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tober 2010.|||||||||||||||||||||||||||||||-Abstra
tThe velo
ity �eld and the adequate shear stress, 
orresponding to the 
ow of a generalizedse
ond grade 
uid in an annular region, due to a quadrati
 time-dependent shear stress,are determined by means of the Lapla
e and the �nite Hankel transforms. The solutionsthat have been obtained satisfy both the governing equations and all imposed initial andboundary 
onditions. For � ! 1 or � ! 1 and �1 ! 0, the 
orresponding solutions fora se
ond grade 
uid, respe
tively, for the Newtonian 
uid, performing the same motion,are obtained from general solutions. Finally, the in
uen
e of the material and fra
tionalparameters on the shear stress as well as a 
omparison between models is drawn by graph-i
al illustrations.Keywords : Generalized se
ond grade 
uid; Velo
ity �eld; Shear stress; Exa
t solutions.||||||||||||||||||||||||||||||||{1 Introdu
tionThe inadequa
y of the 
lassi
al Navier-Stokes theory to des
ribe the 
hara
teristi
sof many rheologi
al 
omplex 
uids has led to development of several theories of non-Newtonian 
uids. Among the many models that have been used to des
ribe the non-Newtonian behavior exhibited by these 
uids, one 
lass that has gained support fromboth the experimentalists and the theoreti
ians is that of Rivlin-Eri
kson 
uids of se
ondgrade. Although there some 
riti
isms on the appli
ations of this model [1, 14℄, manypapers have been published and a listing of some of them may be found in the litera-ture. Furthermore, it has been shown by Walters [29℄ that for many types of problemsin whi
h the 
ow is slow enough in the vis
oelasti
 sense, the results given by Oldroyd-B�Corresponding author. Email address: fete
au 
onstantin�yahoo.
om153
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onstitutive equations will be substantially similar to those of the se
ond or third-orderRivlin-Eri
kson 
onstitutive equations. Thus, if this is the manner of interpreting the so-lutions to problems, it would seem reasonable to use the se
ond or third-order 
onstitutiveequations in 
arrying out the 
al
ulations. This is parti
ularly so in view of the fa
t thatthe 
al
ulation is generally simpler. In this paper, the se
ond grade model is used.As early as Ting [26℄ provided a set of exa
t solutions for some 
ows of se
ond grade
uids. A listing of some problems that have been solved in the next ten years 
an befound in [6℄. During this time a lot of unsteady 
ows of su
h 
uids have been studiedby di�erent authors. However, it is worth pointing out that almost all these studies dealwith motion problems in whi
h the velo
ity is given on the boundary. To the best of ourknowledge, the �rst exa
t solutions for motions of se
ond grade 
uids due to a shear stresson the boundary are those of Bandelli and Rajagopal [2℄ in 
ylindri
al domains. Re
ently,similar problems in 
ylindri
al domains have been also studied in [7℄-[10℄. This is veryimportant as in some problems, what is spe
i�ed is the for
e on the boundary. It is alsoimportant to bear in mind that the \no slip"boundary 
ondition may not be ne
essarilyappli
able to the 
ows of polymeri
 
uids that 
