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Abstract

In this article a successive approximations method is used to solve nonlinear fuzzy Volterra
integral equations along with representing its error. Then using quadrature rules we
approximate the present integrals in the sequence of successive approximations and we
obtain the numerical solution we have tended to.
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1 Introduction

In [4, 7, 8] Henstock integral is defined and its properties are investigated, and quadra-
ture rules for this integral are introduced in [2]. Also in [2, 3], successive approximations
method which can be obtained by Banach fixed point, is used to present a numerical
method to solve nonlinear fuzzy Fredholm integral equations. In this article after intro-
ducing Henstock integral for fuzzy-number-valued functions and its quadrature rules, there
presented theorems in the existence and uniqueness of the solution of the nonlinear fuzzy
Volterra integral equations that has this form

z(t) = g(t) + (FH)/ k(t,s)f(s,z(s))ds , t€[a,b]

and then, we introduce successive approximations method for that. Later the error of the
method is obtained and finally using the mentioned quadrature rules a numerical method
is presented to solve this kind of equations.
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2  Preliminaries

Definition 2.1. , [6]. A fuzzy number is a function u : ® — [0, 1] having the properties:
(1) w is normal, that is Ixy € R with u(xy) = 1;

(ii) w is fuzzy convex set (that is u(Az + (1 —X)y) > min {u(z),u(y)} Vr,y € R XA € [0,1]);

(iii) w is upper semi-continuous on R;

(iv) the support {x € R : u(z) > 0} is a compact set.

The set of all fuzzy real numbers is denoted by €'. For 0 < a < 1, let us define
[u]* = {z € R:u(r) > a} and [u]® = {z € R : u(x) > 0}. Also, we define u® = inf [u]*
and uf = sup [u]®.

For u,v € €' and A € R, we have the sum u + v and the product Au defined by
[u+v]* = [u]*+ [v]%, [Au]* = A[u]* Ya € [0, 1], where [u]* +[v]* means the usual addition
of two intervals (as subsets of R ), and A[u]* means the usual product between a scaler
and a subset of R. We denote by > the sum of real numbers and also the sum of fuzzy
numbers with respect to + (if the terms are fuzzy numbers).

Also, we use the Hausdorff distance between fuzzy numbers given by dyo : €' x ¢! —

RTJ{0}. as in [5]

doo(u,v) = sup {dp([u]®, [v]*)} = sup max{[u® —v®| |uf —v{|}
a€l0,1] a€l0,1]

where [u]® = [u®,uf], [v]* = [v%,0v¢] C R and dp is the Hausdorff distance. We define
[[-llF = doo (., 0)-

Then we have the following theorem and it is known.
Theorem 2.1. , [1].

(i) |I.||r has the properties of a usual norm on &' i.e ||ul|r =0 iff u=20,

Il = [Alllullr, and [ju+ollr < [ullF + [[v]|F-

(i) | [lullr = [Jvllp | < doo(u,v) and do(u,v) < ||ullp +[jv]lF for any u,v € €.

The following theorem will be very helpful in what follows:

Theorem 2.2. , [8].
(i) (e',dw) is a complete metric space.
(ii) doo(u +v,v 4+ w) = doo (v, w) VYu,v,w € '

(iii) doo(Au, M) = [A|doo(u,v) Yu,v €cl, YA ER
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(iv) doo(u +v,w + €) < doo(u, w) + doo(v,€) Yu,v,w,e € !

In [8] Congxin Wu and Zengtai Gong introduced the concept of the Henstock integral
for a fuzzy-number-valued function.

Let f : [a,b] — €. For A, :a=2zp <z <..<mT,=> apartition of the interval [a, b],
let us consider the intermadiate points (; € [z;_1,2;],4 = 1,...,n , and J : [a,b] — RT.
The division P = {([z;-1,%;]; (;);i = 1,...,n} denoted shortly by P = (A,, () is said to be
0 — fine if:

[Zi—1,2i] C (G —0(Gi), G +6(6))-

The function f is called Henstock integrable to I € &' if for every € > 0 there is a
function 4 : [a,b] — RT such that for any § — fine division P we have:

doo(Biq (i — 1) [ (), I) <.

Then I is called the Henstock integral of f and it is denoted by:

b
(FH) / F(t)dt.

If the above ¢ : [a,b] — R is constant function, then one recaptures the concept of
Riemann integral introduced by Goestchel and Voxman [6]. In this case I € ¢! will be
called the Riemann integral of f on [a,b] and will be denoted by:

b
(FR) / F(t)dt.

Theorem 2.3. , [8].

(i) If f and g are Henstock integrable mapping and if doo (f (), g(t)) is Lebesgue integrable,
then:

b b b
doo( (FH) / fydt . (FH) / g(t)dt ) < (L) / doo (1 (1), 9(1)) .

