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Abstract

In DEA (Data Envelopment Analysis), the Full Dimensional Efficient Facets (FDEFs) of PPS (Pro-
duction Possibility Set) play a significant role and have many useful applications. In this research, we,
first, provide a detailed characterization of the structure of FDEFs of the PPS with constant returns
to scale technology, using basic concepts of the polyhedral sets theory. Then, using the mentioned
characterization together with a mixed integer linear programming, we propose an effective algorithm
for finding all of the FDEFs of the PPS. We will elaborate on our algorithm by an illustrative example.
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1 Introduction

D
EA is a mathematical programming method
for evaluating the relative efficiency of Deci-

sion Making Units (DMUs) with multiple inputs
and outputs. The relative comparison in DEA
is performed within a production possibility set
(PPS), which is empirically constructed from the
observations by assuming several postulates (see
[16]) and DEA forms an empirical frontier. The
efficient frontier is the main part of the PPS’s
frontier. The FDEFs of the PPS form the effi-
cient frontier, which play a significant role and
have many useful applications in DEA, e.g.,

1. Uniquely identifying a reference set for a
given DMU that contains the maximum

∗Department of Mathematics, Science and Research
Branch, Islamic Azad University, Tehran, Iran.

†Corresponding author. i.roshdi@gmail.com
‡Department of Mathematics, Science and Research

Branch, Islamic Azad University, Tehran, Iran.
§Faculty of Mathematical Science and Computer Engi-

neering, Tarbiat Moallem University, Tehran, Iran.

number of efficient DMUs. In this way, if we
consider the efficient projection of the given
DMU, we can simply determine the set of
all FDEFs on which this efficient projection
is lying. Consequently, the reference set of
DMU will be the set of the efficient DMUs
that are lying on the intersection of these
FDEFs.

2. Sensitive and stability analysis in DEA [8].

3. Finding the closest target for a given ineffi-
cient DMU. For this purpose as mentioned
in [10, 12], one can simply measure the mini-
mum distance between given DMU from each
of the FDEFs, and at last determine the min-
imum value of these distances.

So far, about finding FDEFs and their struc-
ture, several papers have been written while none
of them has directly and comprehensively dis-
cussed about them. Yu et al. [9] studied the
structural properties of DEA efficient surfaces
of the PPS under the generalized DEA model.
Olsen and Petersen [14, 15] provided an outline
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of possible uses of complete information on the
facial structure of PPS. Also they proposed two
algorithms based on the set so-called Ejo . They
stated that: “The only candidates for spanning
an FDEF including any given DMUjo ; jo ∈ E,
are those that can be termed efficient along with
DMUjo itself. Let Ejodenote an index set for this
set of extreme efficient DMUs.” Here, the ques-
tion is that how it is possible to determine Ejo

without having all of FDEFs on which DMUjo

is lying. In fact, to determine the Ejo we need
all FDEFs on which DMU is lying. Therefore,
the foundation of their algorithms has this serious
problem and for implementing their algorithms,
a method is required to determine Ejo without
having FDEFs. Recently, Jahanshahloo et al.
[6] proposed an algorithm for finding the “strong
defining hyperplanes” of PPS. They proved that
in evaluating an extreme CCR-efficient DMU the
hyperplanes that are corresponding to the ex-
treme optimal and strictly positive solutions of
the multiplier form of the CCR model, are strong
defining hyperplanes. Their approach has several
computational difficulties that are summarized as
follows:

1. They perform the algorithm for all CCR-
efficient (extreme and non-extreme) DMUs,
while the number of these DMUs may be a
large one.

2. To employ their proposed algorithm, the
multiplier form should be solved via the sim-
plex method. Moreover, all the extreme
(basic feasible) optimal solutions should be
found, while there does not exist an effective
method for performing this task. Further-
more, none of these solutions is necessarily
strictly positive and the algorithm may be
yielded some extreme (basic feasible) opti-
mal solutions that have the zero components.

3. Through implementation of the algorithm
for different DMUs, many iterated strong
defining hyperplanes may be generated
where their algorithm is unable to prevent
this.

In this paper, first, using basic concepts of the
polyhedral sets theory, we seek to provide a de-
tailed characterization of the structure of FDEFs,
and secondly, we propose an effective algorithm

for finding all FDEFs of PPS. As we will demon-
strate in Section 4, our algorithm is computa-
tionally better than those algorithms mentioned
above.

The paper unfolds as follows: The primal and
dual descriptions of the PPS with focus on the
representation of the constant returns to scale
technology are reported in Section 2. An applied
model for identifying the extreme-efficient DMUs
is presented in this section, as well. Section 3 in-
cludes the characteristics and structure of FDEFs
of PPS. In Section 4, we will develop the new
method for finding all of the FDEFs. An illustra-
tive example is documented in Section 5, which
intuitively describes the new algorithm. The con-
clusion and future directions for research are sum-
marized in the last section.

