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Abstract

Recently, the block-pulse functions (BPFs) are used in solving electromagnetic scattering problem,
which are modeled as linear Fredholm integral equations (FIEs) of the second kind. But the theoretical
aspect of this method has not fully investigated yet. In this article, in addition to presenting a new
approach for solving FIE of the second kind, the theory of both methods is investigated as a main
part. By providing a new method based on BPFs for solving FIEs of the second kind, the least squares
and non-least squares solutions are defined for this problem. First, the convergence of the non-least
squares solution is proved by the Nyström method. Then, considering the fact that the set of all
invertible matrices is an open set, the convergence of the least squares solution is investigated. The
convergence of Nyström method has the main role in proving the basic results. Because the presented
convergence trend is independent of the orthogonality of the basis functions, the given method can
be applied for any arbitrary method.
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1 Introduction

I
t is necessary to have an effective theoretical as-
pect for numerical methods. The block-pulse

functions, because of their simple structure, are
used in numerical solution of linear Fredholm
integral equations and other related functional
equations [2, 3, 4, 8, 14, 16]. Since in these ap-
proaches, finding an approximate solution is led
to solve the corresponding linear system of equa-
tions, the following statements should be investi-
gated:
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i) Existence and uniqueness of solution for the
corresponding system.

ii) Convergence of the approximate solution to
the exact solution.

In [1, 7, 12], the above propositions are dis-
cussed for some numerical methods. Since one-

and two-dimensional electromagnetic scattering
problems can be modeled by second kind FIE
[5, 6, 9, 10]. S. Hatamzadeh-V. and Z. Masouri
solved this equation by BPFs [8]. The advantage
of this method is the low cost of setting up the
equations without applying any projection meth-
ods such as collocation or Galerkin. The main
focus of this article is to present an effective theo-
retical aspect for the given method in [8]. Because
of the orthogonality of block-pulse functions, the
convergence of the presented approach in [8] can
be investigated by Galerkin method [12], but a
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new approach has been used for investigating its
convergence, that can be used for non-orthogonal
and arbitrary basis.

In this article, beside presenting a new ap-
proach for second kind FIE based on BPFs (
that coincides with Nyström method based on
midpoint rule), the statements i and ii are in-
vestigated and then by elementary theorems, the
proved lemmas are extended for the given method
in [8]. The proofs of lemmas are mostly derived
from the property of continuous functions. First
of all, we describe briefly some characteristics of
BPFs and the applications for solving a second
kind FIE.

2 Solving Fredholm integral
equations

2.1 Review of block-pulse functions

For each positive integer n, we define

h =
1

n
, ti = ih, i = 0, · · · , n, (2.1)

that is, {ti}ni=0 are equidistant points in [0, 1].
With a little change an n−set of BPFs is defined
over the interval [0, 1] as follows [16]:

φi(t) =

{
1, t ∈ [ti, ti+1),
0, otherwise,

i = 0, · · · , n− 2,

(2.2)

φn−1(t) =

{
1, t ∈ [tn−1, tn],
0, otherwise,

(i = n− 1).

Lemma 2.1 If f ∈ C[0, 1] and

f(t) ≃
n−1∑
i=0

f iφi(t) =: Ln(t), (2.3)

then Ln is a least squares approximation for f in
the basis {φi}n−1

i=0 , if and only if,

f i =
1

h

∫ ti+1

ti

f(t)dt, i = 0, · · · , n− 1. (2.4)

Proof: See [16].

By using the mean value theorem for integrals
in 2.4, for each i ∈ {0, · · · , n − 1}, there exists
ξi ∈ (ti, ti+1) such that

1

h

∫ ti+1

ti

f(t)dt = f(ξi), (2.5)

since ti < ξi < ti+1, for sufficiently large n, we
have

f(ξi) ≃ f(ti), (2.6)

from (2.4) - (2.6), we get

f i ≃ f(ti). (2.7)

Definition 2.1 If f is defined on [0, 1] and

fi := f(ti), i = 0, · · · , n− 1,

then from (2.3) and (2.7) we have

f(t) ≃
n−1∑
i=0

fiφi(t) =: In(t),

and we define In as a non-least squares approxi-
mation for f in the basis {φi}n−1

i=0 .

