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Abstract

In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated.
So far sinc methods for approximating the solutions of Volterra integral equations have received
considerable attention mainly due to their high accuracy. These approximations converge rapidly to
the exact solutions as number sinc points increases. Here the numerical solution of nonlinear delay
Volterra integral equations is considered by two methods. The methods are developed by means of the
sinc approximation with the single exponential (SE) and double exponential (DE) transformations.
These numerical methods combine a sinc collocation method with the Newton iterative process that
involves solving a nonlinear system of equations. The existence and uniqueness of numerical solutions
for these equations are provided. Also an error analysis for the methods is given. So far approximate
solutions with polynomial convergence have been reported for this equation. These methods improve
conventional results and achieve exponential convergence. Numerical results are included to confirm
the efficiency and accuracy of the methods.

Keywords : Nonlinear Volterra integral equations; General delays; Sinc-collocation; Convergence anal-
ysis.
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1 Introduction

D
elay Volterra integral equations arise widely
in scientific fields such as physics, biology,

ecology, control theory, etc. Due to the prac-
tical application of these equations, they must
be solved successfully with efficient numerical ap-
proaches. In recent years, there have been exten-
sive studies in convergence properties and stabil-
ity analyses of numerical methods for them, see,
for example, [12, 14]. The numerical solutions of
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integral equations with delays have also been dis-
cussed by several authors such as Brunner [2] and
Linz Wang [7].
Sinc methods for approximating the solutions of
Volterra integral equations have received consid-
erable attention mainly due to their high ac-
curacy. These approximations converge rapidly
to the exact solutions as number sinc points in-
creases. Systematic introduction of these meth-
ods can be found in [11]. In [13] sinc-collocation
method is emplyed to solve Hammerstein Volterra
integral equations, but it does not provide exis-
tence and uniqueness of the sinc-collocation solu-
tion. In this paper we extend the analytical and
numerical techniques used in [13] to nonlinear in-
tegral equations with general vanishing delay and
also show that the sinc-collocation solution exist
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and it is unique. In addition to we give an error
analysis.
The main objective of the current study is to im-
plement the sinc-collocation method for nonlinear
Volterra integral equation of the form

y(t) = g(t) +

∫ θ(t)

0
K(t, s, y(s))ds,

t ∈ I := [0, T ], (1.1)

the delay function θ is subject to the following
conditions:

(D1) θ(0) = 0, and θ is strictly increasing on the
interval I;

(D2) θ(t) ≤ t, t ∈ I;

(D3) θ ∈ Cd(I) for some d ≥ 0.

We will refer to a θ that satisfies (D1) as
a vanishing delay function (or, in short, a

vanishing delay). The linear case, θ(t) = qt =
t − (1 − q)t =: t − τ(t) (0 < q < 1) (propor-
tional delay) is also known as the pantograph de-
lay function [6]. In this paper we consider van-
ishing delay but our methods can be use with
nonvanishing delay too.
Several methods have been already presented to
the numerical solution of (1.1) for the special case
pantograph i.e. θ(t) = qt, for example you can see
[2, 3]. We propose two numerical algorithms in
order to solve the delay integral equation (1.1)
where θ(t) is more general than pantograph.
Our motivation comes from the fact that equa-
tion (1.1) may be viewed as a generalization of the
equation encountered in the mathematical mod-
eling of electric pantograph dynamics and a par-
titioning problem in number theory [8]

y(t) = g(t) +

∫ qt

0
k(t, s)y(s)ds.

The layout of this paper is as follows. In Sec-
tion 2, the solvability of the Eq. (1.1) is stated.
Section 3 outlines some of the main properties of
sinc function that is necessary for the formulation
of the delay integral equation. Sinc-collocation
method is considered in Section 4. In section 5,
we analyze the existence and uniqueness of nu-
merical solutions. In Section 6, the orders of
scheme convergence using the new approache are
described. Finally, Section 7 contains the numer-
ical experiments.