2 Background

Consider n observed DMUs, DMUj, j =
1, 2, ..., n, which use the same number, m, of in-
puts, xij , i = 1, 2, ...,m, to produce the same
number, s, of outputs, yrj , r = 1, 2, ..., s. The
input and output vectors of DMUj respectively
are denoted by xj and yj ; we assume that they
are nonnegative and neither one is equal to zero.
We use (xj , yj) to describe DMUj, and consider
DMUo as the DMU under evaluation. Further,
as stated in [2], “We say that a data domain is in
reduced form if for no pair (j, k) with j ̸= k and
the scalar α is DMU j = αDMUk.” We assume
that the data domain is in reduced form.

Under the standard assumptions of Inclusion of
observations, convexity, constant returns to scale
and free disposability of inputs and outputs, the
unique non-empty PPS is generated from a set of
n observed DMUs, DMUj, (j = 1, 2, ..., n), is as
follows:

Tc = {(x, y) ∈ Rm+s
≥0

∣∣∣x ≥
n∑

j=1

λjxj ,

y ≤
n∑

j=1

λjyj , λj ≥ 0 , j = 1, 2, ..., n}.

Charnes et al. [1], relative to Tc, introduced
the following model for measuring the efficiency
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of DMUo:

Min θ
s.t.

∑n
j=1 λjxj ≤ θxo,∑n
j=1 λjyj ≥ yo,

λj ≥ 0 , j = 1, 2, ..., n.

(2.1)

This program is called the envelopment form
(input-oriented) of the CCR model. DMUo is ra-
dial efficient if θ∗ = 1; And is CCR-efficient if
and only if it is radial efficient and all constraints
(except the nonnegative ones) are binding at all
optimal solutions. In other words, DMUo is CCR-
efficient if and only if it is radial efficient and
the optimal value of model (2.2) (called Additive
model) is equal to zero:

Max
∑m

i=1 s
−
i +

∑s
r=1 s

+
r

s.t.
∑n

j=1 λjxij + s−i = xio , i = 1, 2, ...,m,∑n
j=1 λjyrj − s+r = yro , r = 1, 2, ..., s,

λj ≥ 0 , s−i ≥ 0 , s+r ≥ 0 ,
j = 1, 2, ..., n , i = 1, 2, ...,m , r = 1, 2, ..., s.

(2.2)
The dual form of model (2.1) is called the mul-

tiplier form of the CCR model and is as follows:

Max U tyo
s.t. V txo = 1,

U tyj − V txj ≤ 0 , j = 1, 2, ..., n,
U ≥ 0 , V ≥ 0.

(2.3)
Where U t = (u1, u2, ..., us) and V t =
(v1, v2, ..., vm) are the s-vector and m-vector, re-
spectively. It can be easily verified that, with ref-
erence to (2.3), DMUo is CCR-efficient if and only
if there exists some optimal solution, (U∗ , V ∗),
such that (U∗ , V ∗) > 0 and U∗tyo = 1.

The set of all DMUs corresponding to
positiveλ∗

j ’s is called the reference set to
DMUoand is denoted by Ro, i.e., Ro ={
DMUj

∣∣∣λ∗
j > 0 in some optimal solution of (2)

}
.

Charnes et al. [2] introduced a nice classifica-
tion of DMUs in CCR model. They classified
the radial efficient DMUs into the categories
E, E′ and F . Similar to them, we call the
elements of E, E′ and F , respectively extreme
CCR-efficient, non-extreme CCR-efficient and
CCR weak-efficient. They also provided a
procedure based on DEA computations to do
the mentioned classification. To implement our
algorithm, which will be presented in Section 4,
we need to determine the elements of E. The
following model simply provides an alternative

test to find all the extreme CCR-efficient DMUs
without any preliminary DEA computations:

Max γo =
∑n

j=1
j ̸=o

λj

s.t.
∑n

j=1 λjxj ≤ xo,∑n
j=1 λjyj ≥ yo,

λj ≥ 0, j = 1, 2, ..., n.

(2.4)

Lemma 2.1 A DMUo is extreme CCR-efficient
if and only if the optimal objective of model
(2.4),γ∗o , is zero.

Proof. We first note that, by the above cat-
egorization of DMUs, DMUo is extreme CCR-
efficient if and only if the solution λo = 1 , λj =
0 , j = 1, 2, ..., n , j ̸= o, θ = 1 is the unique
feasible solution of the model (2.1). Now suppose
that DMUo is extreme CCR-efficient. By contra-
diction, if γ∗o > 0, then there exists an optimal
solution, λ∗, of (2.4) such that for at least some
index t, t ̸= o, λ∗

t > 0. This solution is also a fea-
sible solution of the model (2.1) with θ = 1. This
is a contradiction. On the other hand, suppose
that DMUo is not extreme CCR-efficient. Then
there exists a feasible solution (θ, λ) of the model
(2.1), such that for at least some index t, t ̸= o,
λt > 0. Either if θ = 1 or θ < 1, then the so-
lution, λ, is a feasible solution of (2.4), and so
γ∗o > 0.�

