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Abstract

The velocity field and the adequate shear stress, corresponding to the flow of a generalized
second grade fluid in an annular region, due to a quadratic time-dependent shear stress,
are determined by means of the Laplace and the finite Hankel transforms. The solutions
that have been obtained satisfy both the governing equations and all imposed initial and
boundary conditions. For § — 1 or f — 1 and o1 — 0, the corresponding solutions for
a second grade fluid, respectively, for the Newtonian fluid, performing the same motion,
are obtained from general solutions. Finally, the influence of the material and fractional
parameters on the shear stress as well as a comparison between models is drawn by graph-
ical illustrations.
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1 Introduction

The inadequacy of the classical Navier-Stokes theory to describe the characteristics
of many rheological complex fluids has led to development of several theories of non-
Newtonian fluids. Among the many models that have been used to describe the non-
Newtonian behavior exhibited by these fluids, one class that has gained support from
both the experimentalists and the theoreticians is that of Rivlin-Erickson fluids of second
grade. Although there some criticisms on the applications of this model [1, 14], many
papers have been published and a listing of some of them may be found in the litera-
ture. Furthermore, it has been shown by Walters [29] that for many types of problems
in which the flow is slow enough in the viscoelastic sense, the results given by Oldroyd-B
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constitutive equations will be substantially similar to those of the second or third-order
Rivlin-Erickson constitutive equations. Thus, if this is the manner of interpreting the so-
lutions to problems, it would seem reasonable to use the second or third-order constitutive
equations in carrying out the calculations. This is particularly so in view of the fact that
the calculation is generally simpler. In this paper, the second grade model is used.

As early as Ting [26] provided a set of exact solutions for some flows of second grade
fluids. A listing of some problems that have been solved in the next ten years can be
found in [6]. During this time a lot of unsteady flows of such fluids have been studied
by different authors. However, it is worth pointing out that almost all these studies deal
with motion problems in which the velocity is given on the boundary. To the best of our
knowledge, the first exact solutions for motions of second grade fluids due to a shear stress
on the boundary are those of Bandelli and Rajagopal [2] in cylindrical domains. Recently,
similar problems in cylindrical domains have been also studied in [7]-[10]. This is very
important as in some problems, what is specified is the force on the boundary. It is also
important to bear in mind that the “no slip”boundary condition may not be necessarily
applicable to the flows of polymeric fluids that can slip or slide on the boundary. Thus,
the shear stress boundary condition is particularly meaningful.

Our purpose here is to extend the results from ([2], Sect. 4) to a motion due to a
time-dependent shear stress. However, for completeness, we shall solve the problem for a
larger class of non-Newtonian fluids, namely second grade fluids with fractional derivatives
or generalized second grade fluids (GSGF). In the last time, the fractional calculus has
encountered much success in the description of viscoelasticity. Especially, the rheological
constitutive equations with fractional derivative play an important role in description of
the behavior of the polymer solutions and melts. In other cases, it has been shown that
the constitutive equations employing fractional derivatives are linked to molecular theo-
ries [13]. Furthermore, the one-dimensional fractional derivative Maxwell model has been
found very useful in modeling the linear viscoelastic response of polymers in the glass
transition and the glass state [16]. For a deeper documentation on this subject, we also
recommend the books [18, 20] and the recent papers [4]-[15].

2 Problem Formulation

The Cauchy stress tensor T for second grade fluids is related to the fluid motion in the
following manner [2]
T = —pI+uA1+a1A2+a2A%, (2.1)

where —p is the hydrostatic pressure, I is the unit tensor, y is the coefficient of viscosity, a;
and a9 are the normal stress moduli and A, A, are the first two Rivlin-Ericksen tensors.
Since the fluid is incompressible, it can undergo only isochoric motions, and hence

divv=1trA; =0. (2.2)
2.1 Governing equations
The flows to be here considered have the velocity field of the form

v=v(rt)=v(rt)e,, (2.3)
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where e, is the unit vector along the z-axis of the cylindrical coordinate system r, 6 and z.
For such flows the constraint of incompressibility (2.2) is automatically satisfied and the
governing equations, in the absence of a pressure gradient in the flow direction and ne-
glecting the body forces, are [2, 12, 30]

dv(r,t) o (0> 10 B
5 = v+ a=) <w + . E)v(r, t), 7(r,t) = (p+ ala) o (2.4)

ot
where v = u/p is the kinematic viscosity (p being the constant density of the fluid),
a=ay/p and 7(r,t) = Sy,(r,t) is the non-trivial shear-stress.

