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Abstract

The purpose of this paper is to offer the equitable method for ranking Decision Making Units(DMUs)
based on the Dynamic Data Envelopment Analysis (DDEA) concept, where quasi-fixed inputs or
intermediate products are the source of inter-temporal dependence between consecutive periods. In
fact, this paper originally makes the use of an approach extending the ranking of DMUs in DEA by
Khodabakhshi and Aryavash into the Dynamic DEA framework. Hence, firstly, we compute minimum
and maximum efficiency values of each DMUs in dynamic state, under the assumption that the sum
of efficiency values of all DMUs in dynamic state is equal to unity. Thus, with the combination of its
minimum and maximum efficiency values, the rank of each DMUs is determined.
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1 Introduction

D
ata Envelopment Analysis (DEA) is a non-
parametric technique developed in opera-

tion research and management science over the
last four decade for measuring relative efficiency
and ranking of DMUs. DEA was originated
by Charnes, Cooper and Rhodes (CCR) [1].
Banker,Charnes and Cooper(BCC) introduced a
variable return to scale version of the CCR model,
namely the BCC model [2]. Following the CCR
and BCC models, other models of DEA were in-
troduced in the DEA literature.

The dynamic DEA model proposed by Fare
and Grosskopf [3] is the first innovative scheme
for dealing formally with these inter-connecting
activities. Dynamic DEA was originally to cope
with long time assessment point of view incorpo-
rating the concepts of quasi-fixed inputs and in-
vestment activities. DDEA enables us to measure
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the efficiency based upon the long time optimiza-
tion in which the inter-connecting activities such
as investment activities are incorporated. This
feature of DDEA discriminates it from the sepa-
rate time models such as Window analysis [4] and
Malmquist productivity index [5]. Sofar, many
DDEA models have been developed in this area,
e.g. Nemoto and Goto [6], Sueyoshi and Seki-
tani [7], Kaoru Tone and Miki Tsutsui [8], Alireza
Amirteimori [11]. In spite of developing several
methods in DDEA, an equitable method for rank-
ing decision making units has not been mentioned
yet. There are many model for ranking of DMUs
in DEA. Recently, Khodabakhshi and Aryavash
[12] have proposed a method for ranking all units
in DEA. In this work, their idea is applied to rank
the DMUs in DDEA. It is assumed that the sum
of efficiency values of all DMUs is equal to unity.
Then, the minimum and maximum efficiency val-
ues of each DMU are computed. Finally, the rank
of each DMU is determined in proportion to a
combination of its minimum and maximum effi-
ciency values.
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The rest of the work is organized as follows:
In Section 2, we present a description on DDEA.
The proposed ranking method in DDEA frame-
work is presented in Section 3. Section 4 applies
this method to an example involving 11 Iranian
gas companies in two periods. Conclusion ap-
pears in Section 5.

2 The DDEA

Nemoto and Goto [6] extended DEA to a dynamic
framework. In the previous DEA research effort,
Nemoto and Goto(1999) added an important per-
spective on dynamic DEA. Their research incor-
porates two different types of inputs (variable in-
puts and quasi-fixed inputs) into a framework of
dynamic DEA. The introduction of quasi-fixed in-
puts into a DEA model can be seen as a first step
toward dynamic DEA. A unique feature of the
quasi-fixed inputs is that those are considered as
outputs at the current period, while being treated
as inputs at the next period. For example, in
power generators, workers and fuels (as variable
inputs) are employed to generate electricity (as
an output). Most of the generated power is sold
to the purchasers; though a part (as a quasi-fixed
input) of the generated power is internally saved
within the generator. The saved power is used
to generate electricity in the next period. So,
it functions as a quasi-fixed input. Accordingly,
we use DDEA structure proposed by Nemoto and
Goto(1999) to reach a definition of ranking in dy-
namic DEA.

We deal with n DMUs (j = 1, 2, . . . , n) exam-
ined in T periods (t = 1, 2, . . . , T ). In the period
t each DMUj uses two different groups inputs

k
(t−1)
j ∈ Rl

+ (as a vector of quasi-fixed inputs)

and x
(t)
j ∈ Rm

+ (as a vector of variable inputs) to

produce two different groups of outputs y
(t)
j ∈ Rs

+

(as a vector of goods) and k
(t)
j (as a vector of

quasi-fixed inputs used in the next period).

We illustrate our DDEA structure in Figure 1.

Variable inputs x
(t)
j and quasi-fixed inputs k

(t−1)
j

at the beginning of the period t are transformed

by the process Pt into regular outputs y
(t)
j and

quasi-fixed inputs k
(t)
j at the end of the period t.

A production possibility set in the period t can

Figure 1: Dynamic Structure.

be defined as follows:

ϕCRS
t =

{
(x(t), k(t−1), y(t), k(t)) ∈ Rm+l

+ ×Rs+l
+

∣∣∣∣
Xtλt ≤ x(t), Kt−1λt ≤ k(t−1),

Ytλt ≥ y(t), Ktλt ≥ k(t),

λt ≥ 0.

