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Abstract

In this paper, a numerical method is proposed for solving the fuzzy linear Fredholm integral equations
of the second kind. For this result, we choose Legendre polynomials as basis functions and collocation
method to estimate a solution for an unknown function in these equations. Finally, a numerical
example will be stated to illustrate this method.
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1 Introduction

I
n recent years, many numerical methods have
been proposed for solving fuzzy linear inte-

gral equations. For example, in [10], the au-
thors used the divided differences and finite dif-
ferences methods for solving a parametric of the
fuzzy Fredholm integral equations of the second
kind. Also, in [9], a numerical method is proposed
for the approximate solution of fuzzy linear Fred-
holm functional integral equations of the second
kind by using iterative interpolation. Moreover,
in [2], a numerical procedure is proposed for solv-
ing the fuzzy linear Fredholm integral equations
of the second kind by using Lagrange interpo-
lation based on the extension principle. In [7],
the classic Galerkin method for solving integral
equations of the second kind was improved to
fuzzy Galerkin method, and, the error analysis,
namely, error estimate, stability and convergence
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of the extended method were discussed and some
results were established. In [5], the homotopy
analysis method (HAM) was applied for solving
fuzzy linear Fredholm integral equations of the
second kind. The results revealed the validity and
the great potential of HAM in solving fuzzy inte-
gral equations.
In this paper, after converting the following fuzzy
integral equation

F (t) = g(t)+(FH)

∫ b

a
k(t, s)F (s)ds ; t ∈ [a, b]

to the two crisp equations, we use the procedure
proposed in [8] and approximate the unknown
function.
The important point is that, we haven’t used the
technic of fuzzy linear system introduced in [3].

2 Preliminaries

Definition 2.1 [6] A fuzzy number is a function
u : ℜ −→ [0, 1] having the properties:

(i) u is normal, that is ∃x0 ∈ ℜ with u(x0) = 1;
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(ii) u is fuzzy convex set (that is u(λx + (1 −
λ)y) ≥ min {u(x), u(y)} ∀x, y ∈ ℜ λ ∈
[0, 1]);

(iii) u is upper semi-continuous on ℜ;

(iv) the support {x ∈ ℜ : u(x) > 0} is a compact
set.

The set of all fuzzy real numbers is de-
noted by ε1. For 0 < α ≤ 1, let us
define [u]α = {x ∈ ℜ : u(x) ≥ α} and
[u]0 = {x ∈ ℜ : u(x) > 0}. Also, we define
uα− = inf [u]α and uα+ = sup [u]α.

For u, v ∈ ε1 and λ ∈ ℜ, we have the
sum u + v and the product λu defined by
[u + v]α = [u]α + [v]α, [λu]α = λ[u]α ∀α ∈ [0, 1],
where [u]α + [v]α means the usual addition of
two intervals (as subsets of ℜ ), and λ[u]α means
the usual product between a scaler and a subset
of ℜ. We denote by

∑
the sum of real numbers

and also the sum of fuzzy numbers with respect
to + (if the terms are fuzzy numbers).

Also, we use the Hausdorff distance between
fuzzy numbers given by d∞ : ε1×ε1 −→ ℜ+

∪
{0}.

as in [4]

d∞(u, v) = sup
α∈[0,1]

{dH([u]α, [v]α)}

= sup
α∈[0,1]

max{|uα− − vα−|, |uα+ − vα+|}

where [u]α = [uα−, u
α
+], [v]

α = [vα−, v
α
+] ⊆ ℜ

and dH is the Hausdorff distance. We define
||.||F= d∞(., õ).

Then we have the following theorem and it
is known.

Theorem 2.1 See [1]

(i) ||.||F has the properties of a usual norm on
ε1 i.e ||u||F= o iff u = õ,
||λu||F= |λ|||u||F , and ||u + v||F≤
||u||F+||v||F .

(ii) | ||u||F−||v||F |≤ d∞(u, v) and
d∞(u, v) ≤ ||u||F+||v||F for any u, v ∈ ε1.

The following theorem is very important in
concept of distance between fuzzy numbers:

Theorem 2.2 See [11]

(i) (ε1, d∞) is a complete metric space.

(ii) d∞(u+ v, v + w) = d∞(u,w) ∀u, v, w ∈ ε1

(iii) d∞(λu, λv) = |λ|d∞(u, v) ∀u, v ∈ ε1, ∀λ ∈
ℜ

(iv) d∞(u + v, w + e) ≤ d∞(u,w) +
d∞(v, e) ∀u, v, w, e ∈ ε1

In [11] Congxin Wu and Zengtai Gong intro-
duced the concept of the Henstock integral for a
fuzzy-number-valued function.

