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Abstract
This paper is focused on the investigation of heat transfer characteristics of mixed con-
vection flow of water at 4◦C along a continuously moving vertical non-isothermal, non-
conducting plate in the presence of a transverse magnetic field. The governing equations
of continuity, momentum and energy for this boundary-layer flow are transformed into
self-similar ordinary differential equations using the similarity transformation technique.
The resulting coupled and non-linear ordinary differential equations are solved using the
fourth-order Runge-Kutta method along with the shooting technique. The fluid flow and
heat transfer characteristics are discussed and presented graphically. The values of the
skin-friction coefficient and the Nusselt number at the plate surface are obtained for var-
ious values of the physical parameters and presented in tabular form and the physical
aspects of these results are discussed.
Keywords : Steady flow; free stream; MHD; mixed convection; moving plate.
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1 List of Symbols

A : a constant
Cf : skin-friction coefficient
Cp : specific heat at constant pressure
f : dimensionless stream function
g : acceleration due to gravity of the Earth
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Gr : Grashof Number
{

2gγ(Tw−T∞)2x3

ν2

}
G : buoyancy parameter

{
Gr
Re2

}
Ha : Hartmann number

{√
σB2

0x
2

ρν

}
M : Magnetic parameter {Ha2

Re }
m : parameter (= 0, 1, 2)
Nu : Nusselt number
Pr : Prandtl number

{
µCp

κ

}
Re : Reynolds number

{
Urx
ν

}
T : temperature of the fluid
T∞ : temperature of free stream
Tw : temperature of the plate
u, v : velocity components along x- and y-directions
Ur : reference velocity
Uw : velocity of plate
U∞ : free stream velocity
x, y : Cartesian coordinates
Greek Letters
γ : coefficient of thermal expansion for water at 4◦C
η : similarity variable
ρ : electrical conductivity of fluid
λ : velocity parameter { U∞

Uw+U∞
}

θ : dimensionless temperature { T−T∞
Tw−T∞

}
µ : coefficient of viscosity
κ : coefficient of thermal conductivity
ν, ρ : kinematic viscosity{µ

ρ} , fluid density, respectively
ψ : stream function
Superscript
′ : differentiation with respect to η

2 Introduction

Mixed convection flow along a flat surface through free stream have many applications
such as polymer sheets continuously drawn from a die, cooling of metallic plates in a bath,
hot rolling, continuous casting, extrusion of plastic sheets, etc. For cooling purposes, cold
water can be utilized. At ordinary temperature and atmospheric pressure, the variation
in density is given by △ ρ = ρβ (Tw − T∞) where β = 2.07 × 10−4 ◦C−1 . But when
water is at 4◦C, it has maximum density and the density variation is represented by
△ ρ = ργ (Tw − T∞) where γ = 8.0 × 10−6 ◦C−2 (Goren [10]). Sakiadis [18] introduced
the concept of a continuously-moving surface through a fluid and studied the boundary
layer behaviour. Gorla and Reddy [11] discussed flow and heat transfer characteristics for
a fluid moving parallel to a continuous surface. Takhar and Ram [20] studied MHD free
convection flow of water at 4◦C through a porous medium on a vertical surface. Chen
[5,6] considered forced convection over a continuously-moving horizontal isothermal/non-
isothermal plate in free stream and discussed the effects of suction and injection on the
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heat transfer characteristics. Raptis and Perdikis [17] studied the unsteady free convection
flow of water at 4◦C past a moving porous plate. Bhargava et al. [3] considered the mixed
convection flow with viscous dissipation on fluid from a continuous surface in a parallel
moving free stream. Ganesan and Palani [9] discussed free convection of water at its
maximum density past an inclined plate.

The present paper aims to investigate steady mixed convection flow on a continuously
moving non-isothermal vertical plate in the same direction as the free stream but with
different velocities, taking into the account the density variation suggested by Goren [10],
in the presence of transverse magnetic field.

