6) and quasiconvexity of∫ b
a g(t, x)dt, we obtain∫ b

a
g(t, y)dt >

∫ b

a
g(t, x)dt.

Since
∫ b
a g(t, x)dt is pseudoconvex, then∫ b

a
gx(t, y)(x− y) < 0,

which leads to a contradiction with (3.5).
Conversely, suppose that x, y ∈ X and∫ b

a
g(t, y)dt <

∫ b

a
g(t, x)dt. (3.7)

By Theorem 2.1, there exist λ̄ ∈ (0, 1) and x0 =
x+ λ̄(y − x) ∈ (x, y) such that∫ b

a g(t, y)dt −
∫ b
a g(t, x)dt

=
∫ b
a gx(t, x0)(y − x)dt.

(3.8)

Since x− x0 = −λ̄(y− x) and by using (3.7) and
(3.8), we deduce that∫ b

a
gx(t, x0)(x− x0)dt

= −λ̄

∫ b

a
gx(t, x0)(y − x)dt

= −λ̄(

∫ b

a
g(t, y)dt−

∫ b

a
g(t, x)dt) > 0.

The above inequality and (3.4), yields∫ b

a
gx(t, x)(x0 − x)dt < 0.

Therefore ∫ b

a
gx(t, x)(y − x)dt < 0.

Hence
∫ b
a g(t, x)dt is pseudoconvex.

4 (MCTP) and variational in-
equalities

In this section, we obtain some relationships be-
tween Pareto solutions for vector multiobjective
continuous-time problem and generalized varia-
tional inequalities solutions under pseudoconvex-
ity assumption.
Now, we consider the following vector variational
inequalities:
(MVVI): The Minty vector variational inequality
finds x̄ ∈ X such that there exists no x ∈ X
satisfying∫ b

a
f i

x(t, x)(x̄− x)dt ≥ 0, ∀i ∈ P,

with strict inequality for at least one i ∈ P .
(MWVVI): The Minty weak vector variational in-
equality finds x̄ ∈ X such that there exists no
x ∈ X satisfying∫ b

a
f i

x(t, x)(x̄− x)dt > 0,

for all i ∈ P .

(SVVI): The Stampacchia vector variational
inequality finds x̄ ∈ X such that there exists no
x ∈ X satisfying∫ b

a
f i

x(t, x̄)(x− x̄)dt ≤ 0,



E. Khakrah et al, /IJIM Vol. 9, No. 3 (2017) 195-202 199

for all i ∈ P , with strict inequality for at least
one i ∈ P .
(SWVVI): The Stampacchia weak vector varia-
tional inequality finds x̄ ∈ X such that there ex-
ists no x ∈ X satisfying∫ b

a
f i

x(t, x̄)(x− x̄)dt < 0,

for all i ∈ P .

Theorem 4.1 Let
∫ b
a f i(t, x)dt be pseudoconvex

functional on X for all i ∈ P . Then x̄ ∈ X is a
solution of (MVVI) if and only if it is a efficient
solution of (MCTP).

Proof. Assume that x̄ ∈ X is a solution of
(MVVI). Suppose to the contrary that x̄ is not
an efficient solution of (MCTP). Therefore, there
exists x ∈ X such that∫ b

a
f i(t, x)dt ≤

∫ b

a
f i(t, x̄)dt, ∀i ∈ P, (4.9)

where (4.9) is satisfied as a strict inequality for
some i ∈ P . Set

x(t) = x̄+ t(x− x̄),

for all t ∈ [0, 1]. By using Theorem 2.1, there
exists ti ∈ (0, 1) such that∫ b

a f i(t, x)dt−
∫ b
a f i(t, x̄)dt

=
∫ b
a f i

x(t, x̄+ ti(x− x̄))(x− x̄)dt.

From this relation and (4.9), we obtain∫ b

a
f i

x(t, x̄+ ti(x− x̄))(x− x̄)dt ≤ 0,

which is satisfied as a strict inequality for at least
one i ∈ P . Because ti ∈ (0, 1) for any i ∈ P , we
can choose t∗ ∈ (0, 1) such that t∗ < min{ti : i ∈
P}. The above inequality can be rewritten as∫ b

a f i
x(t, x(ti))(x(t

∗)− x(ti))dt

= (t∗ − ti)
∫ b
a f i

x(t, x(ti))(x− x̄)dt

≥ 0.

where is satisfied as a strict inequality for at least
one i ∈ P . From Theorem 3.3 and pseudoconvex-
ity of

∫ b
a f i(t, x)dt, we can deduce that∫ b

a
f i

x(t, x(t
∗))(x(ti)− x(t∗))dt ≤ 0,

for all i ∈ P , where it is satisfied as a strict in-
equality for i ∈ P . Therefore∫ b

a
f i

x(t, x(t
∗))(x− x̄)dt ≤ 0

and ∫ b
a f i

x(t, x(t
∗))(x̄− x(t∗))dt

= −t∗
∫ b
a f i

x(t, x(t
∗))(x− x̄)dt

≥ 0.

