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Abstract

In this paper, we study the numerical solution of hybrid fuzzy differential equations by
using the improved predictor-corrector (IPC) three step method. We state the convergence
and stability of this method. Numerical examples will be presented to illustrate this
method.
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1 Introduction

Fuzzy set theory is a powerful tool for modeling uncertainty and for processing vague or
subjective information in mathematical models. Its main directions of development and
its applications to the very varied real-world problems have been diverse. Fuzzy differ-
ential equations (FDEs) are recently gaining more and more attention in the literature.
The first and the most popular approach in dealng with FDEs is using the Hukuhara
differentiability, or the Seikkala derivative for fuzzy-number-valued functions. Hybrid sys-
tems are devoted to modeling, design and validation of interactive systems of computer
programs and continuous systems. That is, control systems that are capable of controlling
complex systems which have discrete event dynamics as well as continuous time dynamics
can be modeled by hybrid systems. The differential systems containing fuzzy-valued func-
tions and interaction with a discrete time controller are named as hybrid fuzzy differential
systems. Pederson and Sambandham [8, 9] have investigated the numerical solution of
hybrid fuzzy differential equations by using the Runge-kutta method and Euler method,
and also they have considered the numerical solution of hybrid fuzzy differential equations
by using the characterization theorem for the improved Euler’s method [7]. Recently, the
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numerical solution of fuzzy differential equations by the predictor-corrector method has
been studied in [1].

In this paper, we develop a numerical solution of hybrid fuzzy differential equation initial
value problems by using the improved predictor-corrector method, which is more accurate
than the one in [8]. In Section 2, we list some basic definitions for fuzzy-valued functions.
Section 3 reviews hybrid fuzzy differential systems. Sections 4 and 5 contain the explicit
three-step method and the implicit three-step method for approaching hybrid fuzzy dif-
ferential equations, respectively. In Section 6, the IPC three -step algorithm is discussed
and in Section 7, convergence and stability theorem are provided. Section 8, contains
numerical examples to illustrate this method.

2 Preliminaries

Definition 2.1. [10] Let T'yx(R") denote the family of all non-empty, compact, convez
subsets of R". Denote by E" the set of uw : R™ — [0,1] such that u satisfies (i) — (iv)
mentioned below:

=2

i. u is normal that is, there exists an yy € R™ such that u(yo) =1,
it. w18 fuzzy convex,

i1, U 18 upper semi continuous,

w. [u]® = {y € R": u(y) > 0} is compact .

We denote the a— level set [u]* = {y € R" : u(y) > a} for 0 < a < 1. Clearly, the
a-level sets [u]® € T, (R™) .

Definition 2.2. [6] Let I be a real interval. A mapping § : I — E' is called a fuzzy
process and its a— level set 1s denoted by

[y]* =[y*y*] tel, 0<a<l

Let =, § € E'. If there exists 7 € E' such that & = §+7, then Z is called the Hukuhara
difference of & and y and is denoted by ¥ © y. Note that in this paper, the 7 © 7 sign
stands always for the Hukuhara difference and that r © y # = + (—1)7y.

Definition 2.3. [1] The a-level set of a triangular fuzzy number T = (2!, 2¢,27) in BV is

given by

[T1% = [2° = (1 = a)(@® —a'), 2°+ (1 —a)(@" —a°)]
where xt < x°¢ < 2"
Let us recall the definition of Hukuhara differentiability.

Definition 2.4. Let dy(A, B) be the Hausdorff distance between sets A, B € Ty (R™). The
supremum metric doo on E' is defined by

doo (U, V) = sup{dp ([U]*, [V]*) : @ € 0,1]}

and(E',do) is a complete metric space; for more details see [11] .
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Definition 2.5. [1] Let f T — E' and yo € T C R. We say that f is Hukuhara
differentiable al yo if there exists an element f’ € E' such that for all h > 0 sufficiently
small, there are f(yo +h) S F(yo), f(yo) © f(yo — h)) and the limits (in the metric ds)

_ Fw+h) o). . fw) S fly—h),

The fuzzy set f'(yo) is called the Hukuhara derivative of f at yo.

