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Abstract

The focus of this article is on the analysis of electromagnetic scattering from conducting bodies in
TE polarization. For modeling of such problems, the magnetic field integral equation is used and
the current density induced on the surface of scatterer is considered as the solution of the mentioned
integral equation. A numerical approach is surveyed for calculating the induced current density
because it has no analytical form, in general. Finally, three scattering structures are analyzed and
the current density plots are given for them.
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1 Introduction

V
aluable efforts have been spent, by re-
searchers, on introducing novel ideas for the

solution of various functional equations (for ex-
ample, see [2, 3, 7, 11, 12]). The development
of numerical methods for solving integral equa-
tions in Electromagnetics has attracted intensive
researches for more than five decades. The use of
high-speed computers allows one to make more
computations than ever before. During these
years, careful analysis has paved the way for the
development of efficient and effective numerical
methods and, of equal importance, has provided
a solid foundation for a through understanding of
the techniques.

Over several decades, electromagnetic scatter-
ing problems have been the subject of extensive
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researches (see [13, 10, 1, 8, 6, 5] and their ref-
erences). Scattering from arbitrary surfaces such
as square, cylindrical, circular, spherical are com-
monly used as test cases in computational Elec-
tromagnetics.

The key to the solution of any scattering prob-
lem is a knowledge of the physical or equivalent
current density distributions on the volume or
surface of the scatterer. Once these are known
then the radiated or scattered fields can be found
using the standard radiation integrals. A main
objective then of any solution method is to be
able to predict accurately the current densities
over the scatterer. This can be accomplished by
the integral equation (IE) method [6, 4].

In general there are many forms of integral
equations. Two of the most popular for time-
harmonic Electromagnetics are the electric field
integral equation (EFIE) and the magnetic field
integral equation (MFIE). The EFIE enforces
the boundary condition on the tangential electric
field and the MFIE enforces the boundary con-
dition on the tangential components of the mag-
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netic field.
This article deals with the use of MFIE
in analysis of electromagnetic scattering from
two-dimensional perfect electrically conducting
(PEC) structures. For this purpose, a general
form of MFIE will be used for modeling of electro-
magnetic scattering from arbitrary structures and
then the formulation will be simplified for the case
of a generic two-dimensional body. Afterward, a
numerical treatment will be tested to obtain the
current distribution induced on some perfectly
conducting scatterers from the two-dimensional
MFIE model.

2 Mathematical modeling of
electromagnetic scattering
from perfectly conducting
bodies

The MFIE is expressed in terms of the known in-
cident magnetic field. It is based on the boundary
condition that expresses the total electric current
density induced at any point r = r′ on the sur-
face of a conducting surface S should equal the
tangential component of the total magnetic field,
i.e. [4]

Js(r
′) = Js(r = r′) = n̂×Ht(r = r′)

= n̂× [Hi(r = r′)

+Hs(r = r′)],

(2.1)

where Js is the electric current density on the
scatterer surface; Hi, Hs, and Ht are respectively
the incident, scattered, and total magnetic fields;
n̂ is unit vector perpendicular to the surface; and
the unprimed and primed coordinates are respec-
tively assigned to the observation (field) points
and source points.
The scattered magnetic field can be written in
terms of magnetic vector potential as [4]

Hs(r) =
1

µ
∇×A

= ∇×
∫∫

S
Js(r

′)G(r, r′)ds′,

(2.2)

where A is the magnetic vector potential, ∇× is
the curl operator with respect to the observation
coordinates, and G(r, r′) is the Green’s function
for a three-dimensional scatterer defined by

G(r, r′) =
e−jβR

4πR
, (2.3)

in which j is imaginary unit, β is phase constant,
and R is as follows:

R = |r− r′|, (2.4)

where r and r′ are position vectors of the obser-
vation and source points, respectively.
The differential operator ∇× in (2.2) is in terms
of the unprimed coordinates. This permits it to
be moved to the front of the integral symbol, such
that

Hs(r) =

∫∫
S
∇× [Js(r

′)G(r, r′)]ds′. (2.5)

Now we use the following vector identity [4]:

∇× (JsG) = G∇× Js − Js ×∇G, (2.6)

where ∇ is the gradient operator with respect to
the observation coordinates. Js(r

′) is in terms
of the primed (source) coordinates, therefore we
have

∇× Js(r
′) = 0. (2.7)

Moreover, it can be easily observed that

∇G = −∇′G. (2.8)

Considering (2.5)-(2.8) it is concluded that

Hs(r) =

∫∫
S
[Js(r

′)×∇′G(r, r′)]ds′, (2.9)

and, if the observations are restricted on the
surface of the scatterer (r → S), then

Hs(r = r′) =

lim
r→S

{∫∫
S
[Js(r

′)×∇′G(r, r′)]ds′
}
. (2.10)

Now, according to boundary condition (2.1) and
(2.10) we have [4]

Js(r
′) = n̂×[

Hi(r = r′) + lim
r→S

{∫∫
S
[Js(r

′)×∇′G(r, r′)]ds′
}]

(2.11)
or

Js(r
′)− limr→S{
n̂×

∫∫
S
[Js(r

′)×∇′G(r, r′)]ds′
}

(2.12)
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Figure 1: Two-dimensional scatterer of ar-
bitrary cross section in TE polarization.