This contradicts the fact x̄ is a solution of
(MVVI).
Conversely, assume that x̄ ∈ X is an efficient so-
lution of (MCTP). Suppose to the contrary that
x̄ ∈ X is not a solution of (MVVI), then there
exists x ∈ X such that∫ b

a
f i

x(t, x)(x̄− x)dt ≥ 0,

for all i ∈ P , which is satisfied as a strict inequal-
ity for some k ∈ P . From pseudoconvexity of∫ b
a f i(t, x)dt, we get∫ b

a
f i(t, x̄)dt ≥

∫ b

a
f i(t, x)dt. (4.10)

By using Corollary 3.1,
∫ b
a f i(t, x)dt is quasicon-

vex, therefore∫ b

a
fk(t, x̄)dt >

∫ b

a
fk(t, x)dt. (4.11)

Relations (4.10) and (4.11) contradicts that x̄ is
a solution of (MCTP).

Remark 4.1 Theorem 4.1 generalizes and im-
proves [10, Theorem 4] from invex functional to
pseudoconvex functional on X. Also, it shows
that the other side of Theorem 4 in [10] also holds.

Example 4.1 Consider the function f : [0, 1] ×
R → R2, f = (f1, f2) defined by f1(t, x(t)) =
x(t)+α and f2(t, x(t)) = αx(t) with α > 0. It can
be easily shown that the functional

∫ 1
0 f i(t, x(t))dt

is pseudoconvex for i = 1, 2. Suppose that∫ 1

0
f1

x(t, x)(y − x)dt ≥ 0.

Since, ∫ 1
0 f1

x(t, x)(y − x)dt

=
∫ 1
0 f1(t, y)dt−

∫ 1
0 f1(t, x)dt,
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Therefore, we obtain∫ 1

0
f1(t, y)dt ≥

∫ 1

0
f1(t, x)dt.

By a similar way, we can see that
∫ 1
0 f2(t, x)dt is

also pseudoconvex.
Let x : [0, 1] → R be defined as x(t) = kt, ∀k ∈
R+. Then by some computation we can see that
x̄ = 0 is a solution of (MVVI) and therefore is a
solution of (MCTP).

In the following Theorem, we establish the weak
version of Theorem 4.1. The proof is similar to
Theorem 4.1, hence it is omitted.

Theorem 4.2 Let
∫ b
a f i(t, x)dt be pseudoconvex

functional on X for all i ∈ P . Then x̄ ∈ X is a
solution of (MWVVI) if and only if it is a weak
efficient solution of (MCTP).

Theorem 4.3 Let
∫ b
a f i(t, x)dt be pseudoconvex

functional on X for all i ∈ P . If x̄ ∈ X is a so-
lution of (SVVI), then it is a solution of (MVVI)
and hence, is a solution of (MCTP).

Proof. Let x̄ ∈ X be a solution of (SVVI). If
x̄ ∈ X is not a solution of (MVVI), then there
exists x ∈ X such that for all i ∈ P∫ b

a
f i

x(t, x)(x̄− x)dt ≥ 0,

with strict inequality for at least one i ∈ P . From
Theorem 3.3, we know that

∫ b
a f i(t, x)dt satisfies

property (3.4) for all i ∈ P . Therefore∫ b

a
f i

x(t, x̄)(x− x̄)dt ≤ 0,

with strict inequality for at least one i ∈ P . This
contradicts the fact that x̄ ∈ X is a solution of
(SVVI).

Remark 4.2 Theorem 4.3, generalized and im-
proved Theorem 2 in [13] from convex functional
to pseudoconvex functional and Theorem 2 and
Corollary 2 in [10] from invex functional to pseu-
doconvex functional.

Theorem 4.4 Let
∫ b
a f i(t, x)dt be pseudoconvex

functional on X for all i ∈ P . Then x̄ ∈ X is a
solution of (MWVVI) if and only if x̄ ∈ X is a
solution of (SWVVI).

Proof. By using Theorem 3.3 and a similar way
of Theorem 6 in [10], we can deduce the proof.

By using Theorems 4.2 and 4.4 we deduce the
following result that generalized and improved
Theorem 4 in [13] to pseudoconvex
multiobjective continuous-time problems.

Corollary 4.1 Let
∫ b
a f i(t, x)dt for i ∈ P be

pseudoconvex functional on X. If x̄ ∈ X is a
solution of (SWVVI), then x̄ is a weak efficient
solution of (MCTP).

Now, we present an existence result for the so-
lution of (MWVVI) and therefore a weak efficient
solution of (MCTP).

Theorem 4.5 Let
∫ b
a f i(t, x)dt be pseudoconvex

functional on X for all i ∈ P . Assume that
there are a nonempty compact set M ⊂ X and
a nonempty compact convex set B ⊂ X such that
for each x ∈ X \M , there exists y ∈ B such that∫ b

a
f i

x(t, y)(x− y)dt > 0, ∀i ∈ P.

Then (MWVVI) has a solution and the set of so-
lutions is compact.