Recall that UV = W € E* are defined on a—level sets, where [U]*O[V]* = | lo‘ or
all @ € [0,1]. Considering the of definition of the metric do, all the a—level sets [f(0)]*
are Hukuhara differentiable at yo with Hukuhara derivatives [ (yo)]® for each a € [0,1],
when f: T — E! is Hukuhara differentiable at y with Hukuhara derivative f(yp).

Definition 2.6. [8] Associated with the difference equation
Yiv1 = am—1¥i + am—2¥i-1 + ... + ao¥it1-m + A (G ey Yirr, Yis - Yik1-m),

Yo = Q0 Y1 = Qs vy Y1 = Q1 (2.1)
the characteristic polynomaial of the method is defined by

p(A) = A" — A1 A" — Gy AT — L — a1\ — ag.

If |A\;] < 1foreachi=1,2,...,m, and all roots with absolute value 1 are simple roots,
then the difference method is said to satisfy the root condition.

Definition 2.7. A multistep method of the form Eq. (2.1) is stable if and only if it
satisfies the root condition.

Definition 2.8. An m-step method for solving the initial-value problem s one whose
difference equation for finding the approzimation y(t;+1) at the mesh point t;11 can be
represented by the following equation:

Y(tis1) = am-1y(ti) + am—oy(ti—1) + - .. + aoy(tiz1—m) + h(bm f (tix1, yi—1)+

bn—1f(tisyi) + oo + Do f(tit1—m Yit1-m)), (2:2)
fori=m-—1,m,...,N —1, such that

a=tg<t1 <...<ty=bh=(b—a)/N =t —1
and ag, a1, ..., @m—1,00,b1,....0n are constants with the starting values
Yo = Qp, Y1 = A1, Y2 = Q2,5+« .y Ym—-1 = Qm—1-

When b, = 0, the method is known as explicit, since Eq. (2.2) gives y;+1 explicit in
terms of previously determined values. When b,, # 0, the method is known as implicit,
since ;41 occurs on both sides of Eq. (2.2) and is specified only implicitly.
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Definition 2.9. [6] The fuzzy integral

b
[t osaso<,

18 defined by

/ e = / "y, / ],

provided that the Lebesgue integrals on the right-hand side exist.

Remark 2.1. [6] If f:T — E' is Hukuhara differentiable and its Hukuhara derivative
1! is integrable over [0,1], then

Ft) = Fto) + / F(s)ds.

forall0 <ty <t < 1.
The Seikkala derivative y'(t) of a fuzzy process y is defined by

'@ =[1")'®). @) @), 0<a<l
provided that its equation defines a fuzzy number §'(t) € E*.

Remark 2.2. [6/ If j: I — E' is Seikkala differentiable and its Seikkala derivative 7'
is integrable over [0,1], then

B(t) = §(to) + / 7 (s)ds,

to
for all ty and t € 1.

3 The hybrid fuzzy differential system

Consider the hybrid fuzzy differential system

gj’(t) = f(t7 Y, /\k(yk))7 te [tkatk + ]-] k= 07 1727 T,

4 A (3.3)
y(tk) = Ur,

where 0 <t <t <...<tp <...,tp = o0, f € C[RT x BE* x E*, E'] and X\, € C[E', F1].

Here we assume the existence and uniqueness of solutions of the hybrid system hold on
each [tg,tr+1]. To be specific, the system would look like:

To(t) = F(t,yo(t), Ao(y0))  Tolto) =To to <t <t
fty(), () i) =y 1 <t <ty

0

U0 = ftye(t), Me(yr)) Te(te) =kt <t <ty
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By the solution of Eq. (3.3) we mean the following function:

[ Jo(t) L to<t<t
nt) Lt <t<t

y(t) = y(t, to, yo) = : (3.4)
Ur(t) st <t <tp+1

\

We note that the solutions of Eq. (3.3) are piecewise differential in each interval for
t € [tg, tpy1] for a fixed 7 € E' and k=0,1,2....