(ii) Let f : [a,b] — €' be a Henstock integrable bounded mapping. Then for any fized
u € [a,b], the function @, : [a,b] — R defined by @y (t) = doo (f (u), f(¢)) is Lebesgue
integrable on [a,b].

Definition 2.2. , [5]. Let f : [a,b] — €' be a bounded mapping. Then the function
Wiap (fy-) : BT U {o} — RF

wia,b)(f,0) = sup{ doo(f(2), f(¥)); 2,y € [a,0], |z —y| < &}

is called the modulus of oscillation of f on [a,b]. If f is continuous on [a,b], then w4 (f,d)
15 called uniform modulus of continuity of f.

Some properties of the modulus of oscillation are presented below:
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Theorem 2.4. , [5]. The following properties hold:

(1) doo(f(2), f(y)) < wia (S, |z —yl) for any z,y € [a,b] ;

(ii) wap(f,0) is increasing function on ¢ ;

(iii) wiep(f,0) =0;

(iv) wiap(f; 01 + 02) < wiap(f,01) + wiap)(f,d2) for any d1,02 > 0;
(V) wiap(fsn0) < nwgg(f,0) for any § >0 and n € N;

(Vi) wiop)(f,A0) < (A + Dwiap(f,6) for any 6, A > 0;

(vii) If [c,d] C [a,b] then wie q)(f,0) < wiep(f,0).

Definition 2.3. , [2]. For L >0, a function f : [a,b] — €' is L-Lipschitz if

for any x,y € [a,b].

3 Quadrature rules for the Henstock integral
Here we present the quadrature rules obtained in [2], which contain as particular cases

the trapezoidal, middle point and three point rules.

Theorem 3.1. , [2]. Let f : [a,b] — €' be a bounded and Henstock integrable function.
Then for any partition A :a =ty < t; < ... <t, =b and & € [ti—1,t;] we have:

doo( (FH) [} f(O)dt , T1 (b = ti)f(&) ) <
Sy (ti = tim)wi_y g (foti — tiz1) <
(b — a)wiap (f V(A)).

where v(A) = max;—1,_n{t;i —ti—1} is the norm of the partition A.

Particular election of the points ¢; leads to the following result:

Corollary 3.1. , [2]. Let f : [a,b] — €' be a bounded and Henstock integrable function.

Then:

b—a b—a b—a
5 (f@) +£(0) ) < —5—wpuy(f, —

b
doo( (FH) / f(tydt ).

For Lipschitzian functions the following result holds:
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Theorem 3.2. , [2]. Let f : [a,b] — €' be a L-Lipschitz function. Then for any partition
Ata=ty<t; <..<t,=band& € [ti_1,ti],i =1,...,n we have:

n n n
L

b
doo( (FH)/ F@)de, Y (ti—ti1) (&) < 0 D o lti=€)*+(E—ti-1)?) < gZ(ti_ti—1)2-

i=1 i=1 i=1

Particular election of the points &; leads to the following result:

Corollary 3.2. , [3]. Let f: [a,b] — €' be a L-Lipschitz function. Then we have:

b — Y
o (F11) [ g0, S0 + 50 ) < 1850

Finally, we generalize the quadrature formula from the last corollary for a partition
A:a=ty<t <..<ty,=0>b. According to [8], the Henstock integral has the property

b n—1 tiv1
) [ ga= Y m) [ fo
a i=0 ti

and consequently,

tit1 —t;)

tit1 Y
ol ) [ 0, S )+ ) ) < 2000

4

where t;, 4 = 0,n realize a uniform partition of the interval [a,b], and L is the Lipschitz
constant of f. Then, t;41 —t; = b_T“ and t; = a + ib_T“ ,Vi = 0,n. Using the properties of
the distance between fuzzy numbers presented in Theorem 2.2 and the above inequality
we obtain the generalization of the trapezoidal inequality for Lipschitzian fuzzy-number-

valued functions:

b n—1 ) .
ol (F1) [ g, 3 ) 4 pai) ) < 1
a i=0

(b—a)®

2 4n

4 numerical method

In this section, we consider the nonlinear fuzzy Volterra integral equation

t
z(t) = g(t) + (FH)/ k(t,s)f(s,z(s))ds , t€[a,b]

such that the functions

1

g:[a,b] = €' and f:[a,b] xe' — ¢!

are continuous. The following theorems state the existence and uniqueness of the solution
of above equation.
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Theorem 4.1. Consider the nonlinear fuzzy Volterra integral equation:

t
z(t) =Tz =g(t) + (FH)/ E(t,s)f(s,z(s))ds , t€ [a,b]

assume that:

(i) g:[a,b] — €' satisfies the following conditions:

(1) g € Cla,)