= n̂×Hi(r = r′).

Equation (2.12) is referred to as the magnetic
field integral equation (MFIE). It is valid only for
closed surfaces. The MFIE is the most popular
for TE polarizations. However, this is a general
form of MFIE for three-dimensional problems
and may be simplified for two-dimensional cases.
Figure 1 shows a two-dimensional scatterer
of arbitrary cross section for TE polarization.
Considering cylindrical coordinates system, we
assume that the scatterer is very long in the ±z
direction and is parallel to the z-axis. In the case
of TE polarization, the two-dimensional MFIE
can be concluded form (2.12), after several steps
of mathematical operations, as follows [4]:

Ic(ρm)
2 +

jβ

4

∫
C−∆C

Ic(ρ
′) cosψ′

mH
(2)
1

(
β|ρm − ρ′|

)
dc′ =

(2.13)

−H i
z(ρm),

where H
(2)
1 is Hankel function of the second kind

of first order, ρm is the position vector of any
observation point on the scatterer, ρ′ is the posi-
tion vector of any source point on the scatterer,
C is perimeter of the scatterer, Ic is the surface
current distribution on the scatterer, H i is the
incident magnetic field, and ∆C is that part of
the scatterer perimeter which includes ρm.

Equation (2.13) is the two-dimensional MFIE
which is appropriate for analysis of two-
dimensional perfect electrically conducting scat-
terers in TE polarization.

The kernel H
(2)
1 has a singular behavior when

ρm approaches ρ′. Moreover, this kernel is com-
plex. Therefore, the surface current distribution
on the scatterer, Ic, is generally a complex func-
tion.

In general, (2.13) has no analytical solution.
Hence, an appropriate numerical method is nec-
essary to obtain an approximate solution for it.
In the next section, we will do a numerical evalu-
ation of the solution by a numerical method, and
obtain values of the surface current distribution
on the scatterer.

Figure 2: Conducting elliptical cylinder
scatterer in TE polarization.

Figure 3: Current distribution along its
perimeter for β = 2π, ϕ0 = 0, a = λ

3 , and
b = 4a.
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Figure 4: The results for b = a
4 .

Figure 5: Conducting square cylinder scat-
terer in TE polarization.

3 Numerical treatment

3.1 Brief formulation

As it was mentioned, both H
(2)
1 and Ic have com-

plex values, and H
(2)
1 is singular too. So, we must

take care of the complexity and singularity when
using a numerical method for solving (2.13). An
interesting method has been presented in [9] for
solution of some types of functional equations.
However, real and non-singular functions and ker-
nels have been used in [9]. Here, we apply and
test the method when the kernel is singular and
complex, and the unknown function too has com-
plex values. A brief formulation of the method
may be considered as follows.

Let us consider Fredholm integral equation of

Figure 6: Current distribution along its
perimeter for β = 2π, ϕ0 = 0, a = λ

3 .

Figure 7: The results for a = 3λ
4 .

the second kind of the form

x(s) +

∫ 1

0
k(s, t)x(t)dt = f(s), 0 6 s < 1,

(3.14)
where the functions k and f are known but x is
the unknown function to be determined. Also,
k ∈ L2([0, 1)× [0, 1)) and f ∈ L2([0, 1)). Without
loss of generality, it is supposed that the inter-
val of integration in Eq. (3.14) is [0, 1), since any
finite interval [a, b) can be transformed to this in-
terval by linear maps.

According to [9], an approximate solution for
(3.14) may be obtained by solving the following
recurrence (iterative) relation:

X(n) = RX(n−1) + F, for n = 1, 2, 3, . . . ,
(3.15)

where X(n) is the unknown vector in iteration n
of the iterative process and, for any discretization
sizem, them-vectorsX and F are the block-pulse
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Figure 8: Conducting triangular cylinder
scatterer in TE polarization.