an slip or slide on the boundary. Thus,the shear stress boundary 
ondition is parti
ularly meaningful.Our purpose here is to extend the results from ([2℄, Se
t. 4) to a motion due to atime-dependent shear stress. However, for 
ompleteness, we shall solve the problem for alarger 
lass of non-Newtonian 
uids, namely se
ond grade 
uids with fra
tional derivativesor generalized se
ond grade 
uids (GSGF). In the last time, the fra
tional 
al
ulus hasen
ountered mu
h su

ess in the des
ription of vis
oelasti
ity. Espe
ially, the rheologi
al
onstitutive equations with fra
tional derivative play an important role in des
ription ofthe behavior of the polymer solutions and melts. In other 
ases, it has been shown thatthe 
onstitutive equations employing fra
tional derivatives are linked to mole
ular theo-ries [13℄. Furthermore, the one-dimensional fra
tional derivative Maxwell model has beenfound very useful in modeling the linear vis
oelasti
 response of polymers in the glasstransition and the glass state [16℄. For a deeper do
umentation on this subje
t, we alsore
ommend the books [18, 20℄ and the re
ent papers [4℄-[15℄.2 Problem FormulationThe Cau
hy stress tensor T for se
ond grade 
uids is related to the 
uid motion in thefollowing manner [2℄ T = �p I+ �A1 + �1A2 + �2A21 ; (2.1)where �p is the hydrostati
 pressure, I is the unit tensor, � is the 
oeÆ
ient of vis
osity, �1and �2 are the normal stress moduli and A1, A2 are the �rst two Rivlin-Eri
ksen tensors.Sin
e the 
uid is in
ompressible, it 
an undergo only iso
hori
 motions, and hen
ediv v = trA1 = 0 : (2.2)2.1 Governing equationsThe 
ows to be here 
onsidered have the velo
ity �eld of the formv = v(r; t) = v(r; t) ez ; (2.3)
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tor along the z-axis of the 
ylindri
al 
oordinate system r; � and z.For su
h 
ows the 
onstraint of in
ompressibility (2.2) is automati
ally satis�ed and thegoverning equations, in the absen
e of a pressure gradient in the 
ow dire
tion and ne-gle
ting the body for
es, are [2, 12, 30℄�v(r; t)�t = (� + � ��t)� �2�r2 + 1r ��r�v(r; t); �(r; t) = (�+ �1 ��t)�v(r; t)�r ; (2.4)where � = �=� is the kinemati
 vis
osity (� being the 
onstant density of the 
uid),� = �1=� and �(r; t) = Srz(r; t) is the non-trivial shear-stress.Generally, the governing equations 
orresponding to su
h a motion of a GSGF, namely(
f. [31℄, Eqs. (4) and (7)) or ([26℄, Eq. (8)) with � = 0)�v(r; t)�t = (� + �D�t )� �2�r2 + 1r ��r�v(r; t); �(r; t) = (�+ �1D�t )�v(r; t)�r ; (2.5)are obtained from Eq. (2.4) by repla
ing the inner time derivatives by the Riemann-Liouville fra
tional operator [24, 25℄D�t f(t) = 1�(1� �) ddt Z t0 f(�)(t� �)� d�; 0 � � < 1 ; (2.6)where �(:) is the Gamma fun
tion. When � ! 1, Eqs. (2.5) redu
e to Eq. (2.4) be
auseD�t f ! dfdt . Of 
ourse, the new material 
onstants � and �1 into Eqs. (2.5) (for simpli
ity,we kept the same notations) are also going to those from Eq. (2.4) if � ! 1.In this note, we are interested into the motion of a GSGF whose governing equationsare given by Eqs. (2.5). More exa
tly, we shall determine the velo
ity �eld v(r; t) andthe shear stress �(r; t) 
orresponding to the motion between two in�nite 
oaxial 