(2) Feg 5 Vi€ [a,b] lg)llr <cq

(ii) f:[a,b] x e — €' satisfies the following conditions:
(1) f€C(la,b] xe')

(2) Jer, e >0 ;Vuecet ||f(s,u)|lr < cillullr + c2

(iii) % :[a,b] x [a,b] — R satisfies the following conditions:
(1) Vt,s € [a,b]  k(t,s) >0, Ve<ty k(t s)>Ek(to,s)
(2) sup,<i<p fjk(t,s)ds < ﬁ

(3) the function t+— fjk(t,s)ds is continuous on [a, b]
(4) Yty € [a,b] s+ k(to,s) € L'[a,b]

then integral equation has a solution x € Cla,b].

Theorem 4.2. Assume that the function f(.,.) given by the previous theorem, satisfies
the following condition:

Yu,v € ! doo( f(8,u), f(8,v) ) < L(doo(u,v))"

for some constants L >0 and 0 < r < 1.
Then, under the conditions of the previous theorem, integral equation has a unique con-
tinuous solution on [a,b].

Now, we apply the methods developed in the previous section to give numerical solu-
tions for the integral equations.

Theorem 4.3. Under the hypotheses of the above theorems, if L(b — a)Mg < 1, where
M = sup,y s<p k(t, ), then the iterative procedure

t
() = g(t) + (FH) / k(t, )1 (5, 2m1(5))ds
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converges to the unique solution x* of the integral equation and the error estimation is

- (L(b — a)Mi)™
di (", ) < 1—L(b—a)Mg

(b—a)Mk(cicq + c2)

where di,(f,g9) = SuPa<i<p doo(f(t),9(t)) denotes the uniform distance between fuzzy-
number-valued functions.

proof: Using the first part of the Theorem 2.2 for m € N we have

dzo(x*axm) < dzo(x*amerl) + d;o(xm+17$m)

moreover
doo (", Tipi1) = di (T(27), T(zm)) < L(b — a) Mk dg, (2, 2m)
and
A% (@ms1,7m) = d5(T(zm), T (Tm-1))

< L(b— a)Mgdi (Tm, Tm-1)

< (L(b — a) M5 )*di (m—1, Tm—2)

< (L(b — a) Mk)™d%, (21, o)
" (L(b— a)M)™

s * —a K s
<
doo(x 7$m) =1 _ L(b N G)M d ($17$0)
finally
d5o(T1,270) = SUP,iep doo(21(t), T0(t))

(x
= sup,<ycy doo( 20 (t) + (FH) [ k(t,5)f (s, 20(s)) ds , zo(t) )
= 5UPgcicp doo( (FH) [, k(t,8)f(s,20(s)) ds , 0)
)
)

< Supa<t<b L ! doo( k(t? 8)f(8,$0(8

) Ja
= sup,cep (L) [ Kty 8)doo( f(s,70(s)) , 0) ds
= sup,rcp(L) [, k(t,5)1f(5,9(5)|F ds
< (b—a)Mgk(cicg + c2)
In this way we obtain the inequality of the error estimation. [
The above theorem states that the sequence of successive approximations (z,)meN, con-

verges to the solution z* of integral equation. To approximate this solution by the terms
of the sequence of successive approximations, the integrals must be computed. In this
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aim, we use the quadrature formula obtained in previous section.
Consider the uniform partition of the interval [a, b]:

A={a=ty<t; <..<t,=">b}

with t; = a + z( a) , Vi = 0,n. Then, on the knots of the partition A, the successive
approx1mat10ns are

zo(ti) = g(ti),

t;
T (t;) = g(t;) + (FH)/ k(ti,s)f(s,zm—1(s))ds.

Computing the integrals, we apply the quadrature formula in the Corollary 3.2 and obtain
the following algorithm.

Yyo(ti) = g(ti),

i—1

n(t) = 90+ 30 O D ki, 1) (1. (89) + bt 0,95 0))
=0
— (b—a)

) = 9(6) + 3 k(1) (190 19)) + bt 1500 30,91 0540)
=0

[E(tis t5) f (s Ym—1(t5)) + k(tistje1) f (i1, Ym—1(tj41))]

for m >3, m € N, and Vi = 0,n.

Example 4.1. Consider the triangular fuzzy number A = ( 1,2) having the level sets
[A]* = [o,2 —a] , a €]0,1] and the functz’ons g:[0,1] =¢e', K:[0,1] x[0,1] — R given
by g(t) = A=1(0,1,2) , k(t,s) = \/W for all t,s € [0, 1].

