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Abstract
In this paper, He’s homotopy perturbation method is applied to solve two-dimensional
linear and nonlinear Volterra integral equations. Then homotopy perturbation method
(HPM) is compared with the differential transform method (DTM) for solving two dimen-
sional integral equations. We also give some examples to demonstrate the accuracy of the
method. From the computational view point, the homotopy perturbation method is more
efficient and easy to use.
Keywords : Two-dimensional Volterra integral equations; Homotopy perturbation method; Differ-
ential transform method.
————————————————————————————————–

1 Introduction

As we know, much work has been done on developing and analyzing numerical methods
for solving one-dimensional integral equations of the second kind [3, 7, 27], but in two-
dimensional cases a small amount of work has been done [3, 4, 13, 14].

On the other hand, in recent years, He’s homotopy perturbation method has been de-
veloped for solving differential and integral equations. The homotopy perturbation method
(HPM) was proposed by Ji-Huan He (see [15]-[24]) in 1998. In this method, the solution
is considered as the summation of an infinite series, which usually converges rapidly to the
exact solution. Using the homotopy technique from topology, a homotopy is constructed
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with an embedding parameter p ∈ [0, 1], which is considered as a (small parameter). Con-
siderable research has been recently conducted in applying this method to a wide class
of linear and nonlinear equations (see [1], [2], [5]-[11]) and also in [26] this method is
used for solving system of linear Fredholm integral and integro-differential equations. In
[29] this method is applied to one-dimensional system of Fredholm-Volterra type integral
equations and in [9, 12] to nth-order integro-differential and nonlinear Volterra-Fredholm
integral equations. In this paper, we propose HPM for solving a class of two-dimensional
linear and nonlinear Volterra integral equations and compare the homotopy perturbation
method with the differential transform method.

2 Description of HPM and DTM

This section is devoted to reviewing HPM and DTM for solving the two-dimensional
Volterra integral equations of the from:

u(x, t) −
∫ t

0

∫ x

0
k(x, t, y, z, u(y, z))dydz = f(x, y) (2.1)

where k and f are continuous functions and k has the following degenerate form:

k(x, t, y, z, u(y, z)) =
p∑

i=0

vi(x, t)wi(y, z, u(y, z)). (2.2)

To explain HPM, we reconstitute (2.1) as:

L(u) = u(x, t) − f(x, t) −
∫ t

0

∫ x

0
k(x, t, y, z, u(y, z))dydz = 0 (2.3)

with solution u(x, t), and we define the homotopy H(u, p) by

H(u, p) = (1 − p)N(u) + pL(u) = 0, (2.4)

where N(u) is a functional operator with a known solution, say, u0, which can be obtained
easily. Obviously from (2.4), we have:

H(u, 0) = N(u), H(u, 1) = L(u)

and changing p from 0 to 1 we continuously trace an implicitly defined curve from a
starting point H(u0, 0) to a solution function H(u, 1).

The solutions to problem (2.3) can be written as [15]:

u =
∞∑

n=0

pnun = u0 + pu1 + p2u2 + · · · . (2.5)

When p → 1 Eq. (2.4) corresponds to Eq. (2.3) and series (2.5) gives the approximate or
exact solution of Eq. (2.3), i.e.,

u(x, t) = lim
p→1

u =
∞∑

n=0

un. (2.6)
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The series (2.6) is convergent in most of the cases, and also the rate of convergence depends
on N(u) and L(u), see [15].

Taking N(u) = u(x, t) − f(x, t), we substitute (2.5) into (2.4) and equate the terms
with identical powers of p, obtaining

u0(x, t) = f(x, t),

uN+1(x, t) =
∫ t

0

∫ x

0
k(x, t, y, z)HN (y, z)dydz, N = 0, 1, 2, · · · .

Where the HN ’s are so-called He’s polynomials [10] which can be calculated by using the
formula:

HN (u0, u1, · · · , uN ) =
1

N !
∂N

∂pN
((

N∑
k=0

pkuk)r)p=0, N = 0, 1, 2, · · · .