2 Existence and uniqueness of
solutions

In the present section, we state the solvability of
nonlinear integral equations with vanishing delay.
To state the following theorem we will adopt the
notation

D := {(t, s) : 0 ⩽ s ⩽ t ⩽ T},
ΩB := {(t, s, y) : (t, s) ∈ D, y ∈ R

and |y − g(t)|⩽ B},

and we set MB := max{|K(t, s, y)|: (t, s, y) ∈
ΩB}.

Theorem 2.1 Assume:

(a) g ∈ C(I) and K ∈ C(ΩB);

(b) θ(t) is subject to the assumptions (D1)-(D3);

(c) K satisfied the Lipschitz condition

|K(t, s, y)−K(t, s, z)|⩽ LB|y − z|,
for all (t, s, y), (t, s, z) ∈ ΩB.

Then:

(i) The Picard iteration yn(t) exist for all n ⩾ 1.
They are continuous on the interval I0 :=
[0, δ0], where

δ0 := min{T,B/MB},

and they converge uniformly on I0 to a so-
lution y ∈ C(I0) of the nonlinear Volterra
integral equation (1.1).

(ii) This solution y is the unique continuous so-
lution on I0.

Proof. The above result is also related to an exis-
tence and uniqueness result in [3]. His proof tech-
niques are readily extended to the general delay
function in which θ(t) is subject to the conditions
(D1)-(D3). We omit the details. □

3 Review of the sinc approxima-
tion

In this section, we will review sinc function prop-
erties, sinc quadrature rule, and the sinc method.
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These are discussed thoroughly in [11]. The sinc
basis functions are given by

S(j, h)(z) = sinc(
z − jh

h
),

j = 0,±1,±2, . . . (3.2)

where

sinc(z) =

{
sin(πz)

πz , z ̸= 0;
1, z = 0,

and h is a step size appropriately chosen depend-
ing on a given positive integer N , and j is an
integer and (3.2) is called the jth sinc function.
Originally, sinc approximation for a function u is
expressed as

u(t) ≈
N∑

j=−N

u(jh)S(j, h)(t), t ∈ R. (3.3)

The above approximation is valid on R, whereas
the Eq. (1.1) is defined on finite interval [0, T ].
The Eq. (3.3) can be adapted to approximate
on general intervals with the aid of appropriate
variable transformations t = ϕ(x). As the trans-
formation function ϕ(x) appropriate single expo-
nential (SE) and double exponential (DE) trans-
formations are applied. The single exponential
transformation and its inverse can be introduced
respectively as below

ψSE(x) =
Tex

1 + ex
,

ϕSE(t) = ln(
t

T − t
).

In order to define a convenient function space, the
strip domain Dd = {z ∈ C : |Imz|< d} for some
d > 0 is introduced. When incorporated with
the SE transformation, the conditions should be
considered on the translated domain

ψSE(Dd) = {z ∈ C : |arg( z

T − z
)|< d}.

The following definitions and theorems are con-
sidered for further details of the procedure.

Definition 3.1 Let D be a simply connected do-
main which satisfies (a, b) ⊂ D and α and c1 be a
positive constant. Then Lα(D) denotes the family
of all functions u ∈ Hol(D) which satisfy

|u(z)|⩽ c1|Q(z)|α (3.4)

for all z in D where Q(z) = (z − a)(b− z).

The next theorem shows the exponential conver-
gence of the SE-sinc approximation.

Theorem 3.1 Let u ∈ Lα(D), let N be a posi-
tive integer, and let h be selected by the formula

h =
√

πd
αN , then there exists positive constant c2,

independent of N , such that

sup
t∈(a,b)

|u(t)−
N∑

j=−N

u(ψSE(jh))S(j, h)(ϕSE(t))|

⩽ c2
√
Ne−

√
πdαN .

The error analysis of the SE-sinc indefinite inte-
gration has been given in [9].

Theorem 3.2 Let uQ ∈ Lα(D) for d with 0 <

d < π. Let h =
√

πd
αN . Then there exists a con-

stant c3, which is independent of N , such that

sup
t∈(a,b)

|
∫ t

a
u(s)ds− h

N∑
j=−N

u(ψSE(jh))ψ
′
SE(jh)

J(j, h)(ϕSE(t))|⩽ c3e
−
√
πdαN (3.5)

where

J(j, h)(x) =
1

2
+

∫ x
h
−j

0

sin(πt)

πt
dt.