ir
ular
ylinders, one of them applying a shear stress of the form ft2 to the 
uid. Similar solutionsfor the motion of generalized Oldroyd-B 
uids due to an in�nite 
ylinder that applies a
onstant longitudinal/rotational shear stress to the 
uid have been established in [27, 28℄.2.2 Axial Couette 
ow between two 
ylindersSuppose that an in
ompressible generalized se
ond grade 
uid at rest is situated in theannular region between two in�nite 
oaxial 
ir
ular 
ylinders of radii R1 and R2(> R1).At time t = 0+ the inner 
ylinder is pulled with a quadrati
 time-dependent shear stressft2 along its axis, while the outer one is held �xed. Due to the shear, the 
uid between
ylinders is gradually moved, its velo
ity being of the form (2.3). The governing equationsare given by Eqs. (2.5) and the appropriate initial and boundary 
onditions are (
f. [2℄,Eqs. (4.2)-(4.4))) v(r; 0) = 0 ; r 2 (R1; R2℄; (2.7)�(R1; t) = (�+ �1D�t )�v(r; t)�r jr=R1 = ft2; v(R2; t) = 0; t > 0 ; (2.8)where f is a negative 
onstant [9, 5℄.The partial di�erential equation (2.5), with the initial and boundary 
onditions (2.7)and (2.8), 
an be solved in prin
iple by several methods. The integral transforms te
hniquerepresents a systemati
, eÆ
ient and powerful tool. In the following we shall use the
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e transform to eliminate the time variable and the �nite Hankel transform for thespatial variable. However, in order to avoid the burdensome 
al
ulations of residues and
ontour integrals, as well as in [7, 24, 27, 28, 31℄, we shall apply the dis
rete inverse Lapla
etransform method.3 Analyti
al solutions3.1 Velo
ity solutionBy applying the Lapla
e transform to the �rst equation of (2.5) and Eq. (2.8), we �ndthat qv(r; q) = (� + �q�)� �2�r2 + 1r ��r�v(r; q); (3.9)�(R1; q) = (�+ �1q�)�v(r; q)�r jr=R1 = 2fq3 ; v(R2; q) = 0 ; (3.10)where v(r; q) and �(R1; q) are the Lapla
e transforms of the fun
tions v(r; t) and �(R1; t),respe
tively. We denote by [8℄vH(rn; q) = Z R2R1 r v(r; q)B(rrn) dr; (3.11)the �nite Hankel transform of the fun
tion v(r; q), whereB(rrn) = J0(rrn)Y1(R1rn)� J1(R1rn)Y0(rrn) ; (3.12)rn being the positive roots of the equation B(R2r) = 0 and Jp(:), Yp(:) are the Besselfun
tions of the �rst and se
ond kind of order p . Using the �rst equation of (3.10) andEq. (3.12) and the known relationJ0(z)Y1(z)� J1(z)Y0(z) = � 2�z ; (3.13)we 
an prove thatZ R2R1 r� �2�r2 + 1r ��r� v(r; q)B(rrn) dr = �r2n vH(rn; q) + 2�rn �v(r; q)�r jr=R1 : (3.14)From Eqs. (3.9), (3.10) and (3.14), we �nd thatvH(rn; q) = 4f�rn 1q3 1�q+�1q�r2n+� r2n= v1H(rn; q) + v2H(rn; q); (3.15)where v1H(rn; q) = 4f�r3n 1q3(�+�1q�) ;v2H(rn; q) = � 4f�r3n 1(�+�1q�) 1q2(q+�q�r2n+�r2n) : (3.16)



M. Athar et al. = IJIM Vol. 2, No. 3 (2010) 153-165 157Applying the inverse Hankel transform to Eqs. (3.16) and using Eqs. (A1) from theAppendix A, we get v1(r; q) = 2R1f ln � rR2 � 1q3(�+�1q�) ;v2(r; q) = �22 P1n=1 r2nJ20 (R2rn)B(rrn)J21 (R1rn)�J20 (R2rn) v2H(rn; q): (3.17)If we denote by H(q) = 1q2(�+ �1q�) = 1�1 q�2q� + ��1 ; (3.18)then its inverse Lapla
e transform ish(t) = L�1[H(q)℄= 1�1 G�;�2; 1�� ��1 ; t�= 1�1 P1j=0 �� ��1 �j t(j+1)�+1�[(j+1)�+2℄ ; (3.19)where ([19℄, Eqs. (97) and (101))Ga; b; 