Generally, the governing equations corresponding to such a motion of a GSGF, namely
(cf. [31], Egs. (4) and (7)) or ([26], Eq. (8)) with A =0)

9 190

PO — w0 ( 25+ 2 L ot 700 = (u+ euD)

ot

ov(r,t)
or ’

orz ' r or (2:5)

are obtained from Eq. (2.4) by replacing the inner time derivatives by the Riemann-
Liouville fractional operator [24, 25]

L d [" f(r)
Dtﬁf(t):F(l—ﬁ)E/o =) dr, 0<pB<1, (2.6)
where I'(.) is the Gamma function. When g — 1, Egs. (2.5) reduce to Eq. (2.4) because
Df f— %. Of course, the new material constants o and «; into Eqgs. (2.5) (for simplicity,
we kept the same notations) are also going to those from Eq. (2.4) if 5 — 1.

In this note, we are interested into the motion of a GSGF whose governing equations
are given by Eqgs. (2.5). More exactly, we shall determine the velocity field v(r,t) and
the shear stress 7(r,t) corresponding to the motion between two infinite coaxial circular
cylinders, one of them applying a shear stress of the form f? to the fluid. Similar solutions
for the motion of generalized Oldroyd-B fluids due to an infinite cylinder that applies a
constant longitudinal/rotational shear stress to the fluid have been established in [27, 28].

2.2 Axial Couette flow between two cylinders

Suppose that an incompressible generalized second grade fluid at rest is situated in the
annular region between two infinite coaxial circular cylinders of radii Ry and Ry (> Ry).
At time t = 07 the inner cylinder is pulled with a quadratic time-dependent shear stress
ft? along its axis, while the outer one is held fixed. Due to the shear, the fluid between
cylinders is gradually moved, its velocity being of the form (2.3). The governing equations
are given by Eqs. (2.5) and the appropriate initial and boundary conditions are (cf. [2],
Eqgs. (4.2)-(4.4)))

’U(T, 0) =0; re (Rl, RQ], (27)

ov(r,t)

m(Ra,1) = (u+ o1 D))=

lr=r, = ft*, v(Ra,t) =0; t >0, (2.8)

where f is a negative constant [9, 5].

The partial differential equation (2.5), with the initial and boundary conditions (2.7)
and (2.8), can be solved in principle by several methods. The integral transforms technique
represents a systematic, efficient and powerful tool. In the following we shall use the
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Laplace transform to eliminate the time variable and the finite Hankel transform for the
spatial variable. However, in order to avoid the burdensome calculations of residues and
contour integrals, as well as in [7, 24, 27, 28, 31], we shall apply the discrete inverse Laplace
transform method.

3 Analytical solutions

3.1 Velocity solution

By applying the Laplace transform to the first equation of (2.5) and Eq. (2.8), we find
that

. INE AR AN
qo(r,q) = (v + aq”) 52 + - o(r,q), (3.9)
ou(r, 2 .
7(R1,q) = (b + a10”) Ug;Q)IrRl = q—}f, v(R2,q) =0, (3.10)

where (r,q) and 7(Ry,q) are the Laplace transforms of the functions v(r, ¢) and 7(Ry, t),
respectively. We denote by [8]

R»
U (rn,q) = /R ro(r,q)B(rry) dr, (3.11)

the finite Hankel transform of the function w(r, ¢), where

B(rry) = Jo(rrp)Y1(Rirn) — Ji(Rirn)Yo(rry) , (3.12)

rp being the positive roots of the equation B(Rar) = 0 and Jy(.), Y,(.) are the Bessel
functions of the first and second kind of order p. Using the first equation of (3.10) and
Eq. (3.12) and the known relation

J[)(Z)Yl(z) — Jl(Z)Y[)(Z) = -, (3.13)

we can prove that

2 Ov(rq)

wr,  or

Ry 2
J r(a +13>m,q>3(m)dr=—7“%5H(7“mq)+

o 1 —p . (3.14
Ry or?2  ror Ir=r1 (3:.14)

From Egs. (3.9), (3.10) and (3.14), we find that

4f

v (rn,q) = Tn% ;

= 61H(rna q) + Vo (’rna q)a
where
- _ Af 1
U1a (T, q) = 7% GBlutaid®)’
" ' (3.16)

