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Abstract

This paper deals with the study of the Humbert function with matrix arguments
Uy (A, B;C,C"; z,w).
The convergent properties, an integral representation of Wy(A, B;C,C’; z,w) and con-
tiguous function relations are presented. Some results are obtained from operating the
differential operator D on Humbert matrix function. Moreover a solution of certain par-
tial differential equation is given.
Keywords : Humbert’s matrix functions; Integral form; Contiguous function relations; Hypergeo-
metric matrix differential equation; Differential operator.

1 Introduction

Humbert’s functions of scalar coefficients and variables appear in many fields such as
statistical distribution theory, heat flow, astrophysics and related areas (see for instance
[4, 6, 19]) and Srivastava and Karlsson [17]. Humbert’s functions of real variables were
generalized to these functions with matrix argument in [7] and [13], see also the books
of Mathai [11, 12]. Recently, Upadhyaya and Dhami have presented some properties of
the Humbert’s functions of matrix arguments in [20, 21]. Jdar and Corts introduced and
studied the hypergeometric matrix functions in [9, 10]. Some properties of gamma and
beta matrix functions were given in [8].
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Our main purpose in this paper is to obtain an extension of the hypergeometric matrix
function to functions of more than one variable. Humbert’s matrix functions will be
introduced as functions of two complex variables with matrix coefficients. The structure
of this paper is as follows:

Section 2 is organized to establish the seven Humbert’s matrix functions and calculate
their corresponding radius of regularity. In section 3 some integral representation for the
Humbert matrix function ¥y (A4, B; C,C"; z,w) is given. The functions contiguous to the
Humbert matrix function ¥; and its relations are given in section 4. In Section 5, a
solution of certain partial differential equation is proposed.

A matrix A in CV*V is a positive stable matrix if Re()\) > 0 for all A € 0(A) where o(A)
is the set of all eigenvalues of A and its two-norm denoted by

IIAfEIIz

1A]| =

where for a vector y in CV, ||y||2 = (yTy)% is Euclidean norm of y.
Let a(A) and v(A) be the real numbers which were defined in [9] by
a(A) = max{Re(z) : z € 0(A)}, v(A) = min{Re(z):z € o(A4)}. (L.1)

If f(z) and g(z) are holomorphic functions of the complex variable z which are defined in
an open set 2 of the complex plane and A is a matrix in C¥V*"V such that o(A4) C €, then
from the properties of the matrix functional calculus (see [3]), it follows that

f(A)g(A) = g(A)f(A). (1.2)
Hence, if B in CV*V is a matrix for which o(B) C Q and if AB = BA, then
f(A)g(B) = g(B)f(A). (1.3)

The reciprocal Gamma function denoted by I'"!(z) = F(lz) is an entire function of the

complex variable z. Then the image of I'"!(z) acting on A denoted by I'"(A4) is a well-
defined matrix.
Furthermore, if

A+nl is invertible for all integer n > 0, (1.4)

see [9]. The pochhammer symbol or shifted factorial defined by

(A)y =AA+I)..(A+ (n—1)I)

—T(A+nDD-'(A); n>1;(A)y = I. (1.5)
Jédar and Cortés have proved in [9] that
I(A) = lim (n—1)![(4),] 'n? (1.6)

n—-:ao0

The Schur decomposition of A, was given by [5] in the form:
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and
r—1
(I|1A rs lnn
| < et 30 UAITZIN sy (1.7)
k=0
The hypergeometric matrix function is defined by the matrix power series in the form

oF1(A,B;C;z) = Z 2", (1.8)

n=0

If n is large enough, then

I(C+nD)~H) < n>[|Cl, (1.9)

1 .
n—|Cl’

where C in CV*V such that C + nl is invertible for all integers n > 0.
Let us denote

¥(n) = IO THINC + DTHC + (n = DD >0, (1.10)

2 Definition of Humbert’s matrix functions.

Let A, A", B, B',C and C' be matrices in CV*V such that C+nl and C'+nl are invertible
for all integer n > 0.
We define Humbert’s matrix functions as follows:

q)l (A, B, C; Z, ’LU) = Eoo (A mgn(B)n[(C)man] =" men,

m,n=0 m!n!