Lemma 2.2 Let f ∈ C1[0, 1]. If Ln and In are
respectively least squares and non-least squares
approximations for f in the basis {φi}n−1

i=0 , then

∥f − Ln∥∞≤ 1

n
∥f ′∥∞,

and

∥f − In∥∞≤ 1

n
∥f ′∥∞.

Proof: See [15].

Lemma 2.3 Let Ln and In be respectively least
squares and non-least squares approximations for
f and t ∈ [ti, ti+1), then

Ln(t) = f i

In(t) = f(ti)

Proof: From the definition of block-pulse func-
tions (2.2), the proof is trivial.

2.2 Review of expansion method for
solving FIE based on BPFs

The following approach is recalled from [8].
Consider the second kind FIE

x(t)−
∫ 1

0
k(t, s)x(s)ds = f(t), t ∈ [0, 1], (2.8)

with k ∈ Cp([0, 1]× [0, 1]) and f ∈ Cq[0, 1], with
p, q ≥ 1.
These provide us to write
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x(t) ≃
n−1∑
i=0

xiφi(t),

f(t) ≃
n−1∑
i=0

f iφi(t),

k(t, s) ≃
n−1∑
i=0

n−1∑
j=0

kijφi(t)φj(s),

where from lemma 2.4, for each
i, j ∈ {0, · · · , n− 1}, we have

f i =
1

h

∫ ti+1

ti

f(t)dt,

xi =
1

h

∫ ti+1

ti

x(t)dt, (2.9)

kij =
1

h2

∫ ti+1

ti

∫ tj+1

tj

k(t, s)dtds. (2.10)

By taking

X = [x0, · · · , xn−1]
T ,

F = [f0, · · · , fn−1]
T ,

K = [kij ], i, j = 0, · · · , n− 1,

Eq. (2.8) is discretized as:

(I − hK)X = F . (2.11)

Definition 2.2 If X = [x0, · · · , xn−1]
T be a so-

lution of (2.11), then

xn(t) :=

n−1∑
i=0

xjφj(t), (2.12)

will be called a least squares approximate solution
of (2.8) in the basis {φi}n−1

i=0 .

Remark 2.1 For each i, j ∈ {0, · · · , n−1} there
exist constants ξi, ηj and αi such that

xi = x(αi), ti < αi < ti+1,

kij = k(ξi, ηj), ti < ξi < ti+1, tj < ηj < tj+1.

Proof: By applying the mean value theorem for
integrals in equations (2.9) and (2.10) the proof
is obvious.

2.3 New approach based on BPFs for
numerical solution of FIE

Consider the second kind FIE in (2.8). For
each t ∈ [0, 1], let In,t(.) be a non-least squares
approximation of k(t, .)x(.) in the basis {φj}n−1

j=0 ,
i.e.,

k(t, s)x(s) ≃ In,t(s), t ∈ [0, 1]. (2.13)

Then by definition 2.1, we have

In,t(s) =

n−1∑
j=0

k(t, tj)x(tj)φj(s), t ∈ [0, 1].

(2.14)
From (2.13) the approximate equation of (2.8) is
concluded as follows:

x(t)−
∫ 1

0
In,t(s)ds ≃ f(t), t ∈ [0, 1].

Since
∫ 1
0 φj(s)ds = h, 0 ≤ j ≤ n− 1, we have∫ 1

0
In,t(s)ds = h

n−1∑
j=0

k(t, tj)x(tj), t ∈ [0, 1],

(2.15)
thus

x(t)− h

n−1∑
j=0

k(t, tj)x(tj) ≃ f(t), t ∈ [0, 1].