3 Characteristics and struc-
tures of FDEFs of Tc

Let P ⊆ Rd be a convex set. A linear in-
equality cx ≤ c0 is valid for P if it is satis-
fied for all x ∈ P. A face of P is any set
of the form F = P

∩{
x ∈ Rd : cx = c0

}
where

cx ≤ c0 is a valid inequality for P. The di-
mension of a face is the dimension of its affine
hull : dim(F):=dim(aff(F)). The face of dimen-
sion dim (P) − 1 is called facet. Thus, the facets
are the maximal proper faces. For DMUs with
m inputs and s outputs, Tc is a convex subset of
Rm+s
+ . So the dimension of each facet of Tc is

m+s−1. Therefore, each facet of Tc contains at
least m+ s DMUs that are affine independent 1.

In the evaluation of DMUo (o ∈ {1, 2, ..., n}),
if (U∗ , V ∗) be an optimal solution of the model

1A set of vectors {a1, a2, ..., ak+1} of di-
mension n is called affine independent if
{a2 − a1, a3 − a1, ..., ak+1 − a1} is linear independent.
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(2.3), then H : U∗ty − V ∗tx = 0 is a supporting
hyperplane of the Tc (see [17]), i.e., the inequality
U∗ty − V ∗tx ≤ 0 is valid for Tc. So the set

F = T
∩{

(x, y) ∈ Rm+s : U∗ty − V ∗tx = 0
}

= H
∩

Tc

is a face of Tc. If (U
∗ , V ∗) > 0, then H is called

strong supporting and the corresponding face,
H
∩

Tc, is called strong face. Consider DMUo in
Figure 1. Using model (2.3), it can be seen that
there are alternative optimal solutions which de-
fine an infinite number of supporting hyperplanes
passing through DMUo, of which only two hyper-
planes (H1 and H2) are strong and F1 = H1

∩
Tc,

F2 = H2
∩

Tc are the strong facets of Tc. We
propose an algorithm for determining all of the
FDEFs of Tc. To completely characterize the
structure of the FDEF of Tc, we need the fol-
lowing definitions and preliminaries:

Figure 1: H1 and H2 are defining and H is
supporting but not defining.

Definition 3.1 Suppose that H : U∗ty− V ∗tx =
0 is a supporting hyperplane of Tc. F = H

∩
Tc is

called a Full Dimensional Efficient Facet (FDEF)
of Tc, if (i) there exists at least one affine inde-
pendent set with m+ s elements of CCR-efficient
DMUs lying on F = H

∩
Tc, and (ii) all multipli-

ers are strictly positive, i.e. (U∗, V ∗) > 0.

The hyperplane that satisfies the above defini-
tion is called Strong Defining Hyperplane (SDH)
of Tc.

Suppose that H : U∗ty−V ∗tx = 0 is a support-
ing hyperplane of Tc. If the DMUs (observed or
virtual) (x̄, ȳ) and (x̃, ỹ) belong to Tc and lie on

H, then the DMU, µ (x̄, ȳ) + η (x̃, ỹ), belongs to
Tc and lies on H for any positive scalars µ and
η. Therefore, the intersection of each supporting
hyperplane of Tc with it, is a convex polyhedral
cone. Each convex polyhedral cone is completely
characterized by its extreme directions2. So we
have the following definitions:

In a given convex set, a nonzero vector d is
called a (recession) direction of the set if for each
xo in the set; the ray {xo + λd|λ ≥ 0} also be-
longs to the set. Hence starting at any point xo
in the set, one can recede along d for any step
length λ ≥ 0 and remain within the set. An ex-
treme direction of a convex set is a direction of
the set that cannot be represented as a positive
combination of two distinct directions of the set.
Two vectors, d̄ and d̃ are said to be distinct or
not equivalent, if d̄ cannot be represented as a
positive multiple of d̃.

The following lemma characterizes the extreme
directions of the strong face, F = H

∩
Tc, where

H is a strong supporting hyperplane of Tc.

Lemma 3.1 Suppose that H : Ū ty − V̄ tx = 0
is a strong supporting hyperplane of Tc. An
(m+ s)− vector, d,is an extreme direction of the
strong face, H

∩
Tc, if and only if it is an extreme

CCR-efficient DMU lying on H.

Proof. Let DMUo = (xo, yo) be an extreme
CCR-efficient DMU that lies on H. Since the
set H

∩
Tc is a convex polyhedral cone, the point

(x̃, ỹ) + λ (xo, yo) belongs to the set H
∩

Tc for
any point (x̃, ỹ) in the set H

∩
Tc and any pos-

itive scalar λ. Therefore (xo, yo) is a recession
direction of the set H

∩
Tc. By contradiction,

we prove that it is also extreme. Otherwise,
there exist two distinct recession directions of the
set H

∩
Tc (i.e., two distinct points of the set

H
∩

Tc), namely, d̄ and d̃, such that:

(xo, yo) = ᾱd̄+ α̃d̃ , ᾱ, α̃ > 0.