3 Formulation of the Problem

Consider a continuous vertical plate at a temperature Tw = T∞+Axm issuing from a slot
at a constant velocity Uw and is being cooled by a free stream of water at 4◦C having a
constant velocity U∞ . The origin of the coordinate system is placed at the point where
the plate issues into the fluid medium. The x-axis is taken along the plate and the y-axis
is taken perpendicular to the plate. A magnetic field of intensity B0 is applied in the
y-direction. It is assumed that the magnetic Reynolds number is small so that the in-
duced magnetic field is neglected. Also, the electric field owing to polarization of charges
and the Hall Effect are also neglected. The governing boundary-layer equations of conti-
nuity, momentum and energy (Jeffery[14], Bansal[2]), incorporating the usual Boussinesq
approximation (Takhar and Ram [20]), for flow of water at 4◦C and neglecting the viscous
dissipation term are given by

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂v

∂y
= ν

∂2u

∂y2
+ gγ (T − T∞)2 +

σB2
0

ρ
(U∞ − u) , (3.2)

u
∂T

∂x
+ v

∂T

∂y
=

κ

ρCp

∂2T

∂y2
. (3.3)

where all the parameters are defined in the List of Symbols section.
The appropriate boundary conditions for this problem are

y = 0 : u = Uw, v = 0, T = Tw = T∞ +Axm,
y → ∞, u = U∞, T = T∞.

(3.4)

where m = 0 means that the plate is isothermal, m = 1 or 2 means that the plate
temperature variation is linear or quadratic with respect to x, respectively.

4 Method of Solution

Introducing the stream function ψ (x, y) such that

u =
∂ψ

∂y
and v = −∂ψ

∂x
, (4.5)

where ψ = ν
√
Ref (η) and η = y

x

√
Re, is the similarity variable. It is observed that

equation (3.1) is identically satisfied by ψ(x, y). Substituting equation (4.5) into equations
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(3.2) and (3.3), the resulting non-linear coupled ordinary differential equations are given
by

f ′′′ +
1

2
ff ′′ +G θ2 +M

(
U∞
Ur

− f ′
)

= 0, (4.6)

and

θ′′ + Pr

(
1

2
θ′f −mθf ′

)
= 0. (4.7)

In equations (4.6) and (4.7) θ = T−T∞
Tw−T∞

. It is noted that Pr = 11.4 for water at 4◦C. The
corresponding boundary conditions become

f(0) = 0, f ′(0) = (
Uw

Ur
), θ(0) = 1, f ′(∞) = (

U∞
Ur

), θ(∞) = 0, (4.8)

where Ur is a reference velocity and in the available literature it is taken as:

Ur = Uw if Uw > U∞
or

Ur = U∞ if Uw < U∞

(4.9)

which leads to formation of two sets of boundary conditions as given below

f(0) = 0, f ′(0) = 1, θ(0) = 1, f ′(∞) = (
U∞
Uw

), θ(∞) = 0, if Uw > U∞ (4.10)

and

f(0) = 0, f ′(0) = (
Uw

U∞
), θ(0) = 1, f ′(∞) = 1, θ(∞) = 0, if Uw < U∞ (4.11)

Following Afzal et al. [1], in the present work, Ur is taken as given below

Ur = Uw + U∞ (4.12)

which forms one set of boundary conditions as follows:

f(0) = 0, f ′(0) = 1− λ, θ(0) = 1, f ′(0) = λ, θ(∞) = 1. (4.13)

where λ = U∞
U∞+Uw

is the velocity parameter. It should be noted that when the plate
velocity and the free stream velocity are in the same direction, this corresponds to 0 <
λ < 1 . In particular, when 0 < λ < 0.5 the plate velocity is higher than the free
stream velocity, at λ = 0.5, the plate velocity equals to the free stream velocity and when
0.5 < λ < 1 the plate velocity is less than the free stream velocity.

5 Special Cases

1. ForM = 0.0, G = 0.0 and λ = 0.0 or 1.0 the equation (4.6) reduces to equation obtained
by Sakiadis[18] or Blasius[4], respectively for flow on a continuous horizontal plate.
2. For M = 0.0, G = 0.0 and λ = 0.5, there would be no formation of boundary layer as
the fluid velocity equals the plate velocity.