(A, A, Cs2,w) = Yo% g il Chontal—mepn,

m,n=0 min!

P3(A,Cz,w) =0 D [(Omin] ™ jmyn

m,n=0 m!n!

\III(A, B, C, C,; Z, ’u)) = Zoo (A)m‘*'”(B)m[(C)m}_l[(C’)n}_l men’

m,n=0 m!n!

\IIQ(A; C, C,; z, ’U)) _ ZOO (A0 (O] H(C) 0] zmwn’

m,n=0 m!n!

E1(A4,A,B,C;z,w) =>.°° (Am (A (B)m[(C)mtn] " 2

m,n=0 m!in!

EQ(A, B, C; Z, w) = Zoo (A)m(B)m[(C)mﬁ—nrl men.

m,n=0 m!n!

Now, let The Humbert matrix function ¥y (A4, B; C,C'; z,w) of two complex variables by

U, (A, B;C,C" z,w)) =32 (Am+n (B)m[(C)m]~H(C)u] L my

m,n=0 m!in!

- Zﬁ,nzo U (2, w),

(2.11)

where
(A)m-i-n (B)m[(c)m(ol)n]il 2™
m!n! '

Unn(z,w) =
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We study this function by calculating its radius of convergence R. For this purpose, we
recall the relation of [16] and keep in mind that o, , > 1. Hence

1 .
r = limy, 45— 00 SUP (

Om,n

_r
HUm,nII) mtn

1
> m+n

= limy, 4+ —s00 SUP [HM(m +n— 1Dl (m+ n)Am(_Bﬂ(m —1)m?B

(A mtn(B)m [(C)m]H[(C)n] 7"

m!nlom n

= limy; 100 SUP (

(m+n—1)! m—1)!

_1
7"1707%?)”}71 (m — 1)!m o ml(Cal (n— 1)!77,0' L ] m

(n—1)! m!nlom n

- [H (e @) e

_ —_C' +n—1)!
(m + n)AmP=Cn=C" i

. m+n)2||[|mB||||m ¢ n*C, m+n—1)!
< limsup,, 1o [I( Alim? Ol )

For positive numbers i and positive integers n, we can write
m = un (2.12)

Using the relation (1.8) and the Stirling formula,we get

1 . aA — 3 n n)k el
= < 1My (41500 SUD (n(,u + 1)) ( )Eljcvzol (lA[ N2 1k(!(u+1) ) )(/m) (B)

— 3 n pun)k —y(C — 3 n un)k —y(C’
Z;va:ol W(M n) 7( )lefzol (HC’HNZ!I un) (n) (C")

1
ZN*I (\|C’||N% Inn)* /7%{” (it {n(ll«+1)71 prlu+)—1 n(p+1)
k=0 k! VZmpn (L un\/?,n.n 1)((” 1))(n 1) ’

So,

SOV L UAINZ It 1) (I g0+ 1)) V1 SOV UADE

= (N1In(n(p + 1))V LelAl
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and

1

(UVhﬂu7UN‘“ﬂBW(UVhKMTUN‘%JCU(UVhKnV“JeMﬂU]Zmiﬁ.

Therefore
9 1) —1 n(p+D) =1y n(p+1)—1 1 -
lim sup [\/ W{n(u + ) }{ e }1 i| n(p+1) — 1’
n(u+1)—00 V2 (B /o (n — 1) 1)((n; Jy(n=1)

i.e. the radius of convergence of the Humbert matrix function ¥ is one.
By analogous way, one can prove that the other Humbert’s matrix functions are regular
in the hypersphere Sg; R = 1.

3 An integral representation.

We begin this section by considering the binomial function of a matrix exponent. If u and
b are complex numbers with |u| < 1, then (1 — u)? = exp(blog(1 — u)), where Log is the
principal branch of the logarithm function, (see[18]). The Taylor expansion of (1 —u)~™®
about u = 0 is given by

—a __ (a)ﬂ n
(1 —u) _Z;7ﬁﬂ, lu| <1, aeC. (3.13)
n_

Now, we consider the function of the complex variable a defined by (3.13). Let f,(a) be
the function defined by

fula) = (C;)!nun = ala+ I)T(L? tn- l)u", a€ C. (3.14)

For a fixed complex number u with |u| < 1, it is clear that f, is a holomorphic function
of variable a defined in the complex plane. Given a closed bounded disc D = {a € C :
la| < R}, one gets

(la])n

n!