Since d̄ and d̃ belong to the H
∩

Tc, by the struc-
ture of Tc, there exist nonnegative vectors λ̃ and
λ such that

d̄ =
n∑

j=1

λ̄j (xj , yj)

and

d̃ =

n∑
j=1

λ̃j (xj , yj) , λ̄j , λ̃j ≥ 0 , for all j.

2For more details see [8, 13]
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Hence,

(xo, yo) = ᾱ

n∑
j=1

λ̄j (xj , yj) + α̃

n∑
j=1

λ̃j (xj , yj)

In other words,
∑n

j=1 λ̂jxj = xo and
∑n

j=1 λ̂jyj =

yo where λ̂j := ᾱλ̄j + α̃λ̃j , j = 1, 2, ..., n. This

relations show that
(
θ = 1, λ̂

)
is a feasible solu-

tion of model (2.1) in evaluating DMUo, in which
for at least some index, t ̸= o, λ̂t > 0.This is a
contradiction.
On the other hand, suppose that d̄ is an extreme
recession direction of the set H

∩
Tc. Let d̄ =(

d̄x, d̄y
)
where d̄x ∈ Rm

+ and d̄y ∈ Rs
+. Since

the point d̄ lies on the hyperplane H, we have
Ū td̄y− V̄ td̄x = 0. Since

(
Ū , V̄

)
> 0, without loss

of generality, we can assume that the coefficient
vectors

(
Ū , V̄

)
has been normalized with respect

to d̄, i.e. Ū td̄y = V̄ td̄x = 1. Therefore, d̄ is CCR-
efficient. We evaluate d̄ by model (2.1); In each
optimal solution, λ∗, we have∑

j∈Rd

λ∗
jxj = d̄x,

∑
j∈Rd

λ∗
jyj = d̄y,

λ∗
j ≥ 0, j ∈ Rd.

Since d̄ belongs to H, by the above relations,
DMUj, j ∈ Rd belongs to the set H

∩
Tc. So each

DMUj, j ∈ Rd is also a recession direction of the
set H

∩
Tc. We claim that d̄ is equal to exactly

one DMUt, t ∈ Rd; In other words, equivalently
exactly for one index t ∈ Rd we have λ∗

t > 0.
Otherwise, if there is more than one index j ∈ Rd

such that λ∗
j > 0, then the extreme recession di-

rection is written as a nonnegative combination of
at least two distinct recession directions of H

∩
Tc

and this is a contradiction.�
We can go further and prove the following theo-
rem:

Theorem 3.1 Suppose that H : U∗ty − V ∗tx =
0 is a SDH of Tc, i.e., H

∩
Tc is a FDEF

of Tc, then there exists at least one linear
independent set with m + s − 1 elements of
extreme CCR-efficient DMUs in the set H

∩
Tc.

Proof. Since the set H
∩

Tc is a FDEF of Tc,
there exists at least one linear independent set
with m + s − 1 elements of CCR-efficient DMUs
in the set H

∩
Tc. Therefore, the set H

∩
Tc is

an (m+ s− 1)-dimensional convex polyhedral

cone. Suppose that D = {DMU1, ...,DMUk}
is the set of all extreme recession direc-
tions of H

∩
Tc. So H

∩
Tc is equal to all

nonnegative combinations of the elements
of the set D, i.e. H

∩
Tc = Pos (D) :={∑k

j=1 λj DMUj | λj ≥ 0, j = 1, ..., k
}
. By

Lemma 3.1, each DMUj is an extreme CCR-
efficient DMU. It is clear that k ≥ m + s − 1.
Since the set H

∩
Tc is an (m+s−1)- dimensional

convex polyhedral cone, there is some linearly
independent (m+ s− 1)-subset of D, and the
result is in hand.�

Here we open a question: Suppose that H is
an SDH of Tc. Is the set H

∩
Tc a (m + s − 1)-

simpilical cone? i.e., does exist exactly one linear
independent set with m + s − 1 elements of the
extreme CCR-efficient DMUs lying on H? The
answer is negative. The following counterexample
illustrates this fact (see Figure 2).

Counterexample

Consider four DMUs are given in Table 1.
Units A, B, C and D in Table 1 use two inputs
to produce two outputs. By using model (2.4),
we can verify that all these DMUs are extreme
CCR-efficient. Moreover, all of them lie on the
SDH H : 16y1 + 9y2 − 7x1 − 7x2 = 0. The inter-
section of H and the PPS constructed by these
DMUs is a 3-dimensional FDEF of PPS. As de-
picted in Figure 2., indeed, these DMUs are the
four extreme directions of this FDEF. This fig-
ure visually describes a section at a given output
level, say y2 = 1.