Proof. Define two set-valued mappings Γ, Γ̂ :
X ⇒ X by

Γ(y) := {x ∈ X : ∃i ∈ P ;∫ b
a f i

x(t, y)(x− y)dt ≤ 0},

Γ̂(y) := {x ∈ X : ∃i ∈ P ;∫ b
a f i

x(t, x)(y − x)dt ≥ 0},

for each y ∈ X. It is obvious that Γ(x) and Γ̂(x)
are nonempty. Now, we show that all assump-
tions of Lemma 2.1 is fulfilled.
(1) Γ̂ is a KKM mapping on X. Suppose that
Γ̂ is not a KKM mapping. Then, there exist
{y1, y2, · · · , ym} and λj ≥ 0, j = 1, · · · ,m with∑m

j=1 λj = 1 such that

y0 =

m∑
j=1

λjyj /∈
∪

{Γ̂(yj) : j = 1, · · ·m}.

Therefore it follows that y0 /∈ Γ̂(yj) for all j =
1, · · · ,m, i.e.∫ b

a
f i

x(t, y0)(yj − y0)dt < 0,
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for all i ∈ P , for any j = 1, · · · ,m. Moreover

0 =
∫ b
a f i

x(t, y0)(y0 − y0)dt

=
∑m

j=1 λj

∫ b
a f i

x(t, y0)(yj − y0)dt

< 0,

for all i ∈ P , which yields a contradiction.
(2) By the pseudoconvexity of

∫ b
a f i(t, x)dt, The-

orem 3.3 and definitions of Γ and Γ̂, we deduce
that Γ̂(y) ⊆ Γ(y) and therefore Γ is a KKM map-
ping.
(3) Γ is closed-valued. Let {xn} ⊂ Γ(y) be a se-
quence which xn → x0 ∈ X. Therefore for all
n ≥ 1, ∃i ∈ P such that∫ b

a
f i

x(t, y)(xn − y)dt ≤ 0.

Hence, there exist i0 ∈ P and a subsequence of
{xn} such that∫ b

a
f i0

x(t, y)(xnj − y)dt ≤ 0,

for all j ≥ 1. Now, by taking the limit as j tends
to infinity, it follows that∫ b

a
f i0

x(t, y)(x0 − y)dt ≤ 0.

Therefore x0 ∈ Γ(y).

(4) cl(
∩
x∈B

Γ(x)) is compact because
∩
x∈B

Γ(x) ⊂

M .
Therefore all of the conditions of Lemma 2.1 are
fulfilled by mapping Γ and∩

y∈X
Γ(y) ̸= ϕ.

Hence there exists x such that for any y ∈ X,
∃i ∈ P ∫ b

a
f i

x(t, y)(x− y)dt ≤ 0.

Therefore (MWVVI) has a solution and the solu-
tion set should be closed and be contained in the
compact set M . This shows that it is compact.
Next, suppose that S̄ to be the set of all weakly
efficient solutions of (MCTP). Now, we give some
characterization of the solution sets of pseudocon-
vex continuous-time programming problem, i.e.

min

∫ b

a
f(t, x)dt,

where f : [a, b]× Rn → R.

Theorem 4.6 Let
∫ b
a f(t, x)dt be pseudoconvex

functional on X and x̄ ∈ S̄. Then, S̄ = S1 = S2,
where

S1 = {x ∈ X :
∫ b
a fx(t, x)(x̄− x)dt = 0},

S2 = {x ∈ X :
∫ b
a fx(t, x)(x̄− x)dt ≥ 0}.

Proof. Suppose that x ∈ S̄. From x̄ ∈ S̄ and
Theorem 4.2∫ b

a
fx(t, x)(x̄− x)dt ≤ 0. (4.12)

Moreover, by using Theorems 4.2 and 4.4, we de-
duce that x is solution of (WSVVI) and therefore∫ b

a
fx(t, x)(x̄− x)dt ≥ 0. (4.13)

Hence, by relations (4.12) and (4.13), we have∫ b

a
fx(t, x)(x̄− x)dt = 0,

i.e. x ∈ S1. It is trivial that S1 ⊆ S2. Now,
consider that x ∈ S2. Hence∫ b

a
fx(t, x)(x̄− x)dt ≥ 0.

Now, pseudoconvexity of
∫ b
a f(t, x)dt implies that∫ b

a
f(t, x̄)dt ≥

∫ b

a
f(t, x)dt.

Because x̄ ∈ S̄, it shows that
∫ b
a f(t, x̄)dt =∫ b

a f(t, x)dt and therefore x ∈ S̄, which completes
the proof.

5 Conclusions

In this work, we have studied some relation-
ships between (MVVI), (SVVI) and multiob-
jective continuous-time programming problems,
which extend a lot of results in the literature to
the pseudoconvex continuous-time functions. For
this objective, the notions of pseudoconvexity and
quasiconvexity for continuous-time functions has
been investigated. As a consequence of above re-
sults, some characterizations of the solution sets
of a single-valued continuous-time programming
problem has been presented.
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