(B)n

n!

[fn(a)] < lu|", n>0,|al <R

Jul* <

Since Y, <q %M” < 400, by the Weierstrass theorem for the convergence of holo-
morphic function (see[18]) it follows that

n>0

is holomorphic in C. By application of the holomorphic functional calculus ([3]) for any
matrix A in CV*V | the image of g by this functional calculus acting on A yields

I-—w)™=)" (fj"un, lu| < 1, (3.15)
n>0
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where (A),, is given by (1.6).
Let B and C be matrices in CV*¥ such that

BC =CB.
where
C,B and C — B are positive stable.
By (3.13) and (3.17), one gets

(B)m[(C)m]™" =T(B+mI)~H(B)[[(C +mI)I~H(C)] ™

=I~YB)I~Y(C - B)I'(C — B)I(B + mI)I~YC + mI)T'(C).

By lemma 2 in [8] and (3.16) and (3.17), we find that
Jy tBHm=DI(1 —)C-B-Igt = B(B+ml,C - B)
=T'(C — B)I'(B+mI)I Y(C +mlI).
Also, by (3.18) and (3.19), we get
(B)ul(C)m]™ = THBII™HC = B)( fy t#+0=DI (1 = )7~ P~Tat) P(C)

Hence, formally one can write

U1(A,B;C,C ) = 3% At Blnl@n] (] o

m,n=0 m!n!

00 Aman D H(B)T-H(C=B)I(C
= Zm,n:O (Aot (C(”))nm!n(! —

<f01 tB+(m_1)I(1 _ t)C—B—Idt> ZMp™ .

Since (A)min = (A)n(A + n)pm, for |z| < 1, by the relation (3.15), we get

U1 (A,B;C,C'; z,w) = i (A)mM(B)m[r(nC!;)f]1[(Cl)n]12m

m,n=0

wn

1
=( [ =0T = ) (4, 0
0

dt>
tz

1—
x T-YB)rY(C - B)I(C).

We have proved the following theorem:

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Theorem 3.1. Let A, B and C be matrices in CN*N such that CB = BC where C, B,

C-B are positive stable. Then for |z| < 1 we have

1
\Ill(Aa Ba Ca Cla 2, ’U)) = </ tB_I(]' - t)C_B_I(]' - tz)_A I\Ill(Aa T C,a Ldi‘)
0

1—tz

x T~Y(B)r~(C — B)T(C).

(3.21)
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4 The contiguous function relations.

In this section some recurrence relations are carried out on the Horn matrix function. In
this connection the following contiguous functions relations follow directly by increasing
or decreasing one in original relation, we use the notations

\Ill :\Ill(Aa Ba 07 C,a 2, ’U)),
Uy (A+) =0, (A + I, B;C,C"; 2, w), (4.22)
\Ifl(A—) :\Ifl(A — I,B; C, Cl; Z,’LU),

together with notations of ¥1(B+), ¥1(B—), ¥1(C+), ¥1(C—), ¥1(C'+), ¥1(C'—), for
the other functions contiguous to ¥i. Now, we may write the functions contiguous to ¥
in the form

¥y (A4) = i (A+I)m+n(B)Tn;E§16!’)m]‘1[(C’)n]‘1men
::’_nloi (A+ (m+n)l )(A)m-lr-rr:'(i'?)m[(c)m]l[(cl)n]1 Mo (423)
= In!
=A"1 iO(A + (m +n) DU (2, w),
and o
¥y (A-) = i (A— [)m+n(B)TTTrLL[!;C!’)m]1[(Cl)n]1zmwn
_ m%:o (A+(m+n—1I)"'(A- IT)rL('fs')m—l—n(B)m[(C)m]1[(Cl)n]1 ua04)
m,n=0 o
= iO(A +(m+n—10)I) " A= DUnn(z,w).
Similarly o