The double exponential transformation can be
used instead of the single exponential transfor-
mation. DE-transformation and its inverse are

ψDE(x) =
b− a

2
tanh(

π

2
sinh(x))

+
b+ a

2
,

ϕDE(t) = ln[
1

π
ln(

t− a

b− t
)

+

√
1 +

{
1

π
ln

(
t− a

b− t

)}2

].

This transformation maps Dd onto the domain

ψDE(Dd) = {z ∈ C : |arg[ 1
π
ln(

t− a

b− t
)

+

√
1 + { 1

π
ln(

t− a

b− t
)}2]|< d}.

The following theorem describes the extreme
accuracy of DE-sinc approximation when u ∈
Lα(ψDE(Dd)).
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Theorem 3.3 Let u ∈ Lα(ψDE(Dd)) for d with
0 < d < π

2 , N be a positive integer and h is se-

lected by the formula h = ln(2dN/α)
N . Then there

exists a constant c4 which is independent of N ,
such that

sup
t∈(a,b)

|u(t)−
N∑

j=−N

u(ψDE(jh))

S(j, h)(ϕDE(t))|⩽ c4e
−πdN/ln(2dN/α).

If we use the DE transformation instead of the
SE transformation, the DE-sinc quadrature is
achieved. The rate of convergence is accelerated
as the next theorem states.

Theorem 3.4 ([9]) Let uQ ∈ Lα(ψDE(Dd)) for
d with 0 < d < π

2 . Let α′ = α − ϵ for 0 < ϵ < α,
N be a positive integer with N > α′/(2d), and h
is selected by the formula

h =
ln(2dN/α′)

N
.

Then there exists a constant c5 which is indepen-
dent of N , such that

sup
t∈(a,b)

|
∫ t

a
u(s)ds− h

N∑
j=−N

u(ψDE(jh))ψ
′
DE(jh)

J(j, h)(ϕDE(t))|⩽ c5e
−πdN/ln(2dN/α′).

4 Sinc-collocation method

In the present section, we apply sinc-collocation
method to solve Eq. (1.1) which we state again
for the convenience of the reader:

y(t) = g(t) +

∫ θ(t)

0
K(t, s, y(s))ds,

t ∈ I := [0, T ],

if t = 0 we have y(0) = g(0). For ease of calcula-
tion, we employ the transformation

u(t) = y(t)− T − t

T
g(0),

in this case u(0) = 0. Then the above problem
becomes

u(t) = f(t) +

∫ θ(t)

0
K1(t, s, u(s))ds (4.6)

where

f(t) := g(t)− T − t

T
g(0),

K1(t, s, u(s)) := K(t, s, u(s) +
T − t

T
g(0)).

Now, let u(t) be the exact solution of (4.6).

4.1 SE-sinc scheme

The approximate solution USE
N is considered that

has the form

USE
N (t) =

N∑
j=−N

u(ψSE(jh))S(j, h)(ϕSE(t))

+u(T )wSE(t), t ∈ [0, T ] (4.7)

we choose wSE(t) so that above formula interpo-
late function u at the points

tSEj =

{
ψSE(jh), j = −N, . . . , N ;

T, j = N + 1,

then

wSE(t) =
1

T
(t−

N∑
j=−N

tSEj S(j, h)(ϕSE(t))).

We replace approximate solution (4.7) in (4.6).
Substituting t = tSEk , k = −N, . . . , N + 1

uSEk = f(tSEk ) +

∫ θ(tSE
k )

0
K1(t

SE
k , s,

N∑
j=−N

uSEj S(j, h)(ϕSE(s))

+uSEN+1wSE(s))ds, (4.8)

we approximate the integral in above equation by
the quadrature formula presented in (3.5)∫ θ(tSE

k )

0
K1(t

SE
k , s,

N∑
j=−N

uSEj

S(j, h)(ϕSE(s)) + uSEN+1wSE(s))ds

= h

N∑
l=−N

ψ′
SE(lh)J(l, h)(ϕ

SE
k )

K1(t
SE
k , tSEl , uSEl ),

where

ϕSEk := ϕSE(θ(t
SE
k )).

