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Numerical solution of the one dimensional non-linear Burgers

equation using the Adomian decomposition method and the

comparison between the modified Local Crank-Nicolson method and

the VIM exact solution
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Abstract

The Burgers equation is a simplified form of the Navier-Stokes equations that very well represents
their non-linear features. In this paper, numerical methods of the Adomian decomposition and the
Modified Crank Nicholson, used for solving the one-dimensional Burgers equation, have been com-
pared. These numerical methods have also been compared with the analytical method. In contrast
to the conventional Crank-Nicolson method, the MLCN method is an explicit and unconditionally
stable method. The Adomian decomposition method includes the unknown function U (x), in which
each equation is defined and solved by an infinite series of unbounded functions. Velocity parameters
u in the direction of the X axis, are examined at different times with different Reynolds numbers over
a fixed time step. Also the accuracy of the Adomian and the Crank-Nicolson methods at different
Reynolds numbers have been studied using two examples with different initial conditions, and the
Adomian decomposition method is closer to the analytical method.

Keywords : Non-linear Burgers equation; Adomian method; the modified Local Crank-Nicolson
method.
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1 Introduction

T
he Burgers equation is a special form of the
Navier-Stokes and the continuity equations,

which was introduced in 1915 by Bateman [1]. In
this equation continuity and pressure components
of the Navier-Stokes is omitted. Burgers equation
is a fundamental partial differential equation of
the fluid mechanics [2]. This equation is widely
used in many physical phenomena, such as mod-
els of gas dynamics, plasma dynamics, simula-
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tion of traffic flows, shock wave, simplified model
of the behavior of the boundary layer, sound at-
tenuation in fog, etc [3, 4, 5, 6, 7, 8, 9, 10, 11].
Because of their widespread use, these equations
have been studied by many researchers and are
appropriate context for research activities and
several studies about different, accurate and ex-
plicit numerical solutions are done to generalize
these equations to higher dimensions [12]. Differ-
ent numerical methods such as the finite differ-
ence, the finite element, and the spectral meth-
ods, are used for solving the Burgers equations
[13, 14, 15, 16]. In recent years, the Adomian
decomposition method (ADM) has been consid-
ered by many researchers for solving the Burgers
equation [17, 18]. Our best strategy, which hasnt
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yet been used for solving the Burgers equation is
the ADM discretization method. The ADM dis-
cretization method was first utilized for obtaining
numerical solutions, to discretize the nonlinear
Schrdinger equation [19]. The Adomian decom-
position method was presented in early 1980 by
George Adomian [20]. Abduwali has introduced
the Crank-Nicholson (CN) and the modified local
Crank-Nicholson (MLCN) methods in order to
solve the motion, heat, and Burgers equations re-
spectively [21, 22]. Various methods have been in-
troduced for the numerical solution of the Burgers
equations in higher dimensions. In these meth-
ods a variety of linear conversions such as the
Hopf-cole and Auto and Backlund or an Ancillary
Function have been used for accurate solutions of
these equations [23].

It is notable that, no conversion has been used
in the MLCN method. In this method, partial
differential equations are converted into ordinary
differential equations. The MLCN method con-
verts the Coefficients matrix to a simple block
matrix, which is an explicit and unconditional
method [24].

The organization of this paper is as follows.
the Burgers one-dimensional equation is defined
in setion 2. The solution of this equation using
the Adomian decomposition method is given in
Section 3. Section 4 modifies the local Crank-
Nicholson and the analytical solution is used to
solve the one-dimensional Burgers equations. In
Section 5, numerical examples for both methods
and their comparison to the analytical solution is
given. And at the end a conclusion of this paper
is presented.

2 The one-dimensional Burgers
equation

The general form of the one-dimensional Burgers
equation is as follows: [25]

ut + uux =
1

R
(uxx). (2.1)

With initial conditions:

u(x, 0) = f(x) , x ∈ D (2.2)

And boundary conditions:

u(x, t) = f1(x, t) , x ∈ ∂D (2.3)

where D = {x | a ⩽ x ⩽ b } and ∂D is its
boundary,u(x, y) determine the velocity compo-
nents f, f1 are known functions, and R is the
Reynolds number.