In the DTM, the solution u(x, t) of Eq. (2.1) can be approximated by truncated Taylor
series with respect to u by

U(m,n)−
p∑

i=1

N∑
j=0

m−1∑
l=0

n−1∑
k=0

Vi(k, l)
Gij(m − k − 1, n − l − 1)

(m − k)(n − l)
= F (m, n), m, n = 0, 1, 2, · · · , N

(2.7)
where U , Vi, F and Gij are differential transforms of u, vi, f and gij = wiju

j , respectively.
We also obtain

Gij(m−k−1, n−l−1) =
1

(m − k − 1)
.

1
(n − l − 1)

m−k−2∑
r=0

n−l−2∑
s=0

w(r, s)uj(m−k−r−2, n−l−s−2)

(2.8)
where Wij and U j are differential transforms of wij and uj , respectively. Therefore a re-
currence relation for U(m,n) is obtained with the starting values U(0, 0), U(m, 0), U(0, n)
for m, n = 1, 2, · · · . Then we use the truncated form

u(x, t) =
N∑

m=0

N∑
n=0

U(m,n).(x − x0)m(t − t0)n. (2.9)

to obtain u(x, t). For details about the DTM and it’s application for solving problem
(2.1), we refer the reader to [25, 28].

3 Numerical Examples

In this section, we apply HPM to solve three linear and nonlinear Volterra integral equa-
tions. These examples are solved numerically in [28] by DTM. The main objective here is
to solve these examples by using the HPM given in section 2 and comparing the results
with the results in [28].

Example 3.1. Consider the linear Volterra integral equation [28]

u(x, t)−
∫ t

0

∫ x

0
(xy2+cos z).u(y, z)dydz = x sin t−1

4
x5+

1
4
x5 cos t−1

4
x2 sin2 t, x, t ∈ [0, 1],

(3.10)
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with the exact solution u(x, t) = x sin t.
By HPM, let N(u) = u(x, t) − f(x, t). Hence, we may choose a convex homotopy as

H(u, p) = u(x, t) − f(x, t) − p

∫ t

0

∫ x

0
k(x, t, y, z, u(y, z))dydz = 0 (3.11)

substituting (2.5) into (3.11), and equating the terms with identical powers of p, we have

p0 : u0(x, t) = f(x, t) ⇒ u0(x, t) = x sin t − 1
4
x5 +

1
4
x5 cos t − 1

4
x2 sin2 t.

p1 : u1(x, t) =
∫ t

0

∫ x

0
(xy2 + cos z)u0(y, z)dydz

⇒ u1(x, t) =
1
4
x5 +

1
4
x2 − 1

32
x9t +

1
32

x9 sin t − 1
24

x6 sin t − 1
240

x6t +
11
240

x6 cos t sin t

− 1
4
x5 cos t − 1

36
x3 sin3 t − 1

4
x2 cos2 t.

p2 : u2(x, t) =
∫ t

0

∫ x

0
(xy2 + cos z)u1(y, z)dydz

⇒ u2(x, t) =
1

648
x7 cos t sin2 t − 1

1680
x7t sin t +

1
240

x6t +
1
24

x6 sin t − 11
240

x6 cos t sin t

− 149
45360

x7 − 1
320

x10t sin t − 1
36

x3 cos2 t sin t − 1
32

x9t − 1
32

x9 sin t +
1

384
x10

− 1
576

x4 sin4 t − 1
384

x13 cos t − 11
5040

x7 cos3 t +
13

8640
x10 cost − 71

17280
x10 cos2 t

+
1

384
x13 − 1

4320
x10t2 +

113
45360

x7 cos t +
1

336
x7 cos2 t − 1

768
x13t2 +

1
36

x3 sin t.

and in general

PN+1 : uN+1(x, t) =
∫ t

0

∫ x

0
(xy2 + cos z)HN (y, z)dydz, N = 0, 1, 2, · · · .

(3.12)
Therefore, the approximate solution of Example 3.1. can be readily obtained by

u(x, t) =
∞∑
i=0

ui(x, t). (3.13)

In practice, all terms of series (3.13) can not be determined and so we use an approxima-
tion of the solution by the following truncated series:

uN (x, t) =
N−1∑
i=0

ui(x, t), with u(x, t) = lim
N→∞

uN (x, t). (3.14)

As we report absolute error which is defined by

eN (x, t) = |u(x, t) − uN (x, t)|.

