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Abstract

There are a few finite groups that are determined up to isomorphism solely by their order, such as Z2

or Z15. Still other finite groups are determined by their order together with other data, such as the
number of elements of each order, the structure of the prime graph, the number of order components,
the number of Sylow p-subgroups for each prime p, etc. In this paper, we investigate the possibility of
characterizing the projective special linear groups Ln(2) by simple conditions when 2n − 1 is a prime
number. Our result states that: G ∼= Ln(2) if and only if |G|= |Ln(2)| and G has one conjugacy class

length |Ln(2)|
2n−1 , where 2n − 1 = p is a prime number. Furthermore, we will show that Thompson’s

conjecture holds for the simple groups Ln(2), where 2
n− 1 prime is a prime number. By Thompson’s

conjecture if L is a finite non-Abelian simple group, G is a finite group with a trivial center, and the
set of the conjugacy classes size of L is equal to G, then L ∼= G.
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1 Introduction

T
hroughout this paper, groups under consider-
ation are finite, and by a simple group, we

always mean a non-Abelian simple. In this pa-
per, we investigate the possibility of characteriz-
ing Ln(2) by simple conditions when 2n − 1 is a
prime number.

For related results, Chen et al. in [5] shows that
the projective special linear groups L2(p) recog-
nizable by their order and one conjugacy class
length, where p is a prime number. As a conse-
quence of their result, they showed that Thomp-
son’s conjecture is valid for L2(p).
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Put N(G) = {n : G has a conjugacy class of
size n}. By Thompson’s conjecture if L is a fi-
nite non-Abelian simple group, G is a finite group
with a trivial center, and N(G) = N(L), then
L ∼= G.

Similar characterizations have been found in
[11] for the groups: sporadic simple groups, and
simpleK3-groups (a finite simple group is called a
simpleKn-group if its order is divisible by exactly
n distinct primes).

The prime graph of a finite group G that de-
noted by Γ(G) is the graph whose vertices are the
prime divisors of G and where prime p is defined
to be adjacent to prime q (̸= p) if and only if G
contains an element of order pq.

We denote by π(G) the set of prime divisors of
|G|. Let t(G) be the number of connected com-
ponents of Γ(G) and let π1, π2, . . . , πt(G) be the
connected components of Γ(G). If 2 ∈ π(G), then
we always suppose 2 ∈ π1.

We can express |G| as a product of integers m1,
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m2, . . . , mt(G), where π(mi) = πi for each i. The
numbers mi are called the order components of
G. In particular, if mi is odd, then we call it
an odd component of G. Write OC(G) for the
set {m1, m2, . . . ,mt(G)} of order components of
G and T (G) for the set of connected components
of G. According to the classification theorem of
finite simple groups and [10, 12, 9], we can list
the order components of finite simple groups with
disconnected prime graphs as in Tables 1-4 in [4].

If n is an integer, then denote the r-part of n by
nr = ra or by ra ∥ n, namely, ra | n but ra+1 ∤ n.
The other notation and terminology in this paper
are standard, and the reader is referred to [6] if
necessary.

2 Preliminary Results

For the proof of the main theorem we need to the
following Lemmas:

Lemma 2.1 [7, Lemma 8.1] Let q > 1 be an in-
teger, m be a nature number, and p be an odd
prime. If p divides q − 1, then (qm − 1)p =
mp.(q − 1)p.

Lemma 2.2 [13] Let a, b and n be positive in-
tegers such that (a, b) = 1. Then there exists a
prime p with the following properties:

p divides an − bn,
p does not divide ak − bk for all k < n, with

the following exceptions: a = 2, b = 1, n = 6 and
a+ b = 2k, n = 2.

Remark 2.1 If b = 1, the prime p is called the
Zsigmondy prime. If p is a Zsigmnody of an − 1,
then Fermat’s little theorem shows that n | p− 1.
Put Zn(a) = {p : p is a Zsigmondy prime of an−
1}. If r ∈ Zn(a) and r | am − 1, then n | m.

3 Main results

By [1, Corollary 2.11], Ln(2) has one conjugacy

class length |Ln(2)|
2n−1 .

Theorem 3.1 Let G be a group. Then
G ∼= Ln(2) if and only if |G|= |Ln(2)| and

G has one conjugacy class length |Ln(2)|
2n−1 , where

2n − 1 = p is a prime number.

Proof. The necessity of the theorem can be
checked easily. We only need to prove the suf-
ficiency. Since 2n − 1 is a prime, by [8], n is a
prime. If n = 2 or 3, then since L2(2) ∼= S3 and
L3(2) ∼= L2(7), by [5] G ∼= Ln(2). Thus we only
consider that n ≥ 5.