To solve system (1) with initial conditions, Ba-
hadir proposed a fully implicit finite-difference
scheme as follows [26]:

1

τ
(un+1

i − uni ) +
1

2hx
(un+1

i+1 − un+1
i−1 )u

n+1
i

=
1

Rh2x
(un+1

i+1 − 2un+1
i + un+1

i−1 ).

(2.4)

In the above definition, the space domain [0 , Nx]
is divided into a Nx mesh with the spatial step
size hx = 1

Nx
in x direction, the time step size

τ represent the increment in time. A discrete
approximation of u(x, y) at the uniform mesh
(ihx, nτ) is denoted as uni .

3 The discrete Adomian decom-
position method

In this section, we describe the discrete ADM
method as it is applied to the 1D Burgers equa-
tions system, in which the fully implicit finite
difference part has been used. For the system
of the Burgers equations the following operator
form can be used:

D+
τ u

n
i + (Dhxu

n+1
i )un+1

i =
1

R
(D2

hx
un+1
i ) (3.5)

With the initial conditions:

u0i = fi. (3.6)

where i ∈ Z , n ∈ N0 and The standard forward
difference is:

D+
τ u

n
i =

(un+1
i − uni )

τ
. (3.7)

And Dhxu
n+1
i denotes the central difference given

by:

Dhxu
n+1
i =

(un+1
i+1 − un+1

i−1 )

2hx
. (3.8)

The standard second order difference D2
hx
un+1
i

are given by:

D2
hx
un+1
i =

(un+1
i+1 − 2un+1

i + un+1
i−1 )

h2x
. (3.9)
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In this method, the linear operator is determined
as follows:

D+
τ w

n =
(wn+1 − wn)

τ
. (3.10)

And the inverse operator (D+
τ )

−1 of this system
is defined as:

(D+
τ )

−1wn = τ
n−1∑
m=0

wm, n ∈ N0. (3.11)

Thus
(D+

τ )
−1D+

τ u
n
i = uni − u0i . (3.12)

Applying the inverse operator (D+
τ )

−1 to Eq. (5):

uni = u0i − (D+
τ )

−1(Dhxu
n+1
i )un+1

i

+
1

R
(D2

hx
un+1
i ). (3.13)

The nonlinear operator of (13) can be defined
as:

M1(u
n+1
i ) = (Dhxu

n+1
i )un+1

i . (3.14)

Submitted Eq. (14) into Eq. (13):

uni = fi −−(D+
τ )

−1M1(u
n+1
i ) +

1

R
(D2

hx
un+1
i ).

(3.15)
The proposed discrete ADM suggests the expres-
sion of uni in decomposition form as follows:

uni =

∞∑
l=0

uni,l. (3.16)

Similar to the continuous ADM, the nonlinear op-
erators M1(u

n+1
i ) can be defined by the infinite

series of the Adomian polynomial as:

M1(u
n+1
i ) =

∞∑
l=0

Al. (3.17)

Where Al are called as Adomian polynomials.
The zero components uni,0 and the remaining com-
ponent (uni,l , l ≥ 0) can be determined using the
following recursive relation:

uni,0 = fi. (3.18)

uni,l+1 = −− (D+
τ )

−1Al +
1

R
(D2

hx
un+1
i ). (3.19)

Where the Adomian polynomial Al are evaluated
with the following formula

Al =
1

l!

[
dl

dλl
M1

( ∞∑
k=0

(λkun+1
i,k )

)]
λ=0

. (3.20)

The first few terms of the Adomian polynomial
Al can be obtained from the above equation as
follow:

A0 = (Dhxu
n+1
i,0 )un+1

i,0 ,

A1 = (Dhxu
n+1
i,0 )un+1

i,1 + (Dhxu
n+1
i,1 )un+1

i,0 ,

A2 = (Dhxu
n+1
i,0 )un+1

i,2 + (Dhxu
n+1
i,1 )un+1

i,1

+ (Dhxu
n+1
i,0 )un+1

i,2 .

Figure 1: Comparison of the analytical method
and the ADM and MLCN in the three steps of
time t = 0.1, 0.2, 0.5 for R = 100.