The results for Example (3.1) are shown in Table 1 (with five and six terms).
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Table 1
Numerical results of Example (3.1)

(x
,t

)
(e

N
(x

,t
)f

or
N

=
10

) D
T

M
(e

N
(x

,t
)f

or
N

=
12

) D
T

M
(e

N
(x

,t
)f

or
N

=
5)

H
P

M
(e

N
(x

,t
)f

or
N

=
6)

H
P

M

(0
.2

,0
.2

)
0.

10
25

86
e-

15
0.

27
00

00
e-

19
0.

62
55

e-
17

0.
1e

-1
9

(0
.2

,0
.8

)
0.

42
86

32
e-

9
0.

17
60

34
e-

11
0.

50
20

58
e-

13
0.

11
28

6e
-1

5
(0

.4
,0

.6
)

0.
36

27
16

e-
10

0.
83

75
33

e-
13

0.
13

55
48

e-
11

0.
48

73
78

e-
14

(0
.4

,1
)

0.
99

56
91

e-
8

0.
63

93
14

e-
10

0.
22

78
57

e-
10

0.
12

26
55

e-
12

(0
.6

,0
.2

)
0.

30
77

60
e-

15
0.

80
00

00
e-

19
0.

20
41

43
e-

13
0.

40
19

e-
16

(0
.6

,
0.

8)
0.

12
85

89
e-

8
0.

52
81

02
e-

11
0.

17
60

85
e-

9
0.

12
66

56
e-

11
(0

.8
,0

.4
)

0.
83

97
48

e-
12

0.
86

15
10

e-
15

0.
29

68
45

e-
10

0.
16

48
57

e-
12

(0
.8

,0
.8

)
0.

17
14

53
e-

8
0.

70
41

37
e-

11
0.

24
25

72
e-

8
0.

25
30

20
e-

10
(1

,0
.6

)
0.

90
67

89
e-

10
0.

20
93

83
e-

12
0.

46
21

07
e-

8
0.

52
64

51
e-

10
(1

,1
)

0.
24

89
23

e-
7

0.
15

98
28

e-
9

0.
10

12
11

e-
6

0.
17

97
15

e-
8
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Example 3.2. We consider the second example as

u(x, t) −
∫ t

0

∫ x

0
(xy + tez)u(y, z)dydz

= xe−t + t − 1
3
x4 − xt +

1
3
x4e−t − 1

2
x2t2 − 1

4
x3t2 − xt2et + xtet, x, t ∈ [0, 1],

(3.15)

with the exact solution u(x, t) = xe−t + t.
Substituting (2.5) into (3.11), and equating the terms with identical powers of p, we

have

p0 : u0(x, t) = f(x, t)

⇒ u0(x, t) = xe−t + t − 1
3
x4 − xt +

1
3
x4e−t − 1

2
x2t2 − 1

4
x3t2 − xt2et + xtet.

p1 : u1(x, t) =
∫ t

0

∫ x

0
(xy2 + te2)u0(y, z)dydz

⇒ u1(x, t) =
1
18

x7 +
1
15

x5t +
1
2
x2tet − 1

2
x2t2et − xtet + ett2x − 1

4
x2t +

1
2
x2t2 +

1
3
x3t

+
1
4
x3t2 +

1
8
x4t − 1

24
x5t3 − 1

6
x4t2 +

4
3
x4 − 1

16
x4t3et +

7
8
x4tet − 5

24
x4t2et

+
7
8
x4tet − 5

24
x4t2et +

1
3
x3t2et − 1

3
x3tet − 1

60
x6t3 +

1
2
x2t2e2t − 1

4
x2te2t + xt

− 1
4
x2e2tt3 − 1

18
x7t +

1
15

x5t2 − 1
15

x5ett − 1
6
x3ett3 − x4et − 1

18
x7e−t − 1

3
x4e−t.

p2 : u2(x, t) =
∫ t

0

∫ x

0
(xy2 + tez)u1(y, z)dydz.