4 The Explicit Three-Step Method

In this section, we develop the numerical solution of Eq. (3.3) by using the explicit three-
step method given in [1]. Hence, we present the explicit three-step method for solving the
hybrid fuzzy differential system (3.3), when f and A\ in Eq. (3.3) can be obtained via
the Zadeh extension principle from f € C[RT x R x R, R] and )\, € C[R, R]. We assume
that the existence and uniqueness of the solutions of Eq. (3.3) hold for each [ty, tx1]. For
fixed k € ZT, we replace each interval [tg,t;11] by a set of Ng 1 discrete equally spaced
grid points, t, = tro < tg1 < ... < tg Ny = tpy1 (including the endpoints), at which the
exact solution Y (¢) is approximated by some 7 (%).

Fixing k € ZT, we can solve the hybrid fuzzy initial value problem

{ vt) = flt,y, ve(yr)), th <t <tppr (4.5)

Y(tk) = Yk

by the explicit three-step method as follows. Let the fuzzy initial values be

Y(tei—1)sY(tri) Y(te,it1)s

ie.,

Ftrict, (i) Ae(Yr))s f i y(tea), Me(ye)) fltipr, y(tis1), Ae(ye)),

which are triangular fuzzy numbers and are shown as
(=13 9 (tim1)s M) P (i1, y(toio1)) " (bt (bi—1)s M) b

{F s y (i) M (i) £t y (i )s Ak (ui))s £ (e y (b i) M () 3,

{F it ¥ (i 1) Me(W))s P it (g 1) Me(We))s F7 (et 0(teien)s Me (0 )) -

Consider the following fuzzy equation

Tthisa) = §ltni) + / U R (), M) dt. (4.6)

tpi—1

Similar to [1], if we apply fuzzy linear spline interpolation to

Flteimt, Y(triz1)s M) f (i Yt i)y Me(Yr))s [ (i iets Y(Ekit1)s Me(Yk))s
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then we have:

Ftye(t), Me(yx)) =

Frio1, (i), Me(yr)) + :
tei — Lhi tei — ks

ftes y(tes), Me(ye))  t € [trizt,thl

- lhiv1 =1 =~
F@ye(®), Ak(ye)) = ————F(tea y(tri), Ae(yr))
tk,z+1 - tk,z
t—tr; =~
(i1, Y (i) Ae(k)) € [thi thivn ),
thit1 — Ty

therefore, the following results will be obtained:

tei—t
’“ F it y(teie1)s Me(ye)

l _
(@t yk(®), Ae(yr)) = s —tes L

t—thi-1
0 Pt y () Me(Y))s € [hiots tril
teyi — thi1

P (), M) = 2 e i) M)

tei —lps 1™
i (i), Ae(Yr))s € i1y trils

ths — 1t

fr @ ue(), \e(ye)) = mf( kim1, Y(teiz1), Ak (yx))

+:7?ff(tk7iay(tk,z‘),)\k(yk)), t € [thi-1,tils

and y y
-l ka+l — U

F (tyn(t), Me(yr)) = ————F (tri, y(ti), Ae(y)

teit1 — thi

t—tr;

mf (it 15 Y (it 1)s Au(Yr))s t € [tws trita]s

K K

tei11 —

Tt yr(t), Melyn)) = I i (i), Ae(e)

teit1 — Ty
t—try
Tkt — Ty

=T tki -1 s
Fr e (), M) = = F (b, y(ti)s M)
tk:,z+1 - tk,z

?C(tk,i—&-lay(tk,i—i—l)u/\k(yk))v t € [thithiti],

t—th

_‘_7
teir1 — Ty

T (it y(trien)s Me(yi))s €€ [Listiivn ).
Now, by using Eq. (4.6) we give the following equations:

[9(tki+2)]" = [y* (tr,iv2), T (trit2)]

tps —t  ~ t—tr; 1

(4.7)

(4.9)

(4.10)

(4.11)

(4.12)
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where

Y (thire) = 4 (thimn) + / o () M) + (1= a) £ (1), A () et

lh,i—1

+ / T OT ) M) + (1= )T (i (0), Aeu)) e (4.13)

th,i

and

T (thia) = T (thi1) + / T (0 M) + (1= @) f7 (1), M) Yt

tri—1

N /t k,it2 {Oéfc(t, yk(t)a )\k(yk)) + (1 — Oz)?(t, yk(t), )\k(yk))}dt- (4-14)