Thus Eq. (4.8) is written as

uSEk = f(tSEk ) + h

N∑
l=−N

ψ′
SE(lh)

J(l, h)(ϕSEk )K1(t
SE
k , tSEl , uSEl ), (4.9)

where uSEk = u(tSEk ).
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This linear system of equations is equivalent
to (4.6). By solving this system, the unknown
coefficients uSEk are determined. We rewrite the
nonlinear system (4.9) in matrix form

ASE(uSE) = uSE , (4.10)

where

[ASE(uSE)]k,l := f(tSEk ) + hψ′
SE(lh)J(l, h)(ϕ

SE
k )

K1(t
SE
k , tSEl , uSEl ), k, l = −N, . . . , N + 1,

uSE := [uSE−N , . . . , u
SE
N+1]

t.

4.2 DE-sinc scheme

The DE-sinc case is focused on in this part. Sim-
ilar to the SE-sinc method, the approximate so-
lution UDE

N can be defined as follow

UDE
N (t) =

N∑
j=−N

uDE
j S(j, h)(ϕDE(t))

+uSEN+1wDE(t), t ∈ [0, T ]. (4.11)

By applying (4.11) and setting its collocation on
2N + 2 sampling points at t = tDE

k , for k =
N, . . . , N+1, in Eq. (4.6), the following nonlinear
system

ADE(uDE) = uDE , (4.12)

is achieved. By solving this system, the unknown
coefficients in uDE have been found.

5 Existence and uniqueness of
the sinc-collocation solution

In this section, we study the existence and
uniqueness of the solution to (4.10) and (4.12). It
is necessary to bound the basis function J(j, h).
The next lemma gives the bound.

Lemma 5.1 ([11]) For x ∈ R, the function
J(j, h)(x) is bounded by

|J(j, h)(x)|⩽ 1.1.

Theorem 5.1 Assume that K1, and f in the
nonlinear Volterra equation (4.6) are continuous
and

|K1(t, s, u(t))−K1(t, s, v(t))|
< L|u(t)− v(t)|.

Then the nonlinear algebraic systems (4.10) and
(4.12) have a unique solution.

Proof. Using Lemma 5.1 and continuty K1 we
have

∥ASE(u)− FSE∥∞

= max
k

|h
N∑

l=−N

ψ′
SE(lh)J(l, h)(ϕ

SE
k )

K1(t
SE
k , tSEl , uSEl )|

⩽ 1.1h sup
x
|ψ′(x)|

N∑
l=−N

|K1(t
SE
k , tSEl , uSEl )|

⩽ 1.1he−Nh
N∑

l=−N

|K1(t
SE
k , tSEl , uSEl )|

⩽ 1.1he−Nh(2N + 1)M,

where M is upper bound of |K1(t, s, u(t))| and
FSE := [f(tSE−N ), . . . , f(tSEN+1)]

t.

By using fixed point theorem, this proves that
the nonlinear system has a solution in the closed
ball with center FSE and radius 1.1hT (2N+1)M .
It may be shown that, if K1 is Lipschitz with re-
spect to u(t), the solution is unique. For suppose
that u, v are two possible solutions
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∥u− v∥∞= ∥ASE(u)−ASE(v)∥∞

= max
k

∣∣∣h N∑
l=−N

ψ′
SE(lh)J(l, h)(ϕ

SE
k )

K˙1(t˙kˆSE,t˙lˆSE,u˙l)-K˙1(t˙kˆSE,t˙lˆSE,v˙l)∣∣∣
⩽ 1.1he−Nhmax

k

N∑
l=−N

|K1(t
SE
k , tSEl , ul)

−K1(t
SE
k , tSEl , vl)|

⩽ 1.1he−Nhmax
k

N∑
l=−N

L |ul − vl|

⩽ 1.1he−Nh(2N + 1)L∥u− v∥∞
< ∥u− v∥∞,

because limN→∞ he−Nh(2N + 1) = 0, we can
write the last inequality for some N. It follows
that ∥u−v∥∞ vanishes and there is thus unique-
ness.
The similar conclusions are achieved for DE case.
□

6 Convergence analysis

The convergence of the two sinc-collocation meth-
ods which are introduced in the previous sections
is discussed in the present section. We first con-
sider the SE case. It is assumed that uSE is the
exact solution of Eq. (4.10) and uSE

(m) is an ap-

proximation of uSE obtained from Newton’s iter-
ative process.
In the following theorem, we will find an upper
bound for the error.