Let f : [a, b] −→ ε1. For ∆n : a = x0 <
x1 < ... < xn = b a partition of the interval
[a, b], let us consider the intermadiate points
ζi ∈ [xi−1, xi], i = 1, ..., n , and δ : [a, b] −→ ℜ+.
The division P = {([xi−1, xi]; ζi); i = 1, ..., n}
denoted shortly by P = (∆n, ζ) is said to be
δ − fine if:

[xi−1, xi] ⊆ (ζi − δ(ζi), ζi + δ(ζi)).

The function f is called Henstock integrable
to I ∈ ε1 if for every ϵ > 0 there is a function
δ : [a, b] −→ ℜ+ such that for any δ−fine division
P we have:

d∞(Σn
i=1(xi − xi−1)f(ζi), I) < ϵ.

Then I is called the Henstock integral of f and it
is denoted by:

(FH)

∫ b

a
f(t)dt.

If the above δ : [a, b] −→ ℜ+ is constant func-
tion, then one recaptures the concept of Riemann
integral introduced by Goestchel and Voxman [6].
In this case I ∈ ε1 will be called the Riemann in-
tegral of f on [a, b] and will be denoted by:

(FR)

∫ b

a
f(t)dt.

Theorem 2.3 See [11]

(i) If f and g are Henstock integrable mapping
and if d∞(f(t), g(t)) is Lebesgue integrable,
then:

d∞( (FH)

∫ b

a
f(t)dt , (FH)

∫ b

a
g(t)dt ) ≤ (L)
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Table 1: The values of (sj , P6( F (sj , αr) )) for the membership degrees of αr = 0, 1, ..., 5.

r0 = 0 r1 = 0.2 r2 = 0.4 r3 = 0.6 r4 = 0.8 r5 = 1

sj

-1 0 0.2819 0.5639 0.8458 1.1277 1.4096
-0.8333 0 0.2968 0.5936 0.8904 1.1872 1.4839
-0.6667 0 0.3143 0.6287 0.9430 1.2574 1.5717
-0.5 0 0.3351 0.6702 1.0052 1.3403 1.6754
-0.3333 0 0.3596 0.7192 1.0787 1.4383 1.7979
-0.1667 0 0.3885 0.7770 1.1656 1.5541 1.9426
0 0 0.4227 0.8454 1.2681 1.6908 2.1135

Table 2: the values of (sj , P6( F (sj , αr) )) for the membership degrees of αr = 0, 1, ..., 5.

r0 = 0 r1 = 0.2 r2 = 0.4 r3 = 0.6 r4 = 0.8 r5 = 1

sj

-1 2.8193 2.5374 2.2554 1.9735 1.6916 1.4096
-0.8333 2.9679 2.6711 2.3743 2.0775 1.7807 1.4839
-0.6667 3.1434 2.8291 2.5147 2.2004 1.8861 1.5717
-0.5 3.3508 3.0157 2.6806 2.3456 2.0105 1.6754
-0.3333 3.5958 3.2362 2.8766 2.5170 2.1575 1.7979
-0.1667 3.8852 3.4967 3.1081 2.7196 2.3311 1.9426
0 4.2271 3.8044 3.3817 2.9590 2.5363 2.1135

∫ b

a
d∞(f(t), g(t))dt.

(ii) Let f : [a, b] −→ ε1 be a Henstock integrable
bounded mapping. Then for any fixed u ∈
[a, b], the function φu : [a, b] −→ ℜ defined by
φu(t) = d∞(f(u), f(t)) is Lebesgue integrable
on [a, b].

3 Numerical method

Consider the fuzzy linear Fredholm integral
equation of the second kind:

F (t) = g(t)+(FH)

∫ b

a
k(t, s)F (s)ds ; t ∈ [a, b]

(3.1)
where k : [a, b]× [a, b] −→ ℜ and g : [a, b] −→ ε1

are known functions, but F : [a, b] −→ ε1 is an
unknown function. Considering the nonnegative
kernel k , the above fuzzy equation replaced by
the two following crisp equations

F (t, α) = g(t, α) +

∫ b

a
k(t, s)F (s, α)ds; α ∈ [0, 1]

(3.2)

and

F (t, α) = g(t, α) +

∫ b

a
k(t, s)F (s, α)ds;α ∈ [0, 1].