By hypothesis, there exists an element x of
order p in G such that CG(x) =< x > and
CG(x) is a Sylow p-subgroup of G. By the
Sylow theorem, we have that CG(y) =< y > for
any element y in G of order p . So, {p} is a
prime graph component of G and t(G) ≥ 2. In
addition, p is the maximal prime divisor of |G|
and an odd order component of G. We are going
to prove the theorem 3.1 in the following steps.

Step 1. G has a normal series 1 ⊴ H ⊴ K ⊴ G
such that H and G/K are π1-groups, K/H is a
non-Abelian simple group and H is a nilpotent
group.

Let g ∈ G be an element of order p, then
CG(g) =< g >. Set H = Op′ (G) (the largest

normal p
′
-subgroup of G). Then H is a nilpotent

group since g acts on H fixed point freely. Let K
be a normal subgroup of G such that K/H is a
minimal normal subgroup of G/H. Then K/H is
a direct product of copies of some simple group.
Since p | |K/H| and p2 ∤ |K/H|, K/H is a simple
group. Since < g > is a Sylow p-subgroup of K,
G = NG(< g >)K by the Frattini argument and
so |G/K| divides p− 1.

If |K/H|= p, then by Lemma 2.2, there is
a prime r ∈ Zn−1(2) ∩ π(G) and so |Ln(2)|r=
|2n−1 − 1|r≤ |G|r. Since π(G) = π(K) ∪ π(H) =
π1(G) ∪ π2(G), then r ∈ π(H). Since H is nilpo-
tent, a Sylow r-subgroup is normal in G. It fol-
lows that the Sylow p-subgroup of G acts fixed
point freely on the set of elements of order r
and so p | |Ln(2)|r−1. Thus p ≤ |Ln(2)|r≤
((2

n−1
2 − 1)2)r < 2n−1 − 1 < p; a contradiction.

If K/H has an element of order rq where r
and q are primes, then G has also such element.
Hence by definition of order components, an odd
order component of G must be an odd order
component of K/H. Note that t(K/H) ≥ 2.

Step 2. K/H is isomorphic to Ln(2).

According to the classification theorem of finite
simple groups and the results in Tables 1–4 in [4],
K/H is an alternating group, sporadic group or
simple group of Lie type.
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First we prove that K/H can not be an alter-
nating group Am.

Let K/H ∼= Am with m ≥ 5, then since 2n −
1 = p is a prime and p ∈ π(K/H), m ≥ 2n − 1.
Thus there is a prime u ∈ π(Am) ∩ π(G) such
that p+1

2 < u < p. Since |G|= |Ln(2)|, there
exists t ∈ {2i, i : 1 < i < n − 1} ∪ {n} such that
u ∈ Zt(2). Obviously u > 2n−1+1

2 = 2n−1 and
so u = 2n−1 + 1. Since n, u are primes, then
n− 1 = 2k + 1 and so n = 2; a contradiction.

Let K/H be sporadic simple groups, we can
rule out this case by considering their odd order
component since the odd components of K/H
is p = 2n − 1. Therefore, K/H is isomorphic
to a simple group of Lie type. We consider the
following cases.

Case 1: Let t(K/H) = 2. Then we have
that OC2(K/H) = p = 2n − 1.

1.1. Let K/H = Cm(q), where m = 2u > 2,
then qm+1

(2,q−1) = 2n − 1. If q is odd, then

qm − 1 = 2n+1 − 4. On the other hand,
qm − 1 = 22( 2n−1 − 1). Since 2 | (q − 1)
and m = 2u, then by Lemma 2.1, (qm − 1)2
= (q − 1)2.m2 = 22. But m ≥ 3, (qm − 1)2
.m2 ≥ 23; a contradiction. If q is even, then
qm − 1 = 2n−1 − 1 and hence, m = 1, n = 1; a
contradiction.

Similarly, we can rule out the cases
K/H = Bm(q) or Cm(q) with m = 2u ≥ 4.

1.2. Let K/H = Cr(3) or Br(3), then
3r−1
2 = 2n − 1. Thus 3r = 2n+1 − 1, which

contradicts Lemma 2.2.

Similarly, we can rule out these cases
K/H = Dr(3) or Dr+1(3).

1.3. Let K/H = Cr(2), then 2r − 1 = 2n − 1
and so n = r. Therefore, 2n + 1 | |G|= |Ln(2)|;
a contradiction. Similarly we can rule out the
cases K/H = Dr(2) or Dr+1(2).

1.4. Let K/H = Dr(5) where r ≥ 5, then
5r−1
4 = 2n − 1. Thus 5r = 2n+2 − 3 and so

r = 1 = n or r = 3, n = 5; a contradiction.