The function arctan : R — R is continuous and strictly increasing, so for all u € €' we
have arctan(u) € €' and we can define

larctan(u)]® = [arctan(u?), arctan(uG)] , «a €0,1]

The following integral equation is made using the above functions.
¢ 1
z(t) = A+ FH/iarctana:s ds , te€l0,1
(1) = A+ (F) [ ———arctan(a(s) 0.1]

First, we partition the interval [0, 1] by t; = 15, 1=0,1,...,5 and continue the algorithm
to m = 10 to make the following sequence of successive approximations in the t; points.

Yo(ti) = A,

1

—————arctan _1(t;
I (Ym—1(tj+1)) )

——————arctan(ym—1(tj))+

L
1) = A+ &
) +§ 10 ,F1+t‘+_t
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Using parametric representation of fuzzy numbers this sequence is converted to the two
following sequences,

(o(ti)) ™ = ay,

it arctan ( Wm-1(t)2 ) arctan( (Ym-1(tj41))2F )

+
iz 01 VI9I+t+t V3I+t+tin

(Ym () = ap +

1 arctan t:)) % arctan (4 ay
(ym(t:)2 = 2 — +Z ( (Ym—1(t))5) N ( Ym—1(tj41))5*)
0 | L+ttt T+t +tj

k k=0,1,..,10 and m = 1,2, ...,10.
Table 1, shows the values of (y10(t;))** for the membership degrees of oy, = %, k=
0,1,..., 10.

for ay, =

Table 1

t=0 | t=02]¢t=04|¢t=06|t=08]| t=1
«
0 0 0 0 0 0 0

0.1 0.1000 | 0.1175 | 0.1343 | 0.1507 | 0.1672 | 0.1838
0.2 0.2000 | 0.2347 | 0.2677 | 0.2999 | 0.3519 | 0.3639
0.8 0.53000 | 0.3512 | 0.3996 | 0.4463 | 0.4923 | 0.56378
0.4 | 0.4000 | 0.4669 | 0.5293 | 0.5891 | 0.6472 | 0.7042
0.5 0.5000 | 0.5815 | 0.6567 | 0.7280 | 0.7964 | 0.8628
0.6 | 0.6000 | 0.6950 | 0.7817 | 0.8629 | 0.9401 | 1.0141
0.7 0.7000 | 0.8074 | 0.9042 | 0.9940 | 1.0786 | 1.1590
0.8 | 0.8000 | 0.9186 | 1.0245 | 1.1217 | 1.2125 | 1.298/
0.9 0.9000 | 1.0288 | 1.1427 | 1.2464 | 1.3425 | 1.4329
1.0| 1.0000 | 1.1381 | 1.2590 | 1.8683 | 1.4691 | 1.5633

Table 2, shows the values of (yio(t;))S* for the membership degrees of ay = %, k=
0,1,..., 10.
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Table 2

t=0 |t=02|t=04|t=06|t=08] t=1

«
0 | 2.0000 | 2.1946 | 2.83567 | 2.4976 | 2.62537 | 2.7385
0.1 1.9000 | 2.0910 | 2.2504 | 2.3894 | 2.5139 | 2.6275
0.2 1.8000 | 1.9870 | 2.1436 | 2.2805 | 2.4033 | 2.5155
0.3 | 1.7000 | 1.8827 | 2.0362 | 2.1707 | 2.2917 | 2.4024
0.4 | 1.6000 | 1.7779 | 1.9281 | 2.0601 | 2.1790 | 2.2880
0.5 | 1.5000 | 1.6728 | 1.8193 | 1.9484 | 2.0651 | 2.1723
0.6 | 1.4000 | 1.5671 | 1.7095 | 1.83556 | 1.9497 | 2.0549
0.7 1.5000 | 1.4609 | 1.5988 | 1.72183 | 1.8327 | 1.9356
0.8 | 1.2000 | 1.83540 | 1.4869 | 1.6055 | 1.7138 | 1.8142
0.9 | 1.1000 | 1.2464 | 1.3737 | 1.4879 | 1.5927 | 1.6902
1.0 | 1.0000 | 1.1381 | 1.2590 | 1.8683 | 1.4691 | 1.5633

If we plot (t;, (y10(t:)) ™), (tis (y10(8:))5*) points, the following figurate will be resulted that
shows the approzimate solution for the integral equation is a fuzzy number.

Fig. 1. A fuzzy number (numerical solution of fuzzy integral equation.)

5 Conclusion

The aim of this article has been to present a numerical method for solving nonlinear
fuzzy Volterra integral equations. The method approximates the solution for equation in
uniform partition points of the interval [a,b]. Also, theorems have been presented in the
existence and uniqueness of the solution of the Volterra integral equations that have been
proved before and have been presented later. The error of this method has been proved,
which can be used to show the convergence of the method. A method similar to this
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method was previously used by B. Bede and A. M. Bica for Fredholm equations, but our
hypothesis for using the method in Volterra equations is different and a little more here.
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