Figure 2: Comparison of the analytical method
and the ADM and MLCN in the three steps of
time t = 0.1, 0.2, 0.5 for R = 10.
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Table 1: The ADM and MLCN compared to the analytical solution of the R = 100 and τ = 10−4 and t = 0.1.

point ADM MLCN Exact

0.1 0.1678 0.1677 0.1678
0.2 0.3355 0.3354 0.3356
0.3 0.5033 0.5031 0.5034
0.4 0.6711 0.6707 0.6711
0.5 0.8388 0.8384 -0.8389
0.6 1.0066 1.0061 1.0067
0.7 1.1743 1.1738 1.1745
0.8 1.3421 1.3415 1.3423
0.9 1.5099 1.5091 1.5101

Table 2: The ADM and MLCN compared to the analytical solution of the R = 100 and τ = 10−4 and t = 0.2.

point ADM MLCN Exact

0.1 0.1437 0.1442 0.1445
0.2 0.2873 0.2885 0.2892
0.3 0.4310 0.4327 0.4335
0.4 0.5747 0.5769 0.5780
0.5 0.7183 0.7212 0.7225
0.6 0.8620 0.8654 0.8681
0.7 1.0056 1.0096 1.0116
0.8 1.1493 1.1539 1.1516
0.9 1.2930 1.2961 1.3006

Table 3: The ADM and MLCN compared to the analytical solution of the R = 100 and τ = 10−4 and t = 0.5.

point ADM MLCN Exact

0.1 0.1004 0.1012 0.1020
0.2 0.2008 0.2027 0.2041
0.3 0.3012 0.3040 0.3061
0.4 0.4016 0.4053 0.4082
0.5 0.5020 0.5066 0.5102
0.6 0.6024 0.6080 0.6122
0.7 0.7028 0.7093 0.7143
0.8 0.8032 0.8106 0.8163
0.9 0.9036 0.9117 0.9184

Table 4: The ADM and MLCN compared to the analytical solution of the R = 10 and τ = 10−4 and t = 0.1.

point ADM MLCN Exact

0.1 0.1678 0.1677 0.1678
0.2 0.3355 0.3354 0.3356
0.3 0.5033 0.5031 0.5034
0.4 0.6711 0.6707 0.6711
0.5 0.8388 0.8384 0.8389
0.6 1.0066 1.0061 1.0067
0.7 1.1743 1.1738 1.1745
0.8 1.3421 1.3415 1.3423
0.9 1.5099 1.5091 1.5101
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Table 5: The ADM and MLCN compared to the analytical solution of the R = 10 and τ = 10−4 and t = 0.2.

point ADM MLCN Exact

0.1 0.1437 0.1442 0.1445
0.2 0.2873 0.2885 0.2892
0.3 0.4310 0.4327 0.4335
0.4 0.5747 0.5769 0.5780
0.5 0.7183 0.7212 0.7225
0.6 0.8620 0.8654 0.8681
0.7 1.0056 1.0096 1.0116
0.8 1.1493 1.1539 1.1516
0.9 1.2930 1.2961 1.3006

Table 6: The ADM and MLCN compared to the analytical solution of the R = 10 and τ = 10−4 and t = 0.5.

point ADM MLCN Exact

0.1 0.1004 0.1012 0.1020
0.2 0.2008 0.2027 0.2041
0.3 0.3012 0.3040 0.3061
0.4 0.4016 0.4053 0.4082
0.5 0.5020 0.5066 0.5102
0.6 0.6024 0.6080 0.6122
0.7 0.7028 0.7093 0.7143
0.8 0.8032 0.8106 0.8163
0.9 0.9036 0.9117 0.9184

Table 7: The ADM and MLCN compared to the analytical solution of the R = 80 and τ = 10−4 and t = 0.1.

point ADM MLCN Exact

0.1 0.1678 0.1677 0.1678
0.2 0.3355 0.3354 0.3356
0.3 0.5033 0.5031 0.5034
0.4 0.6711 0.6707 0.6711
0.5 0.8388 0.8384 0.8389
0.6 1.0066 1.0061 1.0067
0.7 1.1743 1.1738 1.1745
0.8 1.3421 1.3415 1.3423
0.9 1.5099 1.5091 1.5101