(d ; t) = L�1� qb(qa�d)
� =P1j=0 dj �(
+j)�(
)�(j+1) t(
+j)a�b�1�[(
+j)a�b℄ ;Re(a
� b) > 0;j dqa j < 1: (3.20)By taking the inverse Lapla
e transform of the �rst equation of (3.17) and using Eq. (3.19)as well as the 
onvolution theorem, we �nd thatv1(r; t) = 2R1f ln � rR2 �L�1�1q H(q)�= 2R1f ln � rR2 � R t0 h(s)ds= 2R1f�1 ln � rR2 �P1k=0 �� ��1 �k t(k+1)�+2�[(k+1)�+3℄= 2R1f�1 ln � rR2 �G�;�3; 1�� ��1 ; t� : (3.21)
In order to determine the inverse Lapla
e transform of the fun
tion v2(r; q), we rewritethe fun
tion v2H(rn; q) in the formv2H(rn; q) = � 4f�r3n H(q):H1(rn; q);H1(rn; q) = 1q+�q�r2n+�r2n : (3.22)Using the following expansion of the fun
tion H1(rn; q)H1(rn; q) = q��(q1��+�r2n)+�r2nq��=P1k=0 (��r2n)k q��(k+1)(q1��+�r2n)k+1 ; (3.23)



158 M. Athar et al. = IJIM Vol. 2, No. 3 (2010) 153-165as well as the formula (3.20), we geth1(rn; t) = L�1[H1(rn; q)℄=P1k=o(��r2n)kG1��;��(k+1); k+1(��r2n; t) : (3.24)Applying the inverse Lapla
e transform to the se
ond equation of (3.17) and using Eqs.(3.19), (3.22), (3.24) and the propertyL�1[H(q)H1(rn; q)℄ = h(t) � h1(rn; t)= R t0 h(t� s)h1(rn; s)ds;we �nd thatv2(r; t) = L�1[v2(r; q)℄= �2�f�1 P1n=1 J20 (R2rn)B(rrn)rn[J21 (R1rn)�J20 (R2rn)℄�P1k=o(��r2n)k R t0 G�;�2; 1�� ��1 ; t� s�G1��;��(k+1); k+1(��r2n; s)ds : (3.25)Consequently, the velo
ity �eld v(r; t) is given by the relationv(r; t) = 2R1f�1 ln( rR2 )G�;�3; 1�� ��1 ; t�� 2�f�1 P1n=1 J20 (R2rn)B(rrn)rn[J21 (R1rn)�J20 (R2rn)℄�P1k=o(��r2n)k R t0 G�;�2; 1�� ��1 ; t� s�G1��;��(k+1); k+1(��r2n; s)ds : (3.26)Of 
ourse, in view of the known relationD�t (ta) = �(a+ 1)�(a� � + 1) ta�� ; 0 � � < 1;it is easy to show that v(r; t) satis�es the se
ond boundary 
ondition (2.8). Indeed, using(3.26), we have(�+ �1D�t )�v(r;t)�r jr=R1 = �2fP1j=0 �� ��1�j+1 t(j+1)�+2�[(j+1)�+3℄+2fP1j=0 �� ��1�j tj�+2�[j�+3℄= �2fP1k=1 �� ��1�k tk�+2�[k�+3℄+2fP1j=0 �� ��1�j tj�+2�[j�+3℄= ft2:A simpler but equivalent expression for the velo
ity �eld v(r; t), 
an be also obtained byrewriting Eq. (3.15) under the formvH(rn; q) = 4f��r3n 1q3 � 4f��r3n q�2 + �q��3r2nq + �q�r2n + � r2n : (3.27)



M. Athar et al. = IJIM Vol. 2, No. 3 (2010) 153-165 159Indeed, applying the inverse Hankel transform to Eq. (3.27) and following the same wayas before, we �nd for velo
ity the simpler expressionv(r; t) = R1f� ln� rR2� t2 � 2�f� P1n=1 J20 (R2rn )B(rrn )rn [J21 (R1rn)�J20 (R2rn )℄P1k=0 ���r2n�k� �G1��;��k���2;k+1 ���r2n; t�+ �r2nG1��;��k�3;k+1 ���r2n; t�� : (3.28)3.2 Shear stress solutionBy applying the Lapla
e transform to the se
ond equation of (2.5), we �nd that�(r; q) = (�+ �1q�)�v(r;q)�r= (�+ �1q�)��v1(r;q)�r + �v2(r;q)�r � : (3.29)In view of Eqs. (3.16) and (3.17), it results that�(r; q) = 2R1fr 1q3 + 2�f 1Xn=1 J20 (R2rn)B1(rrn)J21 (R1rn)� J20 (R2rn) 1q2(q + �q�r2n + �r2n) ; (3.30)where B1(rrn) = J1(rrn)Y1(R1rn)� J1(R1rn)Y1(rrn)Now taking the inverse Lapla
e transform of both sides of Eq. (3.30) and using (3.23), we�nd that �(r; t) = R1ft2r + 2�fP1n=1 J20 (R2rn)B1(rrn)J21 (R1rn)�J20 (R2rn)�P1k=o(��r2n)kG1��;��k���2; k+1(��r2n; t) : (3.31)4 The spe
ial 