Figure 2: Counterexample
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Table 1: Data of counterexample

A B C D

x1 4 11 17 6
x2 11 4 6 17
y1 6 6 9.5 9.5
y2 1 1 1 1

Formulation for Identifying a FDEF: Suppose
that H : U∗ty − V ∗tx = 0 is a strong support-
ing hyperplane of Tc passing through DMUo. As
we mentioned above, the set H

∩
Tc is a con-

vex polyhedral cone that is generated by its ex-
treme recession directions. Let D = {D1, ...,Dk}
be the set of all extreme recession directions of
the face H

∩
Tc, then H

∩
Tc = Pos (D) :={∑k

j=1 λj DMUj | λj ≥ 0, j = 1, ..., k
}
. Thus,

for finding a SDH passing through DMUo, we
should find a strong supporting hyperplane asH :
U∗ty − V ∗tx = 0 that it is passing through max-
imum number of extreme CCR-efficient DMUs.
To do this, we use the following mixed integer lin-
ear programming problem, presented in Cooper
et al. [18] with small changes:

Min Io =
∑

j∈E Ij
s.t. V txo = 1,

U tyo = 1,
U tyj − V txj + tj = 0 , j ∈ E,
tj −MIj ≤ 0 , j ∈ E,
Ij ∈ {0, 1} , j ∈ E,
tj ≥ 0 , j ∈ E,
U ≥ 0 , V ≥ 0

(3.5)

where the set E is the set of all extreme CCR-
efficient observed units and M is a sufficiently
large positive quantity.
Note that Ij = 0 if and only if tj = 0, i.e., DMUj

belongs to the hyperplane H : U
t
y − V

t
x + u =

0. Then, since we are minimizing
∑

j∈E Ij and
Ij ∈ {0, 1}, model (3.5) will be directed toward
finding optimal solutions with as many I∗j = 0
as possible, i.e., with as many possible t∗j = 0;
Equivalently with as many possible extreme re-
cession directions which H

∩
Tc has.

Theorem 3.2 Suppose that DMUo is an ex-
treme CCR-efficient DMU. If there exists at
least one SDH passing through DMUo and
(U∗, V ∗) is an optimal solution of model (3.5) in
which(U∗, V ∗) > 0, then Ho : U∗ty − V ∗tx = 0
is a SDH of Tc.

Proof. Suppose that (U∗, V ∗) is an optimal
solution of model (3.5) in which (U∗, V ∗) >
0. Since there exists at least one SDH pass-
ing through DMUo, by Theorem 3.1 , we have
I∗o = |E| − k ≤ |E| − (m + s − 1). Consider the
following model:

Max U tyo
s.t. V txo = 1,

U tyj − V txj ≤ 0 , j ∈ E,
U ≥ 0 , V ≥ 0 .

(3.6)

In fact model (3.6) is the multiplier form with
constraint restricted to j ∈ E. It is apparent that
(U∗, V ∗) is an optimal solution of model (3.6).
There are two cases:

Case (I). (U∗, V ∗) is an extreme (basic fea-
sible) optimal solution of model (3.6). Then,
because (U∗, V ∗) > 0, there exist m + s lin-
early independent constraints of U tyj − V txj ≤
0 , j ∈ E binding at (U∗, V ∗). Suppose that
U∗tyji − V ∗txji = 0 , i = 1, ...,m + s are
these linearly independent constraints binding at
(U∗, V ∗). Therefore, the following matrix is row
full rank: 

−xj1
−xj2
...

yj1
yj2
...

−xjm+s yjm+s


and it is row equivalent with the following matrix:

−xj1
xj1 − xj2
...

yj1
yj2 − yj1
...

xj1 − xjm+s yjm+s − yj1


so the set {DMUji −DMUj1}

m+s
i=2 is linear inde-

pendent. Hence there exist m + s affinely inde-
pendent of extreme CCR-efficient DMUs lying on
H∗∩Tc. Therefore, by

Definition 3.2 , H∗∩Tc is a FDEF of Tc .

Case (II). (U∗, V ∗) is not an extreme (ba-
sic feasible) optimal solution of model (3.6).



G. R. Jahanshahloo et al /IJIM Vol. 5, No. 2 (2013) 149-159 155

We prove that this cannot take place. Sup-

pose that
(
U

1
, V

1
)
, ...,

(
U

h
, V

h
)

are the

gradients of all the SDH passing through

DMUo, where
(
U

i
, V

i
)

> 0, i = 1, ..., h and(
Ũ1, Ṽ 1

)
, ...,

(
Ũ l, Ṽ l

)
are the gradients of all

the weak defining hyperplane passing through

DMUo. It is clear that
(
U

i
, V

i
)
> 0, i = 1, ..., h

and
(
Ũ i, Ṽ i

)
, i = 1, ..., l are all the extreme

optimal solutions (Basic optimal feasible)
of model (3.6). Since (U∗, V ∗) is not an
extreme optimal solution of model (3.6), it
can be represented as a convex combination

of vectors
(
U

i
, V

i
)

> 0, i = 1, ..., h and(
Ũ i, Ṽ i

)
, i = 1, ..., l,. In other words:

(U∗, V ∗)