If Egs. (4.7)-(4.8) and Eqs. (4.10)-(4.11) are substituted in Eq. (4.13) and also Eqs. (4.8)-
(4.9), Eq. (4.11) and Eq. (4.12) in Eq. (4.14), then we get:

o Iy b lpi —t c
Y (e iv2) = Yy (triz1) +/ {a{— Fthim1, y(teio1), Ae(yr))

thio1 tii — ki1

i i () M)} (1= @) B (1w (i), M)

i 7,_tk1 1= —lk,i-1

e f (), A () Yt + ﬁi’ff“{a{%?o(%u Y(ti)s Ae(yn)

tr 7,_tk =1 k,i+1 tk,
t—tr; thiv1—t
+%Tk_’t,mfc(tk,i+la Y(teirn)s Me(ye))} + (1= {2t (e y(tea), Ae(ye)

t—ty:
oo (ki y(eirn)s Ae(ye))}ht,

and

Y (triv2) = Y (ki) + ﬁ; {od 72— il et i 1, y(tei1) Ak(yr)

zftk i—1=—

tg,i—1

= (i y () M)+ (1= {2 S (=1 Y (e ) Ar(or)

tk,zftk,zfl

R 7 (b, (), M) P+ [ (o BT T (), M)

tei—tki—1 teit1—tk,

t—1y 5 <€ tr j401—t 7
ta s (earn y(teirn), Me(ye))} + (1 — a){g50 5 (b y(tea), Ae(ye)
t—1y ; ol
oot (i, (i), Me(yn))} Ht,

and hence we have:

+ g[afc(tk:,i—la Y(tri—1)s Me(Yr))

+(1 = ) f (thim1: y(trio1)s Ae(yr))] + g[afc(tk,u Y(tri)s Ae(yr))

Y (triv2) = ¥y (t,i-1)
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H(1 = ) f (i y (i) Me(Wi)] + 2R[af (i1, Y (Erier)s Me(Ur))
+(1 = ) f (i1, Y1), Ae(yn))],

+ g[afc(tlm;h Y(tei1)s Me(ye))

T (tryive) = 7 (tri1)
+(1 =) f (tryi1, y(triz1)s Ae(yr))] + g[afc(tk,u Y(tri)s Ae(yr))
+(1 = a) f" (i, y(thi)s Me(yr )] + 2Rh[af (th i1, Y(triv), Ae(yr))

+(1 = a) f (i1, Y(trivr)s Ae(ye)],

Y (thive) = ¥ (thi—1) + g[fx(tk,z;h Y(trio1), Ae(yr))) + f (s y(tri)s Me(yr)

F4f(thiv1, Y(teyiv1), Ae(yr))] (4.15)

T (thive) = 7% (tki1) + 20 (b1, (1) M (i) + (b y () e (yg))

FAF (i 1y Y (i1 A (W) (4.16)

Therefore, the explicit three-step method for solving the hybrid fuzzy initial value problem
Eq. (3.3) is obtained as follows:

Y (thit2)

=y (thic1) + 2 triets Y im1)s Me(Wi)) + L iy Y(iei)s M (k)

H4f " (thiv1, Y(tkie1), Ae(yr)]s

T (thive) = 7% (tki1) + 20 (b1, (1) M (i) + (b y () e (yg)

+47a(tk,i+1, Y(tris1), Ae(yr)]s

Y (thio1) = @3, (try) = 0, Y (thi1) = . (4.17)
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5 Implicit two-step method

In this section, the main aim is solving the fuzzy initial value problem y; () = £t ye (), Melyr)
by the implicit two-step method as given in [1]. Let the fuzzy initial values be y(ts;—1), y(tr.i),
ie.,

Ftrimt, iz Ae(ue))s F (s y(tei)s A (wn),

which are tTriangular fuzzy numbers and are shown as

Pt w1 M) o i1t ) M) Pt (s 1), A ()
{F iy (i) M (W) Tty (i) A (o)) 7 (i (i )s e (i) -
Consider the following fuzzy equation,
thit2 L
Hltii) = Gt ) + / Fit (t), M) . (5.18)

In a similar manner to [2], by using fuzzy linear spline interpolation for

Fit, uri 1) AeWi))s F i y(Eai)s Me(ur))s Fltin 1, 9 (trirn)s Ae(yr)

and proceeding as above we have:

[(thiv2)]" = [Y* (trit2), T (tr,i2)]s

Thus, the implicit two-step method is obtained as follows:

Y (trit1) =y (thiz1) + g[fa(tk,i—h Y(tkiz1)s Me(ya)) + 2 (i, ¥ (k)5 Ae(yr)

+f  (thit1, Yt i), Me(yr))],

g[?a(tk,iflay(tkﬂél)a)\k(yk)) + 27 (i y (i) M ()

i, Y (i) Me(yi))]s
Y (thiz1) = a0, Y (tes) = a1, §(trio1) = a2, Y (tri) = as. (5.19)

Y (i) = U (tri1) +

6 Improved predictor-corrector three-step method (IPCTSM)

In this section, we present an algorithm for solving Eq. (3.3) based on the explicit three-
step method as a predictor and an iteration of the implicit two-step method as a corrector.

ALGORITHM (Improved predictor-corrector three-step method (IPCTSM))
Fix k € Z*. To approximate the solution of the following hybrid fuzzy differential system

(1) = f(tayk(t), Ae(Yr)), te <t <tpy1,
Yy (tro) = @0, y* (k) = a1,y (te,2) = o,
T (teo) = a3, ¥ (tr1) = a4, Y (th2) = as,
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an arbitrary positive integer Nj is chosen.
Step 1. Let h = % ,
Yy (tro) = 2o,y (tr1) = a1, y“(th2) = ag,

Y (teo) = a3, Y (te1) = a4, Y (th2) = as.

Step 2. Let ¢ = 1.
Step 3. Let

YOt i2) = y*(trioa) + g[f(tk@q, Y(triz1), Ae(Yr))
i Y (e )y Ak (yr)) + 4 (teir 1, Y(Ehiv1)s Me(ye)],

h —a
7Ot i2) = Tt io1) + §[f (thiz1, Y(teiz1), Me(yr))

iy Y(ts)s M) + 4F it (i) M (yie))]-

Step 4. Let ty ;40 = tro + (i 4 2)h.
Step 5. Let

Y (teiv2) = y*(tra) + (g)ia(tk,n Y(tri)s Me(yr))

h
Fhf (it Y(trit1), Me(yr)) + (§>ia(tk:,i+27 YO (thiv) Mel(yn)),

=

Y (tryive) = ¥ (i) + (5)?a(tk,i7 Y(tri)s Me(yn))

—a h —a
+hf (teitt, Y(teigr) Ae(yr)) + (g)f (th,iv2s y(O)(tk,i—l—Z)a Ae(Yr))-

Step 6. 1 =1+ 1.
Step 7. If ¢t < N — 2, go to step 3.

Step 8. The algorithm will end and (y®(tr41),7*(tx+1)) approximates the real value of
(Y *(trr), YV (b))

7 Convergence

By an application of the methods suggested in [1] (Theorem (6.1) and Theorem (6.2)) and
[4] (Lemma (3.1) and Theorem (3.2)), the following results can prove the convergence of the
methods provided in sections 4, 5 and 6. For a fixed k € Z", to integrate the system (3.3)
in [to,t1],- .- [tk, tkt1], - - -, we replace each interval by a set of Ny discrete equally spaced
grid point at which the exact solution (Y*(t), Y (t) is approximated by some (y*(t),7*(t).
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For the chosen grid point on [ty,tp41] at thn = tp + nhg, by = %, the exact and
approximate solutions are denoted by [)N/kn]o‘ = [72‘7”,?27”], and [y = [yy Uil re-

spectively.

Theorem 7.1. For any arbitrary fived o : 0 < a < 1, and k € Z"’,lhe implicit two-
step approzimates of Eq. (5.19) converge to the exact solution Y*(t),Y"(t) for Y,V €
C3to, thr1]-

Proof: It is sufficient to show

lim > =Y"tra
ho’...’hkﬂogk,f\h@ Y (ter1),

lim 7%y =Y“(¢ .
how e 0 Yk, Ny, (tk+1)

The proof is similar to that of Theorem (6.1) in [1].