ase � ! 1By making � ! 1 into Eqs. (3.26) and (3.31), we obtain the similar solutionsvSG(r; t) = 2R1f�1 ln � rR2 �G1;�3; 1�� ��1 ; t�� 2�f�1 P1n=1 J20 (R2rn)B(rrn)rn[J21 (R1rn)�J20 (R2rn)℄�P1k=o(��r2n)k R t0 G1;�2; 1�� ��1 ; t� s�G0;�k�1; k+1(��r2n; s)ds (4.32)and �SG(r; t) = R1ft2r + 2�fP1n=1 J20 (R2rn)B1(rrn)J21 (R1rn)�J20 (R2rn)P1k=o(��r2n)kG0;�k�3; k+1(��r2n; t) ; (4.33)
orresponding to a se
ond grade 
uid performing the same motion. These solutions 
anbe also simpli�ed to give (see also Eqs. (A2)� (A6) from the Appendix A)vSG(r; t) = 2R1f� ln( rR2 )� ��1� �2 n1� exp �� � t�1 �o� �1t� + t22 �+2�f�1�2 P1n=1 J20 (R2rn)B(rrn)rn[J21 (R1rn)�J20 (R2rn)℄� 11+�r2n R t0 �1� ��1 (t� s)� exp n� ��1 (t� s)o�exp �� �r2ns1+�r2n� ds ; (4.34)



160 M. Athar et al. = IJIM Vol. 2, No. 3 (2010) 153-165and �SG(r; t) = R1ft2r + 2�f�2 P1n=1 J20 (R2rn)B1(rrn)r2n[J21 (R1rn)�J20 (R2rn)℄� h1+�r2nr2n nexp� ��r2nt1+�r2n�� 1o+ �ti : (4.35)The above expressions for the velo
ity vSG(r; t) and the shear stress �SG(r; t) 
an be alsowritten in the simpler forms asvSG(r; t) = R1f� ln � rR2 �� �t� �1� �2 + ��1� �2 ��2�f�� P1n=1 J20 (R2rn)B(rrn)r3n[J21 (R1rn)�J20 (R2rn)℄� �t� �1� � 1+�r2n�r2n n1� (1 + �r2n)exp� ��r2nt1+�r2n�o� ; (4.36)
and �SG(r; t) = R1ft2r + 2�f� P1n=1 J20 (R2rn)B1(rrn)r2n[J21 (R1rn)�J20 (R2rn)℄� ht� 1+�r2n�r2n n1� exp� ��r2nt1+�r2n�oi : (4.37)Making �1 ! 0 and then � ! 0 into Eqs. (4.36) and (4.37), we obtain the velo
ity�eld vN (r; t) = R1ft2� ln � rR2 �� 2�f�� P1n=1 J20 (R2rn)B(rrn)r3n [J21 (R1rn)�J20 (R2rn)℄� ht� 1�r2n �1� exp (��r2nt)	i (4.38)and the asso
iated shear stress�N (r; t) = R1ft2r + 2�f� P1n=1 J20 (R2rn)B1(rrn)r2n[J21 (R1rn)�J20 (R2rn)℄� ht� 1�r2n �1� exp (��r2nt)	i ; (4.39)
orresponding to a Newtonian 
uid performing the same motion. Of 
ourse, by mak-ing � ! 1 in Eq. (3.28), we attain to the same expression (4.36) for the velo
ity �eld
orresponding to a se
ond grade 
uid. Dire
t 
omputations show that the expression ofvSG(r; t), given by Eq. (4.36), is wholly in a

ordan
e with the known result ([2℄, Eq.(4.34)) 
orresponding to a 
onstant shear on the boundary.5 Numeri
al results and dis
ussionIn this paper the velo
ity �eld and the shear stress 
orresponding to the motion ofa generalized se
ond grade 
uid due to a longitudinal quadrati
 time-dependent shearstress have been determined using Lapla
e and �nite Hankel transforms. The solutionsthat have been obtained, presented under integral and series form in terms of the gen-eralized Ga; b; 
(� ; t) fun
tions, satisfy all imposed initial and boundary 
onditions. They
an be easily redu
ed to give the similar solutions for se
ond grade and Newtonian 
uids,performing the same motion. These last solutions, as it results from Eqs. (4.36)-(4.39),



M. Athar et al. = IJIM Vol. 2, No. 3 (2010) 153-165 161are presented as a sum between the large time and transient solutions. The large timesolutions 
orresponding to se
ond grade 
uids, for instan
e, arevLSG(r; t) = R1f� ln � rR2 �� �t� �1� �2 + ��1� �2 ��2�f�� P1n=1 J20 (R2rn)B(rrn)r3n[J21 (R1rn)�J20 (R2rn)℄ ht� 2�1� � 1�r2n i ; (5.40)and �LSG(r; t) = R1ft2r + 2�f� P1n=1 J20 (R2rn)B1(rrn)r2n[J21 (R1rn)�J20 (R2rn)℄� ht� �1� � 1�r2n i : (5.41)For �! 0 they tend to the Newtonian large time solutions vLN (r; t) and �LN (r; t).Now, in order to reveal some relevant physi