(3.16)

Therefore, the approximate solution of Example (3.2) can be readily obtained by (3.14).
The results are presented in Table 2.
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Table 2
Numerical results of Example (3.2)

(x
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(e

N
(x

,t
)f
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N
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) D
T

M
(e

N
(x

,t
)f
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N

=
12

) D
T

M
(e

N
(x

,t
)f
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N

=
5)

H
P

M
(e

N
(x

,t
)f
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N

=
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H
P

M
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.2

,0
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)
0.

40
21

00
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0.

17
30

90
e-

10
0.

38
22

79
e-

13
0.

42
69

60
e-

16
(0

.2
,1

)
0.

29
96

78
e-

10
0.

46
22

85
e-

8
0.

13
94

18
e-

9
0.

57
10

44
e-

12
(0

.4
,0

.4
)

0.
41

90
90

e-
15

0.
40

67
14

e-
12

0.
14

81
18

e-
13

0.
14

02
59

e-
16

(0
.4

,0
.8

)
0.

33
39

87
e-

11
0.

80
67

38
e-

9
0.

30
05

19
e-

9
0.

14
05

61
e-

11
(0

.6
,0

.8
)

0.
50

09
81

e-
11

0.
12

10
11

e-
8

0.
54

19
18

e-
8

0.
54

19
18

e-
8

(0
.6

,1
)

0.
89

90
36

e-
10

0.
13

86
86

e-
7

0.
17

34
91

e-
6

0.
22

37
97

e-
8

(0
.8

,0
.4

)
0.

83
81

70
e-

15
0.

81
34

27
e-

12
0.

12
53

84
e-

10
0.

33
07

74
e-

13
(0

.8
,0

.8
)

0.
66

79
75

e-
11

0.
16

13
48

e-
8

0.
55

47
73

e-
7

0.
58

29
93

e-
9

(1
,0

.6
)

0.
20
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00

e-
12

0.
86

54
50

e-
10

0.
13

70
47

e-
7

0.
11

14
09

e-
9

(1
,1

)
0.

14
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39
e-

9
0.

23
11

43
e-

7
0.
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15

24
e-

5
0.

22
49

46
e-

6
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Example 3.3. We consider the nonlinear Volterra integral equation

u(x, t) −
∫ t

0

∫ x

0
(y2 + e−2z)u2(y, z)dydz = x2et +

1
14

x7 − 1
14

x7e2t − 1
5
x5t, x, t ∈ [0, 1]

(3.17)
with the exact solution u(x, t) = x2et.

By HPM, we may choose a convex homotopy such as

H(u, p) = u(x, t) − f(x, t) − p

∫ t

0

∫ x

0
(y2 + e−2z)u2(y, z)dydz = 0 (3.18)

substituting (2.5) into (3.18) and equating the terms with identical powers of p, we have

p0 : u0(x, t) = f(x, t) ⇒ u0(x, t) = x2et +
1
14

x7 − 1
14

x7e2t − 1
5
x5t.

p1 : u1(x, t) =
∫ t

0

∫ x

0
(y2 + e−2z)u2

0(y, z)dydz

⇒ u1(x, t) =
1

428828400
(96525x17 + 204204x15 − 235620x13 − 30630600x7 + 389844x11

+ 439824x13t3 + 408408x15te2t + 5105100x12et + 32175x17e4t − 408408x15t2

+ 471240x13te−2t + 21441420x8te−t + 21441420x8e−t − 6126120x10e−t

+ 235620x13e−2t − 779688x11te−2t − 779688e−2tt2x11 + 471240x13t2

+ 128700x17t − 291720x15t − 1701700x12e3t + 11027016x10et − 4900896x10).

p2 : u2(x, t) =
∫ t

0

∫ x

0
(y2 + e−2z)(2u0(y, z).u1(y, z)dydz.

Table 3 shows the numerical results for Example (3.3).

Tables 1, 2 and 3 contain a numerical comparison between our solution using HPM
(with N = 2, · · · , N = 6) and the solutions of the same problems presented in [28] using
DTM (with N = 10, N = 12).

4 Conclusion

In this work, we have proposed the HPM for solving two-dimensional Volterra integral
equations. Several illustrative examples have shown that HPM is very efficient and sim-
ple for solving two-dimensional Volterra integral equations. Also, comparison with DTM
method [28], which involves complicated computations, has shown that HPM gives com-
parable results with simple computation.
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Table 3
Numerical results of Example (3.3)
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