Tor(rn, Q) = 7 G ;
2H\"n, 7r3 (uta1¢?) ¢2(qg+agPritvr2)”
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Applying the inverse Hankel transform to Eqgs. (3.16) and using Eqs. (Al) from the
Appendix A, we get

v1(r,q) = 2R1f In (75) srgara)

r2 J2(Raryn)B(rry) (3'17)
52(7“7 q) - 2 Zn 1 J2 Rolrn§ nJ (Rz:n) 52H(7“mQ).
If we denote by
1 1 g2
H(q) = S 3.18
D= vt ad)  mPt E (3.18)
then its inverse Laplace transform is
h(t) = L~'[H(q)]
=2 Gp 01 (= £,1) (3.19)
1 00 u 7 tG+DB+1
T ar j=0(_'E) T[(+1)8+2]
where ([19], Egs. (97) and (101))
- b 0o & T(etj) tletida—b—1
Ga,be(d,t) = L l{ﬁ} = X520 G Fierse ol
Re(ac —b) >0, (3.20)
4] <1,

By taking the inverse Laplace transform of the first equation of (3.17) and using Eq. (3.19)
as well as the convolution theorem, we find that

vi(r,t) =2RifIn (RLz)L*1 [% H(q)]
= 2R, fIn (&) [, h(s)ds
k ¢(k+1)8+2
=2l () %0 (- &) o

(3.21)

In order to determine the inverse Laplace transform of the function v (r, q), we rewrite
the function Tag (ry,q) in the form

EZH(TTHq) - 71—7-3 H( ) Hl(rnaq)a

1 (3.22)
H(ra, @) = Gragmom -
Using the following expansion of the function Hi(ry,, q)
Hl(rnaQ) = = g+a )+1/r2q B
(3.23)

Wz )k g—BU+1)
- Zk 0 q' - B+ar YEFT
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as well as the formula (3.20), we get

hl(rnat) :Lil[Hl(rnaQ)]
N (3.24)
=S () G, _ggr), ka1 (—ari,t) .

Applying the inverse Laplace transform to the second equation of (3.17) and using Egs.
(3.19), (3.22), (3.24) and the property

LY H(q)Hi(rn, )] = h(t) * hi(ra,t)
= fo (t — s)hi(rp, s)ds,
we find that
va(ryt) = L oa(r,q)]

o J2(Ror)B(rry
f En 1r,[J ORliZ)) J(r(rRzrn)} (325)

X S (—vr2)E [T G, 1 (— Lyt — 8)Gig, (i), k1 (—ar2, s)ds.

Consequently, the velocity field v(r,t) is given by the relation

_ 2R o J (Rarn)B(rry)
o(rt) = 2L In() Gy, g1 (= £ t) - ZL Y | et

(3.26)
X Yoo (—rra)” f(f Gﬁ,—2,1( - o%,t - S)G1—5,—,3(k+1),k+1(—0”"72m s)ds..

Of course, in view of the known relation

F(a-i— ].) ta‘iﬁ

Briay _
Dt(t)_I‘(a—ﬁ—i—l) ’

0<p<I,

it is easy to show that v(r,t) satisfies the second boundary condition (2.8). Indeed, using
(3.26), we have

(M+a Dﬁ)BU(Tt)

JHL LGB
t\
r=R; 2f Z] 0( a1> T[G+1)B+3]

I B2

¥2f 5% (=) fir

tkﬂJrZ

=—2f 3% <_o%>k TTrB+3]
vy, (-2) d5
= ft%.

A simpler but equivalent expression for the velocity field v(r, ), can be also obtained by
rewriting Eq. (3.15) under the form

Af 1 Af %+ a7
6H(TTL7 Q) = f3 "3 f3 g ag ,rng . (327)
prrd q®  pmrd g+ agfri+vrl
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Indeed, applying the inverse Hankel transform to Eq. (3.27) and following the same way
as before, we find for velocity the simpler expression

_ R 27 J2(R k
v(r,t) 1f ln( )tQ fzn . [JZO(R;T) o Rﬂ ]Zk o (—vr?)

% [Gl_B‘_Bk_ﬁ_Q*’H'l (—Oz?"%,t) - ar%Gl—B,—Bk—&kH (—0”"72”75)] :

(3.28)

3.2 Shear stress solution

By applying the Laplace transform to the second equation of (2.5), we find that

7(r.a) = (u+ong?) 750
ori(ra) | Ovalrd) (3.29)
P g
In view of Egs. (3.16) and (3.17), it results that
_ 2R1 f 1 = J2(R2rn Bi(rry) 1
) , 3.30
i) = f; Jt (Rirn) — J§(Rory) *(q + ag’ry +vr}) (3:30)
where

Bi(rrp) = Ji(rry)Y1(Rirp) — Ji(Rurn)Yi(rry)

Now taking the inverse Laplace transform of both sides of Eq. (3.30) and using (3.23), we
find that