Theorem 6.1 Let USE
N (t) is the approximate so-

lution of integral equation (4.6). Then there ex-
ists a constant c5 independent of N such that

sup
t∈(0,T )

|u(t)− USE
N (t)|

⩽ c5
√
Ne−

√
πdαN . (6.13)

Proof. The error between u and USE
N can be

expressed by

u(t)− USE
N (t)

= f(t) +

∫ θ(t)

0
K1(t, s, u(s))

−
N∑

j=−N

uSEj S(j, h)(ϕSE(t))

−uSEN+1wSE(t)

= f(t) +

∫ θ(t)

0
K1(t, s, u(s))

−
N∑

j=−N

{
f(tSEj ) + h

N∑
l=−N

ψ′
SE(lh)

J(l, h)(ϕSEj )K1(t
SE
j , tSEl , uSEl )

}
S(j, h)(ϕSE(t))−

{
f(tSEN+1)

+h

N∑
l=−N

ψ′
SE(lh)J(l, h)(ϕ

SE
N+1)

K1(t
SE
N+1, t

SE
l , uSEl )

}
wSE(t)

= f(t)−
N∑

j=−N

f(tSEj )S(j, h)(ϕSE(t))

−f(tSEN+1)wSE(t) +

∫ θ(t)

0
K1(t, s, u(s))

−h
N∑

j=−N

N∑
l=−N

ψ′
SE(lh)J(l, h)(ϕ

SE
j )

K1(t
SE
j , tSEl , uSEl )S(j, h)(ϕSE(t))

−h
N∑

l=−N

ψ′
SE(lh)J(l, h)(ϕ

SE
N+1)

K1(t
SE
N+1, t

SE
l , uSEl )wSE(t)

= c1
√
Ne−

√
πdαN + c2

√
Ne−

√
πdαN

+c3h
√
Ne−

√
πdαN

= c5
√
Ne−

√
πdαN .

Because wSE(t
SE
j ) = 0 for j = −N, . . . , N , when

we use Theorem 3.1 we obtain

N∑
l=−N

ψ′
SE(lh)J(l, h)(ϕ

SE
N+1)

K1(t
SE
N+1, t

SE
l , uSEl )wSE(t)

= c3
√
Ne−

√
πdαN .

If we replace the SE transformation ϕSE by DE
transformation ϕDE and assume 0 < d < π

2
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in Theorem , then the similar conclusions are
achieved for DE case.

Theorem 6.2 Let UDE
N (t) is the approximate so-

lution of integral equation (4.6). Then there ex-
ists a constant c6 independent of N such that

sup
t∈(0,T )

|u(t)− UDE
N (t)|⩽ c6e

−πdN/ln(2dN/α).

In the following we are trying to discuss the
conditions under which Newtons method is con-
vergent. For this reason we will state and prove
the following theorem.

Theorem 6.3 Assume uSE is the exact solution
of the nonlinear system (4.9), and hypotheses of
Theorem 5.1 are satisfied. Also, suppose that ∂K1

∂u
is Lipschitz with respect to u. Then there exist
δ > 0 and h > 0 such that if ∥uSE

(0) − uSE∥⩽ δ,

the Newton’s sequence {uSE
(m)} for any h ∈ (0, h)

is well-defined and convergence to uSE. Further-
more, for some constant l with lδ < 1, we have
the error bounds

∥uSE
(m) − uSE∥⩽ (lδ)2

m

l
.

Proof. We must solve the nonlinear system

u−A(u) = 0.