1.5. Let K/H =2 Dm(3), where 9 ≤ m = 2r + 1

and m is not a prime, then 3m−1+1
2 = 2n − 1 and

hence, 3(3m−2 − 1) = 2n; a contradiction. Also
we can rule out K/H =2 Dm+1(2).

1.6. Let K/H =2 Dm(2), where m = 2r + 1 ≥ 5,
then 2m−1 + 1 = 2n − 1 and hence,
2m−2 = 2n−1 − 1; a contradiction.

1.7. Let K/H =2 Dr(3), where r ̸= 2m + 1 ≥ 5,
then 3r+1

4 = 2n − 1 and hence, 3r = 2n+2 − 5.
Thus n = 3 and r = 3; a contradiction.

1.8. Let K/H = G2(q), where 2 < q ≡ ε
mod 3 and ε = ±1, then q2− εq+1 = 2n− 1 and
hence, (q − 2)(q + 1) = 2n or (q + 2)(q − 1) = 2n

and hence, q = 2 or 3 and n = 2; a contradiction.

1.9. Let K/H =2 F4(2). Since
|2F4(2)|= 211.33.52.13, 2n − 1 = 13; a con-
tradiction. Also we can rule out K/H = 2A3(2).

1.10. Let K/H = Lr(q), where (r, q) ̸= (3, 2),
(3, 4). Since qr−1

(q−1)(r,q−1) = 2n− 1, then r = n and
q = 2, as desired.

1.11. Let K/H = Ur(q), then qr+1
(q+1)(r,q+1) =

2n − 1.

(a) Let q is odd. If (r, q + 1) = 1, then qr−1 −
qr−2 + ... − q + 1 = 2n − 1 and hence, qr−1 −
qr−2+ ...− q = 2(2n−1− 1). It follows that q = 2;
a contradiction. If (r, q + 1) = r, then r = 2 or
3 ≤ r is a prime.

If r = 2, then (q+1) | (q2+1); a contradiction.
Thus r ≥ 3 and so r | (q+1) | (qr +1). It follows
that r | q2r − 1. Then by Fermat’s little theorem,
r | φ(2r) = r − 1, and so r = 1; a contradiction.

(b) Let q is even. If (r, q + 1) = 1, then
qr−1 − qr−2 + ... − q + 1 = 2n − 1 and hence,
qr−1− qr−2+ ...− q = 2(2n−1−1). It follows that
q = 2 and r = 2; a contradiction. If (r, q+1) = r,
then 3 ≤ r is a prime and so r | (q+1) | (qr +1).
It follows that r | q2r − 1. Then by Fermat’s
little theorem, r | φ(2r) = r − 1, and so r = 1; a
contradiction.

1.12. Let K/H = Lr+1(q), with (q− 1) | (r− 1).
Since qr−1

(r,q−1) = p, p ∈ Zr(q) and hence

r | (p − 1) = 2n − 2 = 2(2n−1 − 1) . It follows
that r = 2 or r ∈ Zn−1(2).

(a) Let r = 2. Then q = 4 or 2. If q = 4,
then p = 15; a contradiction. Hence q = 2, p = 3
and n = 2. It follows that K/H is isomorphic to
L3(2), as desired.
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(b) Let r ∈ Zn−1(2). Then (q−1) | (2n−1) and
so q is a Mersenne prime. Order consideration
also rules out this case.

Similarly we can rule out the case K/H =
Ur+1(q).

1.13. Let K/H = E6(q), where q = ua,

then q6+q3+1
(3,q−1) = p = 2n − 1. Thus p ∈ Z9(q) and

hence, 9 | (2n − 2) = 2(2n−1 − 1). It follows that
9 | (2n−1 − 1) and so 2 | n− 1 or 4 | n− 1. Thus
n = 2t+ 1 or n = 4t+ 1.

(a) Let n = 2t + 1. Then p = 22t − 1 = (2t −
1)(2t + 1) and so t = 1, p = 3 and n = 2. Hence
q6+q3+1
(3,q−1) = 3, but the equation has no solution in
N.

(b) Let n = 4t+1. Then p = (22t−1)(22t+1),
the equation has no solution in N.

Similarly, we can rule out the case K/H
=2 E6(q).

Case 2: Let t(K/H) = 3. Then
p = 2n − 1 ∈ {OC2(K/H), OC3(K/H)}.