J§(Rarn)B n
rrt) = BIE g orpye, AARraBr)

(3.31)
X Xro(—vri) Grog, pk-p2,k1(—ary 1)
4 The special case § — 1
By making § — 1 into Egs. (3.26) and (3.31), we obtain the similar solutions
2R o J2(Raryn)B(rry)
salrt) =20 () Grman (= &5 0) = T X0 stms Tty (432)
x S0 (—vr2)k f[f G, 2.1(— 25t — 8)Go,—k—1,ks1(—ary, s)ds
d
an () let +omf Y JO(Rzrn)Bl(rrn)
sa\" - n=1 J2(Rirn)—J3(Rarn) (433)

S0 (=)t Go, s pr (—ary 1),
corresponding to a second grade fluid performing the same motion. These solutions can
be also simplified to give (see also Egs. (A2) — (A6) from the Appendix A)

Vs (1) :2}21f1n(}%)[<?) {1—exp( Zf)}_aTltJr%]

2n fa 00 J3(Rarn) B(rry)
+ p? e rn[JfO(ern)—Jg(Rzrn)} (4.34)

2

Xﬁfg [1 — 2 (t—s) —exp {—ai (t—s)}]eacp (—lfg:%)ds,
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and
_ Ry ft? 27rf Z 3(Rarn)Bi(rrn)
- r n=1 rz ern) J2(Rarn)]

2 o2
X [ﬁgm {exp (1:;;5;) - 1} +ut] )

The above expressions for the velocity v, (r,t) and the shear stress 7, (r,t) can be also
written in the simpler forms as

el =) (%) ()

27rf J2(Rary)B(rry)
v 2one T ()= I3 )] (4.36)

1+ar? —vrlt
X [t—%_ tsgn {1—(1+ar%)exp<1f;;‘%)}],

Tse(ryt)
(4.35)

and

_ Rift® 27rf Z J3(Rarn)Bi(rrn)
T n= lrz[ﬂ(ern) J2(Rarn)]

2
=m0 e (w5
Making «; — 0 and then o — 0 into Eqgs. (4.36) and (4.37), we obtain the velocity
field

Tse(ryt)
(4.37)

Ry ft? 2 J2(Rary)B(rry)
UN (’I", t) - llf ln ( ) ﬂ—f Zn 1 7‘3 J20 Rlzrn) J (Rgrn)]

(4.38)

[t — W {1 —exp(— Vr%t)}}

and the associated shear stress
_ Rift? | 2nf oo J2(Rary)Bi(rry)
(’I“, t) - IT + % Zn:l rg[Jé)(ern)—Jg(an)}

(4.39)

[t—T{l exp ( t)}] ,

corresponding to a Newtonian fluid performing the same motion. Of course, by mak-
ing f — 1 in Eq. (3.28), we attain to the same expression (4.36) for the velocity field
corresponding to a second grade fluid. Direct computations show that the expression of
vsa(r,t), given by Eq. (4.36), is wholly in accordance with the known result ([2], Eq.
(4.34)) corresponding to a constant shear on the boundary.

5 Numerical results and discussion

In this paper the velocity field and the shear stress corresponding to the motion of
a generalized second grade fluid due to a longitudinal quadratic time-dependent shear
stress have been determined using Laplace and finite Hankel transforms. The solutions
that have been obtained, presented under integral and series form in terms of the gen-
eralized G, p (-, t) functions, satisfy all imposed initial and boundary conditions. They
can be easily reduced to give the similar solutions for second grade and Newtonian fluids,
performing the same motion. These last solutions, as it results from Eqs. (4.36)-(4.39),
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are presented as a sum between the large time and transient solutions. The large time
solutions corresponding to second grade fluids, for instance, are

e =50 (-5)'+ ()]

(5.40)
21 f oo JZ(Rary)B(rrn) 1
oo 2in=1 T%[JfO(ern)—Jg(Rﬂn)] [ B 2% B W] ’
and
R 2 2w o0 Jz R n B n
Tiso(nt) =M+ BEY r%w?((Rf:n;f}og?;z)rnn
(5.41)

For a — 0 they tend to the Newtonian large time solutions v,  (r,t) and 7, (r,1).