Of special importance for this flow and heat transfer problem are the skin-friction
coefficient and the Nusselt number. These are defined next.
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6 Skin-Friction Coefficient

The skin-friction coefficient at the plate is given by

Cf =
τ

1
2ρU

2
r

= 2Re−
1
2 f ′′(0), (6.14)

where τ{= µ
(
∂u
∂y

)
y=0

} is the shear stress.

7 Nusselt Number

The rate of heat transfer in terms of the Nusselt number at the plate is given by

Nu =
qx

κ (Tw − T∞)
= −Re

1
2 θ′(0), (7.15)

where q = −κ
(
∂T
∂y

)
y=0

.

8 Numerical Method

The governing boundary-layer equations (4.6) and (4.7) with the boundary conditions
(4.13) are solved numerically using the fourth-order Runge-Kutta technique (Jain et al.
[13], Krishnamurthy and Sen [16] and Jain [12]) along with shooting technique (Conte and
Boor [7]). The equations (4.6) and (4.7) are reduced to a set of simultaneous differential
equations by defining new variables, as given below

df

dη
= ϕ1(η, f, u, v) = u, f(0) = 0 (8.16)

du

dη
= ϕ2(η, f, u, v) = v, u(0) = f ′(0) = 1− λ (8.17)

dv

dη
= ϕ3(η, f, u, v) = −1

2
fv −G[θ(η)]2 −M(λ− u), v(0) = f ′′(0) = A(0) (8.18)

dθ

dη
= ϕ4(η, θ, w) = w, θ(0) = 1 (8.19)

dw

dη
= ϕ5(η, θ, w) = −Pr(1

2
wf −mθu), w(0) = θ′(0) = B(0) (8.20)

The values of v(0) and w(0) are unknown. Therefore, their initial guess values are (say),
A(0) and B(0) , respectively. Now, applying the Runge-Kutta method for a system of
equations, then the system of differential equations (8.16) to (8.20) is solved and the
values of f ′′(∞) and θ′(∞) are looked into. The shooting method (Conte and Boor [7])
is then applied in such a way that the initial guess of f ′′(0) and θ′(0) are improved to
get the correct values of f ′′(∞) and θ′(∞) . The process is iterative and carried up
to a stage, when reasonable accuracy is obtained such that |A(k+1) − A(k)| < 10−5 and
|B(k+1) −B(k)| < 10−5 .
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9 Results and Discussion

Numerical values of f ′′(0) and −θ′(0) obtained in the present paper are compared with
various previously published results when M = 0.0, G = 0.0, λ = 0.0 /1.0, m = 0.0, 1.0,
2.0 and presented through Tables 1 and 2. The results are in good agreement, which in
turn validates the results produced by the numerical scheme used in the present paper. It
is seen from Table 3 that with the increase in the value of λ, f ′′(0) increases irrespective
of the value of m. Physically, negative value of f ′′(0) implies that plate exerts drag on
the fluid while positive value of f ′′(0) means that the fluid exerts drag on the plate. The
increase in the value of λ means increase in the free stream velocity, therefore the drag
increases. The value of −θ′(0) decreases with the increase in the value of λ, irrespective
of value of m. It means that the heat loss from the plate to the fluid is higher for higher
values of λ. Furthermore, it is observed that with the increase in the value of m at a
given λ, f ′′(0) decreases slightly, whereas −θ′(0) increases considerably. Thus, the heat
loss from plate to the fluid decreases with the increase in m.

Table 4 shows that for λ = 0.2, f ′′(0) and −θ′(0) decrease while for λ = 0.8, f ′′(0)
and −θ′(0) increase with the increase in the magnetic parameter M . Thus, the flow and
heat transfer characteristics are different when the plate velocity is higher or less than
the free stream velocity. A similar behaviour is obtained for different value of m. Table
5 reflects that with the increase in the buoyancy parameter G, the values of f ′′(0) and
−θ′(0) increase. This totally agrees with natural phenomena as buoyancy assists the free
convective flow. Similar flow and heat transfer characteristics are seen for different values
of λ and m.