Table 8: The ADM and MLCN compared to the analytical solution of the R = 80 and τ = 10−4 and t = 0.2.

point ADM MLCN Exact

0.1 0.1437 0.1442 0.1445
0.2 0.2873 0.2885 0.2892
0.3 0.4310 0.4327 0.4335
0.4 0.5747 0.5769 0.5780
0.5 0.7183 0.7212 0.7225
0.6 0.8620 0.8654 0.8681
0.7 1.0056 1.0096 1.0116
0.8 1.1493 1.1539 1.1516
0.9 1.2930 1.2961 1.3006
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Table 9: The ADM and MLCN compared to the analytical solution of the R = 80 and τ = 10−4 and t = 0.5.

point ADM MLCN Exact

0.1 0.1004 0.1012 0.1020
0.2 0.2008 0.2027 0.2041
0.3 0.3012 0.3040 0.3061
0.4 0.4016 0.4053 0.4082
0.5 0.5020 0.5066 0.5102
0.6 0.6024 0.6080 0.6122
0.7 0.7028 0.7093 0.7143
0.8 0.8032 0.8106 0.8163
0.9 0.9036 0.9117 0.9184

Table 10: The ADM and MLCN compared to the analytical solution of the R = 100 and τ = 10−4 and t = 0.1.

point ADM MLCN Exact

0.1 0.0906 0.0916 0.0240
0.2 0.1802 0.1814 0.3076
0.3 0.2680 0.2703 0.2322
0.4 0.3531 0.3572 0.1931
0.5 0.4345 0.4313 1.1852
0.6 0.5114 0.5218 0.1884
0.7 0.5831 0.5983 0.8068
0.8 0.6488 0.6700 0.4066
0.9 0.7079 0.7361 0.4217

Table 11: The ADM and MLCN compared to the analytical solution of the R = 100 and τ = 10−4 and t = 0.2.

point ADM MLCN Exact

0.1 0.0819 0.0834 0.0488
0.2 0.1629 0.1663 0.1747
0.3 0.2423 0.2482 0.4250
0.4 0.3192 0.3286 0.1156
0.5 0.3928 0.4070 0.5927
0.6 0.4624 0.4829 0.4232
0.7 0.5272 0.5557 0.4056
0.8 0.5867 0.6250 0.8655
0.9 0.6402 0.6898 0.4710

Table 12: The ADM and MLCN compared to the analytical solution of the R = 10 and τ = 10−4 and t = 0.1.

point ADM MLCN Exact

0.1 0.0907 0.0903 0.0967
0.2 0.1804 0.1801 0.1870
0.3 0.2683 0.2686 0.2433
0.4 0.3535 0.3548 0.6304
0.5 0.4350 0.4379 0.4652
0.6 0.5120 0.5160 0.4859
0.7 0.5638 0.5834 0.8068
0.8 0.6495 0.6049 0.6172
0.9 0.4378 0.4422 0.4217
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Table 13: The ADM and MLCN compared to the analytical solution of the R = 10 and τ = 10−4 and t = 0.2.

point ADM MLCN Exact

0.1 0.0820 0.0823 0.0828
0.2 0.1631 0.1642 0.1635
0.3 0.2426 0.2451 0.2431
0.4 0.3191 0.3241 0.3234
0.5 0.3932 0.3996 0.4001
0.6 0.4629 0.4671 0.4649
0.7 0.5278 0.5095 0.5034
0.8 0.5873 0.4815 0.4755
0.9 0.4409 0.3140 0.3115

Figure 3: Comparison of the analytical method
and the ADM and MLCN in the three steps of
time t = 0.1, 0.2 and 0.5 for R = 80.

4 The modified local Crank-
Nicolson method and Analyt-
ical solution for one dimen-
tional Bergur’s solution

4.1 The modified local Crank-Nicolson
method

The Crank-Nicolson method (CN) is a central
finite difference method. It should be noted
that the Crank-Nicholson method is an implicit
method, to obtain the values of u in the next
steps, a set of algebraic equations must be solved,
because the partial differential values are non-
linear. Therefore, the discretization of these
values must be non-linear. For many Burgers
equations and many other equations it can be
shown that the Crank-Nicholson method is un-
conditional stable. The modified local Crank-

Figure 4: Comparison of analytical method and
the MLCN and ADM with Reynolds numbers 10
and 100 in time step t = 0.1.