Ty (B+)=B"" f: (B +mI)Upp(z,w),

m,n=0

\III(B_) = Z (B + (m - I)I)il(B - I)Um,n(zaw)a
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Uy (C'=) = Y (¢ =) HC" + (n = 1)) Upp(z,w).
m,n=0

For any integer k£ > 1, we deduce that

Vi (A+ kD) = [ (A+ (=)D 0 G T (A + (mt n o+ (0= DUz, w),

(4.25)
k o0 k
U(A—kI) =[JA=rD) > [[A+ (m+n—r))" Unpnlzw), (4.26)
r=1 m,n=0r=1
k ) k
UWB+EN=[[B+-0D7" Y [[B+m+ @ —DD)Unn(z,w),  (4.27)
r=1 m,n=0r=1
k ) k
U (B-k)=[[B-r) Y ][5 — 1)) (2, w), (4.28)
r=1 m,n=0r=1
k 00 k
U (C+kD)=J[(C+-1D) > [[C+m+(r—1D) Unn(zw), (4.29)
r=1 m,n=0r=1

k 00 k
U (C—kl) =€ -rD)7" > T(C + (m =) D)Unn(zw), (4.30)
r=1

m,n=0r=1

k 00 k
U (C'+ kD) =T+ (=11 > [[C + (m+ (= 1)1)  Unplz,w)  (4.31)
r=1 m,n=0r=1
and
k
Uy (C'—kI) = [J(C" = rI)” Z H (" + VD Upn (2, w). (4.32)
r=1 m,n=0r=1

By similar arguments, we can get some examples of contiguous function relations directly
as follows:

U (A+,B+) =A"'B7! i (A+ (m +n)) (B +mI)Upp(z,w)

m,n=0
V(A= B=) =(A-D(B~1) Y [(A+(m+n—-1)I)]" (4:33)
m,n=0

(B+ (m— 1)[)_1Um7n(z,w),
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U, (B+;C+) Z CB Y(B +mI)(C + (m+n)I) U n(z,w),

m,n=0
Uy (B—C—)= Y (B-I)(B+m—-1)I) (C-I)"
m,n=0
(C+(m+n—-1)1Upn(z,w),
" - (4.34)
U (B ++;C0'+ Z C'B™YB+ 1) (B+mI)(B+ (m+1)I)
m,n=0
(C" 4+ (m +n)) " Upn(z, w),
o
V(B ++;(C+D)+) = > (C+ DB YB+I1)" (B+ml)(B+ (m+1)I)
m,n=0
(C+ (m+n+1)I) Upnu(z,w).
Consider the differential operator D, as given in [14, 15, 16], takes the form
_ ) di+dy, mn>1;
D= { 1, otherwise, (4.35)

where d| = 25 3 and do = wx- a . This operator has the particularly pleasant property
Dz"w"™ = (m +n)zmw"™.

Now, the following contiguous function relations for the Humbert matrix function can be
deduced

e ayw = Y AN DBl Cmsnl Ly
iy N (4.36)
= 3 (A+ (m+n))Unu(z,w) = A Ty (A+).
m,n=0

By the same way, we get

(dy I+ B) ¥y = B Uy (B+),
(I +C) ¥y = (C—1)T(C—) + Ty (4.37)
(dol +C") ¥y = (C' = 1) ¥1(C'—) + ¥;.

From (4.33) and (4.34), it follows at once that

A—(C+C)+2I) T =AT (A+) — (C —1) T (C—) — (C' = 1) Ty(C'-),
A—B) ¥ =A®(A+) — B ®1(B+) — dp U1(B),
B—C+1)¥, =B U, (B+)—(C—1I) U (C—),

—(B+C' 1))V = AU (A+) = BU(B+) - (C' = 1) T (C"'~).