}
Where λt ∈ Rn

+ is a vector of weights to
connect the DMUs in the period t,

Xt = [x
(t)
1 , x

(t)
2 , . . . , x

(t)
n ],

Kt−1 = [k
(t−1)
1 , k

(t−1)
2 , . . . , k

(t−1)
n ] and

Yt = [y
(t)
1 , y

(t)
2 , . . . , y

(t)
n ]

are a matrices of inputs, quasi-fixed inputs
and outputs, respectively. Let DMUo be under

evaluation which uses (x
(t)
o , k

(t−1)
o ) to produce

(y
(t)
o , k

(t)
o ) for t = 1, 2, . . . , T .

3 The Proposed Ranking
Method in DDEA

In this section we extend the ranking method
proposed by Khodabakhshi and Aryavash [12]
in DDEA framework. Firstly we deal with n
DMUs (j = 1, . . . , n) over T terms (t = 1, . . . , T ),
and suppose that a DMUo is examined through
an assessment window comprising T periods, i.e.
W = 1, 2, . . . , T . To this end, assume that the

DMUo uses (x
(t)
o , k

(t−1)
o ) to produce (y

(t)
o , k

(t)
o )

in the period t. In this study we assume that
m = s = l = 1. In order to achieve their goal we
use the assumptions and descriptions developed
by Kao and Hwang[9].

Let x
(t)
j and y

(t)
j denote the input and output

of the jth DMU in period t. Furthermore, denote

Xj =
∑T

t=1 x
(t)
j and Yj =

∑T
t=1 y

(t)
j
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as the total quantities of the input and output,
respectively, over all T periods.

We want to estimate the efficiency value of
DMUo (θo) under the assumption that the sum
of efficiency value of all DMUs equals unity
(
∑n

j=1 θj = 1). On the other hand, the efficiency
of each DMUs is defined as the weighted sum of
outputs divided by the weighted sum of inputs.

In this regard, according to Kao [10], the over-
all efficiency of DMUj (θj), and period efficiency

of DMUj (θ
(t)
j ), t = 1, . . . , T , j = 1, . . . , n, is as

follow:

θj =
uYj+wk

(T )
j

vXj+wk
(0)
j

j = 1, . . . , n (3.1)

θ
(t)
j =

uy
(t)
j +wk

(t)
j

vx
(t)
j +wk

(t−1)
j

j = 1, . . . , n (3.2)

where u and v are weight vectors of output Yj

(or y
(t)
j ) and input Xj (or x

(t)
j ), respectively and

w is weight vector of quasi-fixed input k
(t−1)
j and

output k
(t)
j .

We consider following model to determine
minimum and maximum values of efficiency of
DMUo:

min,max θo

s.t. θj ≤ 1 j = 1, . . . , n

θ
(t)
j ≤ 1 j = 1, . . . , n

t = 1, . . . , T∑n
j=1 θj = 1

(3.3)

We substitute (3.1), (3.2) in (3.3), and use the
Charnes-Cooper transformation with the quan-
tity p, so that: pu 7→ u, pv 7→ v, pw 7→ w. Also,
according to definition of θj we have:

θj =
uYj+wk

(T )
j

vXj+wk
(0)
j

, j = 1, . . . , n =⇒

uYj + wk
(T )
j − [(vθj)Xj + (wθj)k

(0)
j ] = 0

(3.4)
With substitution the transformations vθj = vj

and wθj = wj in (3.4), and using the above trans-
formations and (3.4), model (3.3) can be replaced
by the following linear programming problem:

min,max θo = uYo + wk
(T )
o

s.t. vXo + wk
(0)
o = 1

uYj + wk
(T )
j − (vXj + wk

(0)
j ) ≤ 0

j = 1, . . . , n

uy
(t)
j + wk

(t)
j − (vx

(t)
j + wk

(t−1)
j ) ≤ 0

j = 1, . . . , n , t = 1, . . . , T

uYj + wk
(T )
j − (vjXj + wjk

(0)
j ) = 0

j = 1, . . . , n∑n
j=1 vj = v∑n
j=1wj = w

u, v, w ≥ 0 ,
vj , wj ≥ 0 , j = 1, . . . , n.

(3.5)
Note that the sum of the constraints in the

third constraint set, i.e.,the constraints associ-
ated with the periods, is equal to the constraint in
the second constraint set, i.e., the constraints as-
sociated with the system, for each DMU. There-
fore, the second constraint set is redundant, and
can be deleted. Since the model (3.5) always has
a feasible solution, we can be calculated the min-
imum and the maximum objective function con-
clude θmin

o and θmax
o , respectively using the model

(3.5).

Lemma 3.1 If θmin
j and θmax

j are optimal solu-
tions of model (3.5) for each DMUj, then

θmin
j ≤ θmax

j

.