=
∑h

i=1 λi

(
U

i
, V

i
)
+

∑l
i=1 λ̃i

(
Ũ i, Ṽ i

)
∑h

i=1 λi +
∑l

i=1 λ̃i = 1, λi ≥ 0,

i = 1, ..., h, λ̃i ≥ 0, i = 1, ..., l.
(3.7)

There are two cases:
Case (I). There exists such a combination as (3.7)
in which for some index r ∈ {1, . . . , h} , λr ̸=
0. Then, all of the extreme CCR-efficient DMUs
lying on H∗

o, are also lying on Hr : U
r
y− V

r
x = 0

and these DMUs are the only extreme efficient
DMUs that are lying on Hr. Because if there
exists another extreme CCR-efficient DMU lying
on Hr, in addition to these extreme CCR- efficient
DMUs lying on H∗

o, then
(
U

r
, V

r)
is a feasible

solution to model (3.5) where its objective value
is less than I∗o, and this is a contradiction.
Case (II). There is no combination as (3.7) in
which λi > 0 for some index i ∈ {1, . . . , h}. In
other words, in any combination such as (3.7),
λi = 0 for all indices i. Therefore, the strong
face, H∗

o

∩
Tc, is not contained in any FDEF of

Tc. Again, this is a contradiction.
Thus, (U∗, V ∗) is an optimal extreme solution of
model (3.6) and so is an extreme optimal solution
of model (2.3).�
Conclusion 1. Suppose that DMUo is an
extreme CCR-efficient DMU and the vector
(U∗, V ∗) > 0 is an optimal solution of model
(3.5), then it is an extreme (basic feasible) op-
timal solution of model (2.3) via the simplex

method.

4 The proposed algorithm for
finding all SDHs of Tc

In this section, using the characterization of
structure of FDEFs that is completed in the
above exploration, we propose an algorithm for
finding all of the FDEFs of Tc.

4.1. The proposed algorithm

Our algorithm performs the following proce-
dure for each extreme CCR-efficient DMU in each
stage. Main procedure. Consider extreme CCR-
efficient observed unit, DMUo, and evaluate it by
model (3.5). Recalling Theorem 3.2, if there ex-
ists at least one FDEF containing DMUo (equiv-
alently if there exists at least one SDH passing
through DMUo), then the optimal solution of
model (3.5) will be the gradient of a SDH passing
through DMUo and it is positive for variables U
and V. If the optimal solution of model (3.5) is
not positive for variables U and V, then the pro-
cedure will be terminated for DMUo. The pro-
cedure implements the following step till the op-
timal solution of model (3.5) is positive for vari-
ables U and V.

Main step. Suppose that I∗o = |E| − k and
(U∗, V ∗) > 0 respectively are the optimal objec-
tive and optimal solution of model (3.5). Let H∗

o :
U∗ty−V ∗tx = 0 and Fo = H∗

o

∩
Tc. We save H∗

o

as a SDH of Tc and set Jo =
{
j : I∗j = 0

}
. In

fact, the set Jo is the indices of all extreme CCR-
efficient DMUs lying on H∗

o. Next, we add the
following constraint to the constraints of model
(3.5): ∑

j∈Jc
o

|Ij | −
∑
j∈Jo

|Ij | ≤ I∗o − 1 (4.8)

and again we evaluate DMUo by model (3.5).
If there exists another SDH except H∗

o passing
through DMUo, then Theorem 3.2 together with
new added constraint, (4.8), will give the gradient
of alternative SDH passing through DMUo as an
alternative optimal solution. We save this SDH
and construct the set Jo, which are corresponding
to it.

If there does not exist another SDH except H∗
o

passing through DMUo, then the procedure will
be terminated for DMUo.
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Suppose that the implementation of the pro-
cedure is repeated t-steps for DMUo. Therefore,
t SDHs are determined. Note that in final step,
model (3.5) will have exactly t new added con-
straints corresponding to t SDHs that have been
determined in the previous steps. Therefore, after
the implementation of the procedure for DMUo,
all the SDHs of Tc passing through it, and all
the extreme CCR-efficient DMUs lying on these
hyperplanes will be determined.

After termination of the procedure for DMUo,
the main procedure is performed for another ex-
treme CCR-efficient DMU3; In order to prevent
the algorithm from giving the gradients of iter-
ated SDHs that have been determined in the im-
plementation of the algorithm for DMUo, the con-
straint Io = 1 always must be added to the con-
straints of model (3.5) in all subsequent stages.

In general, in the implementation of the main
procedure for the rth extreme CCR-efficient
DMU, the constraints Ij = 1, j = 1, ..., r − 1
corresponding to DMUj, j = 1, ..., r− 1, that the
algorithm has been implemented for them up to
now, must be added to the constraints of model
(3.5).

Note that, at the end of any stage, if the num-
ber of remaining extreme CCR-efficient DMUs,
which the algorithm has not been implemented
for them, is less than m + s, then the algorithm
will be automatically terminated.4

By considering the structure of the algorithm,
the following theorem, Theorem 3.2, guarantees
that the algorithm will give the gradients of all
SDHs of Tc before termination.