The Newton method reads as follow. Choose an
initial guess u0; for m = 0, 1, . . ., compute

u(m+1) = u(m) − [I − A′(u(m))]
−1

[u(m) −A(u(m))], (6.14)

we know that

[A′(u)]k,l = hψ′(lh)J(l, h)(ϕSEk )

∂K1

∂u
(tSEk , tSEl , uSEk ),

k, l = −N . . . ,N,

[A′(u)]N+1,l = 0, l = −N . . . ,N,

using Lemma 5.1 and differentiable K1, there
exists a c > 0 so that |[A′(u)]k,l|< ch and then
∥A′(u)∥< 1 whenever h is sufficiently small. In
other words, there is a h > 0 so that for any
h < h matrix (I − A′(u)) has a uniformaly
bounded inverse.
The conclusion is straightforwardly achievable
by applying Theorem 5.4.1 in [1] and the above
discussion. □

In the following theorem, we summarize the
conclusions of theorems proved in this section.

Theorem 6.4 Assume that u is an isolated solu-
tion of Eq. (4.6), Furthermore, USE

N and uSEN,(m)

are the solutions of Eqs. (4.9) and (6.14), re-
spectively. Suppose that hypotheses of Theorems 6
and 6.3 are satisfied. Then there exists a positive
constant C(m) independent of N and dependant
on m such that

∥u− uSEN,(m)∥⩽ C(m)
√
N lnNe−

√
πdαN .

Proof. The conclusion is obtained by using
the triangular inequality and conclusions of
Theorems 6 and 6.3. □

The proof of the similar theorem goes almost
in the same way as in the SE case.

Theorem 6.5 Assume that u is an isolated solu-
tion of Eq. (4.6), Furthermore, UDE

N and uDE
N,(m)

are the solutions of Eqs. (4.12) and (6.14), re-
spectively. Suppose that hypotheses of Theorems
6.2 and 6.3 are satisfied. Then there exists a pos-
itive constant C(m) independent of N and depen-
dant on m such that

∥u− uDE
N,(m)∥⩽ C(m)e−πdN/ln(2dN/α).

7 Illustrative examples

In this section, the theoretical results of the previ-
ous sections are used for two numerical examples.
The numerical experiments are implemented in
Matlab. In these examples, Newton’s method is
iterated until the accuracy 10−8 is obtained.
It is assumed that α = 1. The d values are π

2 and
π
4 for the SE-sinc and DE-sinc methods, respec-
tively. The errors of the two methods for N =
5, 10, 15, 20 and 25 are reported. These tables
show that increasing N the error significantly is
reduced. As expected, the tables show that the
convergence rate of the DE-sinc method is faster
than the SE-sinc scheme.

Example 7.1 We consider the following panto-
graph Volterra integral equation

y(t) = g(t) +

∫ qt

0
(x+ t)[u(t)]3dt,

g(t) chosen so that its exact solution is y(t) =
t2 − t. The results are shown in Table 1. The
errors of the method for q = 0.9 are reported.
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Table 1: Values of ∥E∥∞ for Example 7.1

N 5 10 15 20 25

SE 4.4085E-5 3.1099E-6 3.4367E-7 4.7006E-8 7.7329E-9
DE 1.3091E5 7.2505E-7 2.4544E-8 7.1655E-10 2.2621E-11

Table 2: Values of ∥E∥∞ for Example 7.2

N 5 10 15 20 25

SE 2.5315E-3 4.3114E-4 9.8027E-5 2.7038E-5 8.6518E-6
DE 7.4395E-4 6.9632E-7 1.2007E-8 2.4890E-9 1.9521E-9
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Figure 3: Example 7.1, q = 0.9

Example 7.2 Consider the following equation

y(t) = g(t) +

∫ tr

0
2ste−y(s)2ds,

with g(t) = te−t2r has the solution y(t) = t. The
errors of the method for r = 0.01 are reported.
Table 2 shows the numerical results.

8 Conclusion

We propose two numerical methods based on the
sinc function, the SE-sinc and DE-sinc, in order
to solve the nonlinear delay integral equation (Eq.
(1.1)) where θ is general function. Our methods
have been shown theoretically and numerically
that it is extremely accurate and achieve expo-
nential convergence with respect to N. These two
methods have some strengths and weaknesses.
In comparison with each other, as the theorems
show, it is understood that the SE-sinc formu-
las are applicable to larger classes of functions
than the DE-sinc formulas, whereas the DE-sinc
formulas are more efficient for well-behaved func-
tions.
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