Nicholson method (MLCN) converts the partial
differential equations into ordinary differential
equations. The MLCN converts Coefficients ma-
trixes into simple block matrixes. Using the
Hopf - Cole conversion or using other conversion,
the Burgers nonlinear equation becomes a linear
equation [24], To solve equation (1) with the given
boundary conditions using the central difference
the following discretization equation is achieved
[24].

dV (t)

dt
=

1

2h2
AV (t). (4.21)

Where the vector V (t) represents approximate
u values in the Burgers equation (1), h is
the spatial step, ∆t is the time step and
A is a tree diagonal matrix with dimensions
(M − 1) × (M − 1) . Then the by inte-
grating equation (21) and defininge the vector
V (tn) = [v(x1, tn), v(x2, tn), ..., v(xM−1, tn)]

T ,
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Figure 5: Comparison of the analytical method
and the MLCN and ADM with Reynolds numbers
10 and 100 in time step t = 0.2.

we will have:

V (tn+1) = exp

(
∆t

2h2
A

)
V (tn). (4.22)

However, the Crank-Nicholson method for the
Burgers equation (1) gives the following result:

V (tn+1) =
(
(1− λA)−1)

)
((1 + λA))V (tn).

(4.23)
Where λ = τ

4h2 is called the networking ratio.
The following equation is obtained by comparing
equations (22) and (23):

exp

(
∆t

2h2
A

)
≈
(
(1− λA)−1)

)
((1 + λA)) .

4.2 Analytical solution

The non-linear equation is given as [27]:

Lu(t) +Nu(t) = g(t). (4.24)

Where L is a linear operator, N a nonlinear
operator, and g(t) is a known analytical function.
According to the variational iteration method
(VIM) we can have the following recursive
relation:

un+1(x, t) = un(x, t) +

∫ t

0
λ(ξ)(Lun(ξ)

+Nûn(ξ)− g(ξ))dξ (4.25)

Where λ is the general Lagrange multiplier which
can be identified by the variational theory. Is

an initial u0(t) approximation that may be un-
known. And ûn is considered as boundary change
and δûn = 0 . Thus, in the first iteration of the
Lagrange multiplier λ is characterized which is
obtained using fractional integration. Successive
approximations un+1(t), are for the solution of
u(t) which is easily obtained using the Lagrange
multiplier and using any selective functions u0 .
Consequently, the exact solution can be achieved
using u = limn 7→∞ un.
Equation (1) with initial and boundary condi-
tions is considered, for solving Eq. (1) with initial
condition (2), via VIM, And with replacement in
(26), it is written in the form of the original equa-
tion [27] .

un+1(x, t) = un(x, t)

+

∫ t

0
λ(ξ)(

∂un
∂ξ

(x, ξ)

+ ûn
∂ûn
∂x

(x, ξ)

− ν
∂2ûn
∂x2

(x, ξ))dξ (4.26)

To make this correction functional stationary,
δun(x, 0) = 0 having we derive:

δun+1(x, t) = δun(x, t)

+

∫ t

0
λ(ξ)(δun(x, ξ))

′
dξ. (4.27)

Its stationary conditions can be determined as
follows:

λ
′
(ξ) = 0 1 + λ(ξ)|ξ=t= 0

From which the Lagrange multiplier can be iden-
tified λ = −1, and the following iteration formula
is obtained:

un+1(x, t) = un(x, t)

−
∫ t

0
(
∂un
∂ξ

(x, ξ) + un
∂un
∂x

(x, ξ)

− ν
∂2un
∂x2

(x, ξ))dξ (4.28)

Beginning with u0 = u(x, 0) = f(x) the approxi-
mate solution of (1) can be determined by itera-
tive formula (28). Similarly, to solve Eq. (1) with
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boundary conditions (2) by VIM we have:

un+1(x, t) = un(x, t)