Lemma 4.1 Suppose that DMUp and DMUq are
two extreme CCR-efficient DMUs lying on two
distinct SDHs namely Hp and Hq (exclude their
intersection). Then each strict convex combina-
tion of DMUp and DMUq is strong efficient, if it
is not radial inefficient.

Proof. Let DMUl = λDMUp + (1 − λ)DMUq

where 0 < λ < 1. Suppose that DMUl is not
radial inefficient, then it is not an interior point
of Tc, so it lies on frontier of Tc. If this frontier

3For computational purposes, it is better to have the
algorithm in the next stage implemented for an extreme
CCR-efficient DMU that the number of determined SDHs
passing through it is less than that of other DMUs.

4Note that there exist at least m+ s−1 extreme CCR-
efficient DMUs on each SDH of Tc (see Theorem 3.1).

is strong, we are done. Otherwise it lies on weak
frontier. Since DMUp and DMUq also lie on this
frontier, and they belong to the reference set of
DMUl, By Theorem 3.4 in [17]- each nonnegative
c1ombination of the elements of reference set is
strong efficient- DMUl is strong efficient. This is
a contradiction.�

Theorem 4.1 In the implementation of the
mentioned algorithm for DMUo in set E, while
there exists a SDH passing through DMUo, the
optimal solution of model (3.5) for variables U
and V will be positive.

Proof. By virtue of the type of the added
constraints through the implementation of algo-
rithm, it is sufficient to prove that the optimal
solution of model (3.5) for variables U and V
will be positive. By contradiction suppose that
the optimal solution of model (3.5), (U∗, V ∗), is
not positive andI∗o = |E| − k. Since there ex-
ists at least one SDH passing through DMUo,
k ≥ m + s − 1. Let R = {DMU1, ...,DMUk} be
the set of all extreme CCR-efficient DMUs lying
on H∗

o : U∗ty − V ∗tx = 0. Since H∗
o is a weak

defining hyperplane, so each DMUj(j = 1, ..., k)
lies on the intersection H∗

o with at least one SDHs
of Tc. Suppose that H1, ...,Hl are all these SDHs.
There are two cases:

Case (I). There exists some index t(t ∈
{1, ..., l}) such that all DMUj(j = 1, ..., k) lie on
Ht, Then by considering the optimal value of ob-
jective function, there does not exist another ex-
treme CCR-efficient DMU lying on Ht. Since Ht

is a SDH passing through DMUo, the set R is
affinely independent. This shows that there are
two distinct m + s − 1 dimensional hyperplanes
-H∗

o and Ht- passing through the set R. This is a
contradiction.

Case (II). There exists at least two DMUs in set
R, namely DMUpand. DMUq lying on the inter-
section of H∗

o with two distinct SDHs of Tc namely
Hp and Hq, respectively. Since each convex com-
bination of DMUp and DMUq lies on H∗

o, then it
is weak efficient. On the other hand by lemma
4.1 it is strong efficient. This is a contradiction.�

4.2. Computational advantages of the algorithm

As mentioned in Section 1, the algorithms pro-
posed by Olsen and Petersen [14] have a serious
fundamental problem that the set Ejo should be
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determined for each DMUo before implementa-
tion of their algorithms while it is not an easy
task without having all of the FDEFs of the PPS.
Our proposed algorithm, in comparison with the
algorithm presented by Jahanshahloo et al. [6],
has several advantages that are summarized as
follows:

1. For identifying all of the FDEF of Tc, in
contrast with the algorithm presented in [6]
which it should be implemented for all CCR-
efficient (extreme and non-extreme) DMUs,
our algorithm is just implemented for ex-
treme CCR-efficient DMUs.

2. Adding the constraint Io = 1 to the model
(3.5)’ constraints makes the algorithm able
to prevent from generating iterated hyper-
planes that have been obtained through im-
plementation of the procedure for DMUo,
and this progressionally decreases the volume
of computations stage by stage.

3. As mentioned in Conclusion 1, in the im-
plemetation of the procedure for DMUo, in
each step the procedure gives an extreme
(basic feasible) optimal solution of model
(3.5). Here, unlike the algorithm presented
in [6], in which all the extreme optimal so-
lutions (positive and nonegative) of model
(3.5) must be found, the structure of our
algorithm is such that, firstly, all the pos-
itive extreme optimal solutions of model
(3.5) (corresponding to all of the SDHs that
DMUo lies on them) is obtained and then it
automatically terminates for DMUo.

4.3. Summary of the algorithm for identifying all
of the SDHs of Tc

Suppose that we have n DMUs, DMUj,
j = 1, 2, ..., n, with input vector xjand
output vector yj . We evaluate these DMUs
by model (2.4). Then, we put the extreme
CCR-efficient DMUs in set E, i.e., E :=
{DMUj|DMUj is extreme CCR− efficient DMU}.