Proof. The proof is straightforward with respect
to model (3.5).
Hence, we have the following interval for each θj :

θmin
j ≤ θj ≤ θmax

j , j = 1, 2, . . . , n. (3.6)

Then, we can write θj as a convex combination
of θmin

j and θmax
j as follow:

θj = θmin
j λj + θmax

j (1− λj),

0 ≤ λj ≤ 1, j = 1, 2, . . . , n.
(3.7)

In order to compute the unique scores for
θj(j = 1, . . . , n) in an equitable way, we use
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Table 1: The normalized data used in the application in period t = 1

inputs

Companies Budget (x
(t)
j ) Revenue of gas sold in previous period (k

(t−1)
j )

1 0.9625 0.9992
2 0.9265 0.9969
3 1 1
4 0.6009 0.8902
5 0.6617 0.6873
6 0.5464 0.4119
7 0.7287 0.5972
8 0.4038 0.1789
9 0.6186 0.3959
10 0.7309 0.3239
11 0.8250 0.9957

outputs

Companies Amount of piping (y
(t)
j ) Revenue of gas sold in current period (k

(t)
j )

1 1 0.9398
2 0.569 1
3 0.357 0.9907
4 0.5915 0.8996
5 0.937 0.5277
6 0.2558 0.4064
7 0.5177 0.7782
8 0.487 0.9415
9 0.3662 0.6134
10 0.8213 0.7324
11 0.1235 0.5191

the Khodabakhshi and Aryavash [12] sugges-
tion. Therefore, we select equal values of λj(j =
1, 2, . . . , n), i.e.

λ = λ1 = · · · = λn.

Accordingly, the θj(j = 1, 2, . . . , n) are deter-
mined by solving the following linear equation
system:

{ θj = θmin
j λ+ θmax

j (1− λ), j = 1, 2, . . . , n∑n
j=1 θj = 1

Using these equations the value of λ can be easily
obtained as follow:

∑n
j=1 θj = 1 =⇒∑n
j=1(θ

min
j λ+ θmax

j (1− λ)) = 1 =⇒

λ =
1−

∑n
j=1 θ

max
j∑n

j=1(θ
min
j −θmax

j )

(3.8)

With the substitution of the value of λ ob-
tained from (3.8) in (3.7), we can determine the
value of θj(j = 1, 2, . . . , n). Now, with respect to
their efficiency score (θj), all the DMUs have been
fully ranked. On the other hand, a DMU with a
greater efficiency score, is of a better ranking.

4 Numerical example

The proposed ranking method is applied to a nu-
merical example consisting of eleven DMUs and
two observation periods.

We apply the method to a data set consist of
11 gas companies located in 11 regions in Iran in
two six-month periods during 2003 and 2004. The
data set adapted from [11] and displayed in Table
1 and Table 2. Due to special case in our work
we use one of each of the inputs and outputs.

Variable input(xt,j) is budget, and output(yt,j)
is amount of piping. An other type of output
used as input in next period, is revenue. Each gas
company uses the revenue of gas sold as input in
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Table 2: The normalized data used in the application in period t = 1

inputs

Companies Budget (x
(t)
j ) Revenue of gas sold in previous period(k

(t−1)
j )

1 0.8973 0.9398
2 0.3884 1
3 0.7864 0.9907
4 0.6879 0.8996
5 1 0.5277
6 0.9662 0.4064
7 0.8261 0.7782
8 0.9169 0.9415
9 0.6223 0.6134
10 0.8813 0.7324
11 0.8876 0.5191

outputs

Amount of piping(y
(t)
j ) Revenue of gas sold in current period (k

(t)
j )

1 1 0.1878
2 0.5325 0.8419
3 0.2555 1
4 0.9130 0.3372
5 0.9385 0.5516
6 0.2656 0.3555
7 0.5658 0.1811
8 0.4614 0.9852
9 0.3408 0.5262
10 0.8819 0.4786
11 0.7945 0.7394

Table 3: An equitable ranking of DMUs.

inputs

Companies θmin
j θmax

j θj Rank

1 0.0222 0.1287 0.0649 9
2 0.0989 0.1747 0.1293 2
3 0.0405 0.1615 0.089 7
4 0.0557 0.1407 0.0898 6
5 0.0751 0.1370 0.0999 3
6 0.0407 0.0739 0.054 10
7 0.0265 0.0839 0.0495 11
8 0.0847 0.2452 0.1492 1
9 0.0672 0.1315 0.0930 5
10 0.0705 0.1283 0.0937 4
11 0.0633 0.1238 0.0875 8

next period. At the first period, each company
uses the revenue of gas sold in previous period as
one input.

Using the model (3.5) we calculate θmin
j and

θmax
j for all DMUs in the whole periods. Then,
efficiency score (θj) of each DMUs is determined
and finally, ranking of DMUs are performed.

These results are displayed in Table 3.

5 Conclusion

In this study we provide a way of ranking DEA to
a dynamic framework consist of two different type
of inputs(variable inputs and quasi-fixed inputs)
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are incorporated into dynamic DEA.
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