2.1. Let K/H = L2(q), where 4 | (q + 1).
Then q−1

2 = 2n−1 or q = 2n−1. If q−1
2 = 2n−1,

then 4 | (q + 1) = 2n and so n ≥ 2. If n ≥ 3,
then order consideration rules out this case. If
n = 2, then q = 7 and so |K/H|| |L2(7)|| |L2(2)|;
contradiction. If q = 2n − 1 = p and so n ≥ 2,
similarly, we can rule out this case.

2.2. Let K/H = L2(q), where 4 | (q − 1).
Then q = p or q+1

2 = p . If q = p, then

4 | (2n − 2); a contradiction. If q+1
2 = p, then

4 | (2n+1 − 3); a contradiction.

2.3. Let K/H = L2(q), where q > 2 and
q is even. Then p ∈ {q − 1, q + 1} . If p = q − 1,
then q = p+1 = 2n and so (2n+1) | |G|; a contra-
diction. If p = q+1, then q = p−1 = 2(2n−1−1)
and so n = 2; a contradiction.

2.4. Let K/H = U6(2). Then |K/H|=
215.36.7.11 and so 2n − 1 = 11; a contradiction.

2.5. Let K/H = L3(2). Then |K/H|=
23.3.7 and 2n − 1 = 7. Thus n = 3, which is the
desired result.

2.6. Let K/H =2 Dr(3), where r = 2t + 1

≥ 5. Then 3r+1
4 = 2n − 1 or 3r−1+1

2 = 2n − 1. If

3r+1
4 = 2n − 1, then 3(3r−1 − 1) = 23(2n−1 − 1).

Since 2 | 3 − 1, then by Lemma 2.1, r − 1 = 4
and so t = 2. It follows that 30 = 2n−1 − 1;
a contradiction. If 3r−1+1

2 = 2n − 1, then
3r−1 = 2(2n−1 − 1) ; a contradiction.

2.7. Let K/H = G2(q), where q ≡ 0 mod
3. Then q2− q+1 = 2n−1 or q2+ q+1 = 2n−1.
If q2− q+1 = 2n− 1, then q(q− 1) = 2(2n−1− 1)
and so q = 3 and n = 3. Order consideration
rules out this case.

If q2+q+1 = 2n−1, then q(q+1) = 2(2n−1−1).
But the equation has no solution in N.

Similarly, we can rule out K/H =2 G2(q).

2.8. Let K/H = F4(q), where q is even.
Then q4 + 1 = 2n − 1 or q4 − q2 + 1 = 2n − 1. If
q4 + 1 = 2n − 1, then q4 = 2(2n−1 − 1); a contra-
diction. If q4− q2+1 = 2n− 1, then q2(q2− 1) =
2(2n−1−1), but the equation has no solution in N.

2.9. Let K/H =2 F4(q), where q = 22t + 1 > 2.
Then q2 +

√
2q3 + q +

√
2q + 1 = 2n − 1

or q2 −
√

2q3 + q −
√
2q + 1 = 2n − 1.

It is easy to get that the equations
q2 +

√
2q3 + q +

√
2q + 1 = 2(2n−1 − 1)

and q2 −
√

2q3 + q−
√
2q+ 1 = 2(2n−1 − 1) have

no solution in N.

2.10. Let K/H = E7(2), then 2n − 1 ∈ {73, 127}
and so n = 7. Order consideration rules out this
case.

2.11. Let K/H = E7(3), then 2n − 1 ∈
{757, 1093}, which is impossible.

Case 3: Let t(K/H) = {4, 5}. Then
p = 2n − 1 ∈ {OC2(K/H, OC3(K/H),
OC4(K/H), OC5(K/H)}.

3.1. Let K/H = L3(4) or 2E6(2). Then
2n − 1 = 7 or 2n − 1 = 19. If 2n − 1 = 7, then
n = 3, and then order consideration rules out. If
2n − 1 = 19, then it is impossible.

3.2. Let K/H =2 B2(q), where q = 22t + 1 and
t ≥ 1. Then 2n − 1 ∈ {q − 1, q ±

√
2q + 1}.

If 2n − 1 = q − 1, then n = 2t + 1, order
consideration rules out. If 2n − 1 = q ±

√
2q + 1,

then 2(2n−1 − 1) = 2t+1(2t − 1). The equation
has no solution in N.
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Hence K/H = Ln(2) with 2n − 1 prime. Now
since |G|= |Ln(2)|, H = 1 and K = G ∼= Ln(2).
The Theorem 3.1 is proved.

Corollary 3.1 Thompson’s conjecture holds for
the simple groups Ln(2), where 2n − 1 prime is a
prime number.

Proof. Let G be a group with a trivial central
and N(G) = N(Ln(2)). Then it is proved in [2,
Lemma 1.4] that |G|= |Ln(2)|. Hence; the corol-
lary follows from the Theorem 3.1.
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