Set ET = ϕ and S = ϕ.

Step 1. Put DMUp ∈ E− ET and set Sp = ϕ.

Step 2. Evaluate DMUp with model (3.5). If the
optimal solution, (U∗, V ∗), is not positive, then
set ET := ET

∪
{DMUp}, and go to Step 5.

Step 3. For the solution(U∗, V ∗), set Jp ={
j : I∗j = 0

}
and Jc

p =
{
j : I∗j = 1

}
. If |Jp| <

m + s − 1, then set ET := ET
∪
{DMUp}, and

go to Step 5; Otherwise put the hyperplane Hp :

U∗ty − V ∗tx = 0 into set Sp. SetS := S
∪

Sp.
Step 4. Construct the inequality

∑
j∈Jc

p
|Ij | −∑

j∈Jp |Ij | ≤ I∗p − 1, and add it to the constraints

of model (3.5) and go to Step 2.
Step 5. Add the constraint Ip = 1 to the con-
straints of model (3.5) and If |ET| > |E| − (m +
s − 1) go to Step 1, otherwise the algorithm is
terminated and stop.

5 Illustrative example

Consider four DMUs, A, B, C and D are given
in Table 2 that use two inputs to produce one
output. The PPS Tc constructed by these DMUs
are shown in Figure 3. Clearly all units are ex-

Figure 3: Illustrative example

treme CCR-efficient except unit D. Therefore,
ET = {A,B,C}. To give a detailed description
of the algorithm, we implement it stage by stage:
Stage 1:

Let ET = ϕ and put A ∈ E.
Step 1-1. Evaluate unit A by model (3.5). I∗A =
1 and (v∗1, v

∗
2, u

∗) = (0.3, 0.6, 1) are respectively
the optimal objective and the optimal solution of
model (3.5). Since (v∗1, v

∗
2, u

∗) > 0, HA : y −
0.3x1−0.6x2 = 0 is the SDH of Tc; So S = {HA}.
Furthermore, t∗B = 0, that is, HA passes through
B, so set JA = {A,B}, Jc

A = {C} and construct
the inequality

∑
j∈Jc

A
|Ij |−

∑
j∈JA |Ij | ≤ I∗A−1 =

0 (a1).
Step 1-2. Add the constraint (a1) to the con-
straints of model (3.5) and again evaluate A by
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Table 2: Data of illustrative Example

A B C D

x1 1 2 5 6
x2 4 2 1 5
y 1 1 1 1

model (3.5). We have I∗A = 2, so the cardinal of
the new set JA for A is less than m + s − 1 = 2
therefore the algorithm terminates for A. Hence
ET = {A} and the set S doesn’t change.

Add the constraint IA = 1 to the constraints of
model (3.5) and perform the following stages:

Stage 2:

Step 2-1. Put unit B ∈ E − ET and evaluate
it by model (3.5). I∗B = 1 and (v∗1, v

∗
2, u

∗) =
(0.125, 0.375, 1) are respectively the optimal ob-
jective and the optimal solution of model (3.5).
Since (v∗1, v

∗
2, u

∗) > 0, HB : y − 0.125x1 −
0.375x2 = 0 is the SDH of Tc; So S = {HA,HB}.
Furthermore, t∗C = 0, that is, HB passes through
C, so set JB = {B,C}, Jc

B = {A} and construct
the inequality

∑
j∈Jc

B
|Ij |−

∑
j∈JB |Ij | ≤ I∗B−1 =

0 (b1) .

Step 2-2. Add the constraint (b1) to the con-
straints of model (3.5) and again evaluate B by
model (3.5). We have I∗B = 2, so the cardinal of
the new set JB for B is less than m + s − 1 = 2,
therefore the algorithm terminates for B. Hence
ET = {A,B} and set S doesn’t change.

Stage 3: Since |ET | > |E| − (m+ s− 1) = 1, the
algorithm is totally terminated.

6 Conclusion

In this paper, a detailed characterization of
FDEFs of Tc has been provided. We have demon-
strated that each FDEF of Tc is a convex poly-
hedral cone which is generated by extreme CCR-
efficient DMUs lying on it. In addition, we have
proved that the model in Cooper et al. [18] can
take part in finding FDEFs. Using this informa-
tion, we have proposed an algorithm for identify-
ing all FDEFs of Tc. Furthermore, via the im-
plementation of our algorithm, the extreme (ba-
sic feasible) optimal solutions of model (2.3) will
be automatically generated. As discussed in Sec-
tion 4, our algorithm is computationally better
than those proposed in [6, 14]. FDEFs may be
used in sensitivity and stability analysis, identi-

fying the reference set of a DMU, incorporating
performance information into the efficient fron-
tier analysis and finding the closest target for a
given inefficient DMU. Moreover, in the construc-
tion of the cross-efficiency matrix, the gradient of
the SDH is the best weight for the CCR-efficient
DMUs that lie on it and also for the inefficient
DMUs that are projected on it.
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