(3.3)
The Legendre polynomials Lm(t) on the interval
[−1, 1] are given by the following recursive for-
mula.

L0(t) = 1

L1(t) = t

Lm+1(t) =
2m+ 1

m+ 1
tLm(t)

− m

m+ 1
Lm−1(t) m = 1, 2, 3, ...

We estimate the two unknown functions
F (t, α), F (t, α) through the following Legendre
polynomials.

F (t, α) ≈ Pm( F (t, α) ) =
m∑
i=0

aiαLi(t) (3.4)

and

F (t, α) ≈ Pm( F (t, α) ) =
m∑
i=0

aiαLi(t). (3.5)
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0.7675 -0.9028 0.6851 -0.4164 0.2533 -0.1365 0.0604
0.7253 -0.7185 0.3829 -0.0981 -0.0043 0.0721 -0.0876
0.6755 -0.5310 0.1368 0.0808 -0.0768 0.0164 0.0593

A= 0.6166 -0.3398 -0.0529 0.1479 -0.0476 -0.0839 0.1264
0.5471 -0.1440 -0.1863 0.1310 0.0185 -0.1202 0.0597
0.4649 0.0570 -0.2631 0.0576 0.0750 -0.0670 -0.0517
0.3679 0.2642 -0.2832 -0.0446 0.0940 0.0453 -0.1037

By using (3.4) and (3.5) in the equations (3.2)
and (3.3)

m∑
i=0

aiαLi(t) = g(t, α) +

∫ b

a
k(t, s)

m∑
i=0

aiαLi(s)ds,

(3.6)
α ∈ [0, 1].

and

m∑
i=0

aiαLi(t) = g(t, α) +

∫ b

a
k(t, s)

m∑
i=0

aiαLi(s)ds,

(3.7)
α ∈ [0, 1].

So, we define the residual equations the given
form

Rm(t) =

m∑
i=0

aiαLi(t)− g(t, α)−
∫ b

a
k(t, s)

m∑
i=0

aiαLi(s)ds

(3.8)
and

Rm(t) =

m∑
i=0

aiαLi(t)− g(t, α)−
∫ b

a
k(t, s)

m∑
i=0

aiαLi(s)ds.

(3.9)
To determine the unknown coefficients aiα, aiα,
we choose some points of collocation as

Rm(sj) = Rm(sj) = 0 ; j = 0, 1, ...,m.

Such as [8] collocation points are

sj = a+
(b− a)

m
j ; j = 0, 1, ...,m.

Therefore, we have two linear systems of equa-
tions

AmXα = bmα , AmXα = bmα

in which

Am = [ Li(sj) −
∫ b
a k(sj , s)Li(s)ds ]mj=0 ; i =

0, 1, ...,m

Xα
T = [ aiα ]mi=0 , bm = [g(sj , α)] ; j =

0, 1, ...,m

Xα
T

= [ aiα ]mi=0 , bm = [g(sj , α)] ; j =
0, 1, ...,m.

For investigating convergence of procedure and
its speed you can refer [8].

Example 3.1 Consider the following fuzzy inte-
gral equation

F (t) = (0, 1, 2)+(FH)

∫ 0

−1
et+sF (s)ds ; t ∈ [−1, 0]

where, (0, 1, 2) is a triangular fuzzy number with
level sets as:

[(0, 1, 2)]α = [α, 2− α].

Therefore, using parametric representation of
fuzzy numbers, we have

F (t, α) = α+

∫ 0

−1
et+sF (s, α)ds ; α ∈ [0, 1]

and

F (t, α) = 2−α+

∫ 0

−1
et+sF (s, α)ds ; α ∈ [0, 1].

Choosing αr =
1
5r ; r = 0, 1, ..., 5 and collocation

points as

sj = −1 +
1

6
j ; j = 0, 1, ..., 6

we can use Legendre polynomials
L0(t), L1(t), ..., L6(t) to approximate unknown
functions F (t, α) and F (t, α) and get:
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4 Conclusion

The aim of this paper, is to propose a simple nu-
merical method to solve linear fuzzy Fredholm in-
tegral equations with nonegative kernels. In this
method, we use Legendre polynomials to approx-
imate the unknown functions of crisp linear in-
tegral equations obtained from the fuzzy integral
equation. Such a method for crisp equations has
been used in [8] and the convergence of its was
investigated there.
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