(2.16)
Replacing t by ti in (2.16) (for i = 0, · · · , n − 1),
yields

x(ti)− h

n−1∑
j=0

k(ti, tj)x(tj) = f(ti), (2.17)

which can be written as

(I − hK)X = F, (2.18)

where

X = [x0, · · · , xn−1]
T , F = [f0, · · · , n− 1]T ,

K = [kij ], xi = x(ti), fi = f(ti),

kij = k(ti, tj), i, j = 0, · · · , n− 1,

Definition 2.3 If the system (2.18) is solvable,
then

xn(t) := f(t) + h

n−1∑
j=0

k(t, tj)x(tj), (2.19)
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and

x̃n(t) :=
n−1∑
j=0

x(tj)φj(t), (2.20)

are approximate solutions of (2.8). We define
x̃n as a non-least squares approximate solution
of second kind FIE in the basis {φj}n−1

j=0 .

About the approximate solution xn(t) defined by
(2.19), the proof of the following lemma is obvi-
ous.

Lemma 2.4 Let x̂n(t) be approximate solution
of (2.8) by Nyström method with the left-side
quadrature rule. Then

xn(t) ≡ x̂n(t).

Since the convergence of Nyström method is in-
vestigated in [12], the following theorem is con-
cluded from [12].

Theorem 2.1 Let xn(t) and x(t) be approxi-
mate(by (2.19)) and exact solutions of (2.8) re-
spectively. Then

xn(t) −→ x(t).

Moreover, for sufficiently large n the linear sys-
tem (2.18) has a unique solution, i.e., (I − hK)
is a nonsingular matrix.

3 Convergence

In this section, the approximate operator of the
integral operator is defined and some preliminary
lemmas are proved.

Lemma 3.1 Let k ∈ Cp([0, 1] × [0, 1]), f ∈
Cq[0, 1] and Eq. (2.8) has the unique solution
x, then x ∈ Cr[0, 1], with r = min(p, q).

Proof: See [7].
Note: We also denote the non-least squares ap-
proximation of k(ti, .)x(.) in the basis {φj}n−1

j=0 by
In,i(.) for each 0 ≤ i ≤ n− 1, i.e.,

k(ti, s)x(s) ≃ In,i(s), (3.21)

and from definition 2.1, we get (for i = 0, · · · , n−
1)

In,i(s) =

n−1∑
j=0

k(ti, tj)x(tj)φj(s). (3.22)

Since
∫ 1
0 φi(s)ds = h, for each 0 ≤ i ≤ n − 1, we

have (for i = 0, · · · , n− 1)∫ 1

0
In,i(s)ds = h

n−1∑
j=0

k(ti, tj)x(tj). (3.23)

Lemma 3.2 If t ∈ [ti, ti+1), then for each ε > 0
and sufficiently large n, we have∣∣∣ ∫ 1

0
In,t(s)ds−

∫ 1

0
In,i(s)ds

∣∣∣ < ε. (3.24)

Proof: Let ε > 0 be arbitrary, from (2.15) and
(3.23), one gets∣∣∣ ∫ 1

0
In,t(s)ds−

∫ 1

0
In,i(s)ds

∣∣∣ ≤
h

n−1∑
j=0

| k(t, tj)− k(ti, tj) || x(tj) |,

since {ti}ni=0 are equidistant points in [0, 1] and k
is a continuous function, for sufficiently large n,
we conclude

| k(t, tj)− k(ti, tj) |<
ε

∥x∥+1
.

Finally, boundedness of x, and h = 1
n complete

the proof.

Lemma 3.3 Let xn and x̃n be approximate so-
lutions of (2.8) defined in definition 2.3. Then
for arbitrary ε > 0 and sufficiently large n, we
have

| xn(t)− x̃n(t) |< ε, ∀t ∈ [0, 1].

Proof: Let t ∈ [ti, ti+1). Then by lemma 2.3 we
have

x̃n(t) = x(ti),

by combining this equation with (2.17), one gets

x̃n(t) = f(ti) + h

n−1∑
j=0

k(ti, tj)x(tj), (3.25)

this equation with (3.23) imply

x̃n(t) = f(ti) +

∫ 1

0
In,i(s)ds.

Also from (2.15) and (2.19) we have

xn(t) = f(t) +

∫ 1

0
In,t(s)ds,
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thus

| xn(t)− x̃n(t) |≤| f(t)− f(ti) | +∣∣∣ ∫ 1

0
In,t(s)ds−

∫ 1

0
In,i(s)ds

∣∣∣.
Since f is a continuous function, for sufficiently
large n we have

| f(t)− f(ti) |<
ε

2
,

also for sufficiently large n, by lemma 3.2,

∣∣∣ ∫ 1

0
In,t(s)ds−

∫ 1

0
In,i(s)ds

∣∣∣ < ε

2
.