+

∫ t

0
λ(η)(

∂un
∂ξ

(η, t)

+ ûn
∂ûn
∂x

(η, t)

− ν
∂2ûn
∂x2

(η, t))dη. (4.29)

To find the optimal value of λ, having δun(0, t) =
0 leads to:

δun+1(x, t) = δun(x, t)− νδu
′
n(η, t)|x0

− λ
′
(η)(δun(η, t))|x0

+

∫ t

0
λ”(η)(δun(η, t))dη. (4.30)

Therefore, the stationary conditions are obtained
as:

λ”(η) = 0

1 + νλ
′
(η)|η=x= 0

λ(η)|η=x= 0

This results in λ(η) = 1
ν (x − η) and a desired

iterative relation can be constructed as:

un+1(x, t) = un(x, t)

+
1

ν

∫ t

0
(x− η)(

∂un
∂ξ

(η, t)

+ un
∂un
∂x

(η, t)

− ν
∂2un
∂x2

(η, t))dη. (4.31)

Beginning with the u0 = f1(t)+xf2(t) an approx-
imate solution of (1) can be determined via the
iterative formula (31).

5 Numerical examples

Problem 1. In this example, the numerical so-
lution of the Burgers equation using the ADM
and the MLCN and the comparison between the
result and the analytical solution is given [27]

u(x, t) =
2x

1 + 2t

The above equation for t = 0 has its own initial
conditions. With initial and boundary conditions

for t, and changing t, we solve the Eq. In this
example, the length of time step τ = 0.004 and
the node hx = 0.0125 but t changes:

u(x, 0) = 2x.

uni,0 = 0.025× i.

uni,1 = − 0.05× i

(1 + 2(n+ 1)0.004)2

uni,2 =

(
−0.1× i× (2 + 2(n+ 1)0.004)2

(1 + 2(n+ 2)0.004)2

)
×
(

1

(1 + 2(n+ 1)0.004)2

)
And finally uni comes in the form below:

uni ≈ uni,0 + uni,1 + uni,2.

In this example, the greater the Reynolds
number, the closer the Adomian answer to the
analytical solution answers (See Figure 1 and
Table 1, 2, 3), and the smaller the Reynolds
number, the closer the MLCN answer to the an-
alytical solution answer (See Figure 2 and Table
4, 5, 6), and if t is smaller the Adomian answer
is more precise, so in any Reynolds number if t is
considered very small, the Adomian method can
be more accurate than the MLCN (See Figure 3
and Table 7, 8, 9) .

Problem 2. In this example, the numerical so-
lution of the Burgers equation using the ADM
and the MLCN and the comparison of the result
to the analytical solution results are given:

u(x, t) = e−t sin(x).

The above equation for t = 0 has its own initial
conditions. With the initial and boundary condi-
tions for t, and changing t, we solve Eq. In this
example, the length of time step τ = 0.004 and
the node hx = 0.0125 but t changes:

u(x, 0) = sin(x).

In functions which Trigonometric relationships
are used that the smaller the Reynolds number
the closer the ADM and MLCN answers to the
analytical solution results (See Figure 4 and Ta-
ble 10, 11), And when t is larger can be seen that
in greater Reynolds numbers Again, the answer
to both ADM and MLCN method is closer to the
analytical solution (See Figure 5 and Table 12,
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13), but in such functions the MLCN works bet-
ter than the ADM method in larger t amounts
and with smaller Reynolds numbers the answer
is more precise .

6 Discussion and conclusion

The Burgers equation is a mix of convection
and diffusion sentences, and is a simplified form
of the Navier-Stockes equation. The Adomian
numerical decomposition method has been pre-
sented for solving the one-dimensional Burgers
equations and has been compared to the modi-
fied Local Crank-Nicolson numerical method, and
the results of the two methods have been com-
pared to the results of the analytical method.
MLCN method is an explicit unconditional sta-
bility. Two examples with different initial condi-
tions have been solved and the accuracy of the
solution methods ADM and MLCN in different
Reynolds numbers has been studied. It has been
observed that in Trigonometric functions with
smaller Reynolds numbers and larger t amounts
the MLCN method behaves better than the ADM
method.
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