al aspe
ts of the obtained results, thediagrams of the shear stress �(r; t) are depi
ted against r for di�erent values of t, �1 andof the fra
tional parameter �. In Fig. 1 the diagrams of the shear stress are presented atthree di�erent times. The shear stress, in absolute value, is an in
reasing fun
tion of t.Fig. 2 and Fig. 3 show the in
uen
e of the material 
onstant �1 and the fra
tional param-eter � on the shear stress �(r; t). Their e�e
t, as it was to be expe
ted, is opposite. Onthe �rst part of the 
ow domain, near the moving 
ylinder, the shear stress is a de
reasingfun
tion with respe
t to �1 and an in
reasing one of �. In Fig. 4, for 
omparison, thediagrams of the shear stress 
orresponding to the three models (Newtonian, se
ond gradeand generalized se
ond grade) are together depi
ted for the same values of the 
ommonparameters and the time t. In the neighborhood of the inner 
ylinder, the shear stress
orresponding to a GSGF is the biggest and that for a Newtonian 
uid is the lowest. Theunits of the material 
onstants into Figs. 1-4 are SI units and the roots rn have beenapproximated by (2n� 1)�=[2(R2 �R1)℄.
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Fig. 1. Pro�les of the shear stress �(r; t) given by Eq. (3.31) - 
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lusionsExa
t solutions for the motion of a generalized se
ond grade 
uid between two in�nite
oaxial 
ir
ular 
ylinders are established by means of integral transforms. The motion isprodu
ed by the inner 
ylinder that applies a longitudinal quadrati
 time-dependent shearto the 
uid.The limiting solutions 
orresponding to ordinary se
ond grade and Newtonian 
uidsare presented as a sum of large time and transient solutions. They des
ribe the motionof the 
uid some time after its initiation. After that time, when the transients disappear,they tend to large time solutions.The shear stress, in absolute value, is an in
reasing fun
tion of t and a de
reasing onewith respe
t to the spatial variable.In a large neighbourhood of the inner 
ylinder, that produ
e the motion, the shearstress de
reases for in
reasing �1. The e�e
t of the fra
tional parameter � on the shearstress is opposite to that of the material parameter �1.In the neighbourhood of the inner 
ylinder the shear stress is the lowest for Newtonian
uids and the highest for the generalized 
uid. Consequently, as it was to be expe
ted,the Newtonian 
uid is the swiftest and the generalized se
ond grade 
uid is the slowest.7 A
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h, CNCSIS, through PN II-Ideas, Grant PN-II-ID-PCE-2009-2010.AppendixAv(r; t) = �22 P1n=1 r2nJ20 (R2rn)B(rrn)J21 (R1rn)�J20 (R2rn) vH(rn; t);R1 ln( rR2 ) = �P1n=1 J20 (R2rn)B(rrn)rn[J21 (R1rn)�J20 (R2rn)℄ ; (A1)G1;�2; 1�� ��1 ; t� = ��1� �2 �exp ��� t�1�+ �t�1 � 1� ; (A2)G1;�3; 1�� ��1 ; t� = ���1� �3 �exp ��� t�1��� ��1�2 t22 + �t�1 � 1� ; (A3)1Xk=o(��r2n)kG0;�k�1; k+1(��r2n; t) = 11 + �r2n exp�� �r2nt1 + �r2n� ; (A4)1Xk=o(��r2n)kG0;�k�2; k+1(��r2n; t) = 1�r2n�1� exp�� �r2nt1 + �r2n�� ; (A5)1Xk=o(��r2n)kG0;�k�3; k+1(��r2n; t) = t�r2n � 1 + �r2n(�r2n)2 �1� exp�� �r2nt1 + �r2n�� : (A6)
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