(
(
( (4.38)
(A

From these relations the other contiguous function relations can be deduced. Now, Acting
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the operating with D on the Humbert matrix function yields

pu= Y AN Wnsn(Blnl O] U]

= m!n!
_ i M(A)min(B)m[(C)m] UC)a] " 1
N mlin! 2w
m1l,n=0
o UA)rn (B)n[(C)n] T [(C)a] ™"
PR e Y Al o A w3
m!n!
m=0,n=1
=z Y (A+(m+n))(B+ml)[(C+mI)] Unn(zw)
m,n=0
=w Y (A+ (m+n)D)[(C +n D] Unn(z,w).
m,n=0
Alternatively, equation (4.36) can be written in the form
DU, = 2ABC~! W (A+, B+;C+,C"; z,w)
(4.40)

+ wAC'™ U (A4, B; C,C"+; z, w).

Now, let us operate with D on the series defining @1 (A—), we thus obtain from the relation
(4.24) that

oo

Ui(A-)= > (A=D[A+ (m+n— DI Upn(z,w)
m,n=0
= i (I —(m+n)[A+(m+n-— 1)[]_1> Upn (2, w)
m,n=0

=0 —(A—1)7'D ¥y (A-),

i.e. the Uy(A, B;C;z,w) is a solution of the partial differential equation

DU (A=) —(A—I) Uy + (A—1I) (A=) = 0. (4.41)
2 0
ow, for A = we have
Now e d = () ven
\Ill(QI,B; C, C'; z,w) — Z (2I)m+n(B)mg?)'m]_l[(cl)n]_lmen
om0 In!
m—l—n—l—lI Im an O'm_1 C,n_l m, n
:ZO(( ))()+m(!n!)[()][()]zw
m + 1)) (Dmin(B)m[(C)m] H(C)n]l ™ 1
:Zf DBl (L,

+ Z (I)m—l—n(B)m[(o)m]il[(ol)n]ilmen

m!n!

m,n=0

=D U (I,B;C,C";z,w) + U(I,B;C,C"; z,w)
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It turns out that

D Uy(I,B;C,C"; z,w) = ¥(2I,B; C,C"; z,w) — U((I, B;C,C"; z,w).

On the other hand, we can use ¥, (C+) to get

U (C+) = i (C +mI)" ' CUpn(z,w)

m,n=0

=0, — C71d;, T (CH),
di ¥ (C+) =C ¥ —C U (CH).
From (4.42), we obtain
dy U1 (CF) +dp U1 (CH) = C Uy = C U (CF) + dy T3 (CH),
i.e. Operate with D on the function ¥;(C'+), we obtain
DU (C+)=C U —C U (C+) +dy ¥ 1(C+),
and

DU (C'+)=C" Uy — C" U (C'+) +dy T1(C'+).

5 The Humbert matrix: differential equation.

177

(4.42)

(4.43)

(4.44)

(4.45)

The operators D, di and dy which have been already used in the derivation of the con-
tiguous function relations, are helpful in deriving differential equation satisfied by (2.11).

[dl(dl [+C—D4do(do I +C —1)| 0,

_ fj m(C + (m = V1) (A (B)l(Ch) ' [C)a ™"

min!
m=1,n=0
—  m(C'+ (n— D) (A (B)ml(C)n) " (C)0] ™ o
+;1( ( ))();L!é!)[()][()]zw

S Anen Bl i) (]

m=1,n=0 (m —1)!n!
00 AmanCmfl C,n— ,lmn
. (A)mesn( )m[!((n)—]l)![( ]!
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A shift of index yields

(dl(dl I+C—1)+do(dy I +C" —1)) o,

_ f: (A)m+1+n(B)m+;r[b(!2!)m+1]—1[(C/)n]_1 -
m=1,n=0
N i (A)m+n+1(B):E(!S!)m]_l[(cl)n]_lzmwn+1
m=0,n=1
=2z Y (A+ (m+n) (B +mI))Upn(z,w)
m,n=0

+w Z (A + (m +n))Upn(z,w)

m,n=1

=2(D I+ A)(dy T+ B) Uy +w(D I + A) .

It is easy to see that the Humbert matrix function ¥4 (A4, B; C, C'; z, w) should be a solution
of a partial differential equation given by

[(Z(D I+ A)(d I+ B)+w(D I+A))
(5.46)

- (dl(dl I4+C—1)+do(ds I +C" —1)) U1 (A, B;C,C"; z,w) = 0.
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