Hence, the proof is completed.

Lemma 3.4 Let x̃n and xn be respectively
approximate solutions defined by (2.20) and
(2.12), then for ε > 0 arbitrary and sufficiently
large n, we have

| x̃n(t)− xn(t) |< ε, ∀t ∈ [0, 1].

Proof: Let t ∈ [ti, ti+1). Then by lemma 2.3 we
get

x̃n(t) = x(ti), xn(t) = xi,

and the remark 2.1 suggests existing an αi ∈
(ti, ti+1) such that

xi = x(αi).

Since x(t) is a continuous function (lemma 3.1),
for sufficiently large n, we have

| x̃n(t)− xn(t) |=| x(ti)− x(αi) |< ε,

and this completes the proof.

Corollary 3.1 The non-least squares approxi-
mate solution x̃n(t), defined by (2.20), converges
to the exact solution of Eq. (2.8).

Proof: Let x be the exact solution of Eq. (2.8).
Then

∥x̃n − x∥≤ ∥x̃n − xn∥+∥xn − x∥,

for sufficiently large n and arbitrary ε > 0, from
lemmas 3.3 and theorem 2.1, one gets

∥x̃n − xn∥<
ε

2
, ∥xn − x∥< ε

2
,

which complete the proof.

Finally, we are going to establish the state-
ments i and ii from Introduction for the given
method in [8] (section 2.2).

Theorem 3.1 The set of all invertible matrices
is an open set.

Proof: See [11].

Lemma 3.5 For sufficiently large n, the linear
system (2.11) is nonsingular i.e., for sufficiently
large n, I − hK is an invertible matrix.

Proof: By definition of infinity norm of matrices,
we have

∥(I − hK)− (I − hK)∥∞= h∥K −K∥∞=

1

n
max

0≤i≤n−1

n−1∑
j=0

| kij − kij |,

also by remark (2.1), we have

| kij − kij |=| k(ξi, ηj)− k(ti, tj) |,

thus

∥(I − hK)− (I − hK)∥∞= (3.26)

1

n
max

0≤i≤n−1

n−1∑
j=0

| k(ξi, ηj)− k(ti, tj) |.

For sufficiently large n, it follows from the uni-
form continuity of k that

|k(ξi, ηj)−k(ti, tj)|< ε, j = 0, · · · , n−1. (3.27)

From (3.26) and (3.27), we conclude

∥(I − hK)− (I − hK)∥∞< ε. (3.28)

Since I − hK is an invertible matrix, for suffi-
ciently large n, the proof is completed by theorem
3.1.

Corollary 3.2 The least squares approximate
solution xn(t), defined by (2.12), converges to the
exact solution of Eq. (2.8).
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Proof: Let x be the exact solution of Eq. (3.27).
Then

∥x− xn∥≤ ∥x− x̃n∥+∥x̃n − xn∥,

and for sufficiently large n, and arbitrary ε > 0,
from corollary 3.1 and lemma 3.4, one gets

∥x− x̃n∥<
ε

2
, ∥x̃n − xn∥<

ε

2
,

which complete the proof.

4 Conclusion

The advantage of the presented method is that it
is necessary to evaluate n2 + n integrals for set-
ting up the system (2.11), while the elements of
the matrices (I − hK) and F in (2.18) are ob-
tained by simple replacements, that is, without
computing the related integrals, and so the com-
putational cost of the new approach is less than
the presented method in [8].

It should be mentioned that the theory of the
new method is the means by which the theoretical
aspect of the given method in [8] is established.
In this process, the open set of invertible matrices
has an important role. The method of this article
can be applied for other types of basis functions,
and we will extend it for wavelet bases in our
future works.
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