Figure 9: Current distribution along its
perimeter for β = 2π, ϕ0 = 0, a = λ

3 .

function (BPF) coefficients of functions x and f
respectively, and defined as [9]

F = [f0, f1, . . . , fm−1]
T ,

X = [x0, x1, . . . , xm−1]
T ,

(3.16)

in which superscript T indicates transposition
and

fi =
1

h

∫ 1

0
f(t)φi(t)dt,

xi =
1

h

∫ 1

0
x(t)φi(t)dt, i = 0, 1, . . . ,m− 1,

(3.17)

where h = 1/m and φi is ith BPF defined as

φi(t) =

{
1, i

m 6 t < (i+1)
m ,

0, otherwise,
i = 0, 1, . . . ,m−1.

(3.18)

Figure 10: The results for a = 2λ.

Moreover, R = −hK, where K, the BPF co-
efficient matrix of kernel k, is an m × m ma-
trix with elements ki,j , i = 0, 1, . . . ,m − 1, j =
0, 1, . . . ,m− 1, as follows:

ki,j = m2

∫ 1

0

∫ 1

0
k(s, t)φi(s)ψj(t)dsdt. (3.19)

ψj is jth BPF.
The expansion of functions f , X, and k over

[0, 1) with respect to BPFs may be compactly
written as [9]

f(t) ≃
m−1∑
i=0

fiφi(t) = F TΦ(t) = ΦT (t)F,

x(t) ≃
m−1∑
i=0

xiφi(t) = XTΦ(t) = ΦT (t)X,

k(s, t) ≃ ΦT (s)KΨ(t),

(3.20)

in which m-vectors Φ and Ψ are defined by

Φ(t) = [φ0(t), φ1(t), . . . , φm−1(t)]
T ,

Ψ(t) = [ψ0(t), ψ1(t), . . . , ψm−1(t)]
T .

(3.21)

After solution of recurrence relation (3.15) and
obtaining vector X, an approximate solution
x(s) ≃ XTΦ(s) can be computed for Eq. (3.14).

3.2 Error analysis and convergence
evaluation

Let us set
e(n) = X(n) −X, (3.22)

where X is the exact solution for (3.15), therefore

X = F +RX. (3.23)
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Subtracting (3.23) from (3.15) gives

e(n+1) = Re(n). (3.24)

Using (3.24) and if ∥R∥< 1 then we have the fol-
lowing error bound [9]:

∥e(n)∥6 ∥X(n+1) −X(n)∥
1− ∥R∥

. (3.25)

Also we can obtain two other error bounds as
follows:

∥e(n)∥6 ∥Rn∥∥(X(0) −X)∥, (3.26)

and

∥e(n)∥6 ∥R∥n

1− ∥R∥
∥X(1) −X(0)∥. (3.27)

The above three error bounds show that if ∥R∥<
1, then lim

n→∞
∥e(n)∥= 0. This follows lim

n→∞
X(n) =

X, meaning that the sequence {X(n)}∞n=0 con-
verges to X.

3.3 Numerical results

Here, we apply the mentioned approach to solve
the two-dimensional MFIE for three scattering
structures; a conducting elliptical cylinder; a con-
ducting square cylinder; and a conducting trian-
gular cylinder. Numerical results are computed
for TE polarization.

Figure 2 shows the cross section of a conducting
elliptical cylinder which is illuminated by a TE
polarized electromagnetic plane wave and there-
fore an electrical current is induced on it. Solu-
tion of the two-dimensional MFIE by the men-
tioned method gives the numerical results for the
induced current distribution. Figure 3 shows the
current density along the perimeter of elliptical
cylinder for β = 2π, ϕ0 = 0, a = λ

3 , and b = 4a.
Figure 4 gives the results for b = a

4 .

Figure 5 shows the cross section of a conduct-
ing square cylinder encountered a TE polarized
plane wave. Considering β = 2π and ϕ0 = 0, the
current density values are given in Figures 6 and
7 for a = λ

3 and a = 3λ
4 , respectively.

The cross section of a conducting triangular
cylinder in TE polarization is shown in Figure 8.
Considering β = 2π and ϕ0 = 0, Figures 9 and 10
respectively give the results for a = λ

3 and a = 2λ.

4 Conclusion

This article dealt with the use of MFIE in
analysis of electromagnetic scattering from two-
dimensional PEC structures. A general form
of MFIE was used for modeling of electromag-
netic scattering from three-dimensional struc-
tures and then the formulation was simplified for
two-dimensional conducting bodies. For solving
the models, a numerical approach was surveyed
and the numerical results were computed for the
current distribution induced on three electrically
conducting surfaces.

The concepts illustrated in this article are fea-
sible to be used for analysis of arbitrary two-
dimensional conducting scatterers.
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