Now, in order to reveal some relevant physical aspects of the obtained results, the
diagrams of the shear stress 7(r,t) are depicted against r for different values of ¢, a; and
of the fractional parameter 5. In Fig. 1 the diagrams of the shear stress are presented at
three different times. The shear stress, in absolute value, is an increasing function of ¢.
Fig. 2 and Fig. 3 show the influence of the material constant a; and the fractional param-
eter § on the shear stress 7(r,t). Their effect, as it was to be expected, is opposite. On
the first part of the flow domain, near the moving cylinder, the shear stress is a decreasing
function with respect to ; and an increasing one of 8. In Fig. 4, for comparison, the
diagrams of the shear stress corresponding to the three models (Newtonian, second grade
and generalized second grade) are together depicted for the same values of the common
parameters and the time ¢. In the neighborhood of the inner cylinder, the shear stress
corresponding to a GSGF is the biggest and that for a Newtonian fluid is the lowest. The
units of the material constants into Figs. 1-4 are SI units and the roots r, have been
approximated by (2n — 1)w/[2(R2 — Ry)].

0 T
-100 T
t=10s
1 (r)
oo
w2 (r),zoo_ t=15s i
3 (I')
—a=
t=20s
-3001 T
_400 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7

Fig. 1. Profiles of the shear stress 7(r,t) given by Eq. (3.31) - curves 71(r), 72(r), 73(r) for
f=-1,R =02, R, = 0.7, v = 0.0001637, p = 880, a1 =5, # = 0.8 and different values of .
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0 T T T
-20r
1 o, =8
T (I') —40F u
2 (r) o, =6
3 (r) _60F .
o, =4
- 801 b,
_100 1 1 1 1

0.2 0.3 0.4 0.5 0.6 0.7

Fig. 2. Profiles of the shear stress 7(r,t) given by Eq. (3.31) - curves 71(r), 72(r), 73(r) for
f=-1, R =0.2, Ry, = 0.7, » = 0.0001637, p = 880, t = 10s, 8 = 0.8 and different values of a;.

0 T T T T
-20r
A1) ol B=0.1 |
w2 (r)
g=0.3
3 (r) —60F E
=09
- 801 P 7
~100 1 1 1 1

0.2 0.3 0.4 0.5 0.6 0.7

Fig. 3. Profiles of the shear stress 7(r,t) given by Eq. (3.31) - curves 71(r), 72(r), 73(r) for
f=-1, R =02, Ry, = 0.7, v = 0.0001637, p = 880, a; = 5, t = 10s and different values of f3.

0 T T T
-201 1
N (r
! () —40F .
<SG (r)
A—A—k

GSG (1) _gol i

-80r 1

_ 100 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7

Fig. 4. Profiles of the shear stress 7(r,t) given by Eq. (3.31) - curves 71(r), 72(r), 73(r) for
f=-1,R =02, R, = 0.7, v = 0.0001637, p = 880, a1 =5, t = 10s and 8 = 0.8.
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6 Conclusions

Exact solutions for the motion of a generalized second grade fluid between two infinite
coaxial circular cylinders are established by means of integral transforms. The motion is
produced by the inner cylinder that applies a longitudinal quadratic time-dependent shear
to the fluid.

The limiting solutions corresponding to ordinary second grade and Newtonian fluids
are presented as a sum of large time and transient solutions. They describe the motion
of the fluid some time after its initiation. After that time, when the transients disappear,
they tend to large time solutions.

The shear stress, in absolute value, is an increasing function of £ and a decreasing one
with respect to the spatial variable.

In a large neighbourhood of the inner cylinder, that produce the motion, the shear
stress decreases for increasing ;. The effect of the fractional parameter 5 on the shear
stress is opposite to that of the material parameter ;.

In the neighbourhood of the inner cylinder the shear stress is the lowest for Newtonian
fluids and the highest for the generalized fluid. Consequently, as it was to be expected,
the Newtonian fluid is the swiftest and the generalized second grade fluid is the slowest.
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Appendix A

2 r%J2 Rory)B(rry
’U(Ta t) = % Ezozl Jf(}é)ls‘nif}g((}fﬂ:) 'UH(Tna t)a

Py oo JR(Rera)B(rra)
Riln(gg) =7 302 Sz a2l (A1)

2
t t
Goan (i) = (5) o () 501, 42
3 2 42
o (2 ) = (<2 o (20~ (£) w2t "
aq M aq aq 2 oy

> 1 vrlt
2\ k 2 _ n
> () Go et i (—ark ) = Ty e (= s ) (A4)
k=o
o0
1 vrlt
2\k 2 n
— Go _p_ — t)=—5|1— - A5
> (v G en (o) e (- 75 )] (A5)
=0
o0
t 1+ ar? vrlt
2\k 2 _ n n
Z(—Urn) Go, k-3 k+1(—ary,t) = o T e [1 — exp < T ar%)] . (A6)

k=o
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