Figure 1 shows the fluid velocity profiles at different values of λ. Figure 2 is a represen-
tation of the dimensionless fluid velocity ( u−U∞

Uw−U∞
) profiles within the range 1 → 0, which

reveals that for different values of λ the boundary-layer thickness is almost the same. Fig-
ures 3 and 4 show that a change in the value of the parameter m has no significant effect
on the fluid velocity for a low value of the buoyancy parameter G. Figures 5-7 reveal that
the fluid temperature decreases with the decrease in the value of λ , which would mean
that more cooling of plate would take place at large values of λ . Figure 8 shows that with
the increase in the parameter m, the fluid temperature and the thermal boundary-layer
thickness decrease. Hence, more cooling is observed when the value of m is low. It is ob-
served from figure 9 that with the increase in the magnetic parameterM , the fluid velocity
decreases for λ = 0.2 (i.e. when the plate velocity is higher than the free stream velocity)
which agrees to the fact that the Lorentz force is a retarding force and it increases with
the increase in the magnetic parameter within the boundary layer. A contrast is observed
from figure 10 when λ = 0.8 (i.e. the plate velocity is less than the free stream velocity),
the fluid velocity increases with increases in the magnetic parameter. This is attributed
to the fact that the higher free stream velocity overcomes the effect of the Lorentz force.
It is also seen from these figures (9 and 10) that the boundary-layer thickness decreases
with the increase in the magnetic parameter. Figures 11-13 show that with the increase
in the magnetic parameter, the fluid temperature increases. Thus, the heat flux from the
plate surface to the fluid would get reduced, which in turn, would slow down the cooling of
the plate surface. However, the effect of the magnetic parameter on the fluid temperature
diminishes with the increase in the value of m, which can be observed with decreased sep-
aration in the fluid temperature profiles as the value of m increases. Figures 14-16 reveal
the opposite trend to the behaviour as discussed above for temperature distribution.
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It is seen from figures 17-19 that the fluid velocity increases within the boundary
layer with the increase in the buoyancy parameter G, which is true because the buoyancy
parameter assists free convective flow. A similar trend is viewed in figures 20-22 for λ =
0.8. Also, it can be suitably added that with the increase in the parameter m, the effect of
the buoyancy parameter diminishes. Figures 23 and 24 when compared with figures 3 and
4 reveal an interesting fluid velocity characteristic that, at a high value of the buoyancy
parameter G, the parameter m has significant effect and it is clearly seen that with the
increase in the parameter m, the fluid velocity decreases. Figures 25-27 show that for λ
= 0.2, the fluid temperature decreases with increases in the buoyancy parameter with a
remark that the profoundness of the buoyancy parameter reduces with the increase in the
parameter m. A similar trend occurs for the case when λ = 0.8, as is seen from figures
28-30.

10 Conclusions

The problem of steady mixed convection boundary-layer flow of water at 4◦C along a
non-isothermal continuously stretched vertical flat plate in the presence of magnetic field
is investigated. The governing partial differential equations are converted into ordinary
differential equations by using a suitable similarity transformation, and solved numerically
by employing the fourth-order Runge-Kutta integration scheme along with the shooting
technique. The following observations are concluded:
1. The heat loss from the plate to the fluid is higher for higher values of the velocity
parameter λ.
2. The heat loss from plate to the fluid decreases with the increase in the parameter m.
3. When the velocity parameter λ < 0.5, the skin-friction coefficient and the rate of heat
transfer decrease while for a velocity parameter λ > 0.5, the skin-friction coefficient and
the rate of heat transfer increase with the increase in the magnetic parameter.
4. The fluid velocity decreases with the increase in the magnetic parameter when λ < 0.5,
but for λ > 0.5 the fluid velocity increases with the increase in the magnetic parameter,
which is in full agreement with physical phenomenon.
5. The fluid temperature increases with the increase in the magnetic parameter, thereby
slowing cooling of the plate.
6. The variation in the parameter m has no significant effect on the fluid velocity for a
low value of the buoyancy parameter. However, for a large buoyancy parameter, with the
increase in the parameter m, the fluid velocity decreases.
It is hoped that the present investigation will serve as a vehicle for understanding more
complex problems involving the physical effects.
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