Theorem 7.2. For any arbitrary fired o : 0 < a <1, and k € Z“‘,ihe explicit three-
step approzimates of Eq.(4.17) converge to the exact solution Y(1),Y"(t) for Y.Y €
C3to, tet1] -

Proof. The proof is similar to that of Theorem (6.2) in [1].
Theorem 7.3. The explicit three-step method is stable.

Proof. For the explicit three-step method, there exists only one characteristic poly-
nomial p(A\) = A3 — A, then it satisfies the root condition and, therefore, it is a stable
method.

Theorem 7.4. The implicit two-step method is stable.
Proof. Similar to Theorem (7.3).

Clearly, according to the above-mentioned theorems, the IPCTSM is convergent and sta-
ble.

8 Examples

In this section, we present two examples to illustrate the IPCTSM and also compare the

results of this method with Euler‘s method.

Example 8.1. [8] Consider the initial value problem
7 () = y(t) + mt) A (y (), t € [t trgal, tr =k,

[7(0)] = [0.75 4 0.250, 1.125 — 0.125q] 0<a<l,
(8.20)
[7(0.1)] = [(0.75 + 0.250)e%!, (1.125 — 0.1250)¢%1],

[7(0.2)] = [(0.75 + 0.250) 2, (1.125 — 0.1250)e%?]
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where
() = 2(t(mod1)) if t(modl) < (0.5),
TUZ 201 = t(modl)) if t(modl) > (0.5),
0 if k=0
A = . '
b(p) {,u if ke{l,2,---}.
Now, by using the example presented in [6], it is clear that for each £ = 0,1,2,---,
the fuzzy initial value problem

7 () =9(t) + m(OMe(y(tr)), € [thytos], th =k,

y(tk) = Ytg»
(8.21)
y(tk—l) = Yt _1>
\ y(tk—2) = Yt _o>
has a unique solution on [tg, txi1].
For ¢ € [0, 1], the exact solution of Eq. (8.20) satisfies
[y(1)]* = [(0.75 4+ 0.25a)e’, (1.125 — 0.125a)¢’]. (8.22)
For t € [1,2], the exact solution of Eq. (8.20) satisfies the following equation
[y(O)" = y*(1)(2t = 2+ €2 (3V/e — 4)). (8.23)

By using the IPCTSM, we have presented the numerical solution of this example at t = 2
in Fig. 1. Also, by using Euler‘s method for this example at ¢t = 2 with N = 10 and the
initial value as

y(0)]* = [(0.75 + 0.25a)e, (1.125 — 0.125a)e],

the results are shown in Fig. 2.

Lot
0.8:
0.6:
0.4:

0.2

8.0 85 9.0 9.5 10.0

L
105

L W
110

Fig. 1. The solid line and the dotted line show the initial fuzzy number and the numerical
solution by using the IPCTSM, respectively.
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1.0 i
0.8 }
0.6 }
04 —

0.2 ;'.
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Fig. 2. The solid line and the dotted line show the initial fuzzy number and the numerical
solution by using FEuler’s method, respectively.

Example 8.2. [8] Consider the initial value problem

(7' (t) = =y(t) +m(t) e(y(tr)), t € [tk ter1] te = F,
[7(0)] = [0.75 4 0.25a,1.125 — 0.1250)] 0<a<l,
[5(0.1)] = [—0.1875¢"! +0.9375¢ O + (e "' 4 0.1875¢* — 0.9375¢ "), (8.24)
0.1875¢% +0.9375¢ 01 4 (701 — 0.1875e%1 — 0.9375¢ 01)q],
[7(0.2)] = [—0.1875e"2 + 0.9375¢ %2 + (e %% + 0.1875¢"2 — 0.9375¢ %?)q,
L 0.1875¢%2 +0.9375¢ 02 + (702 — 0.1875¢%2 — 0.9375¢ 2)q,
where
m(t) = [sin(7t)],
0 if k=0
A =
For t €10,1] and for each k = 0,1,2,---, the exact solution of Eq. (8.24) satisfies in the

following equation; see [1],
y*(t) = [(—0.1875¢e" + 0.9375¢ ") + (7" 4 0.1875¢" — 0.9375¢ ™ )a,
(0.1875¢" +0.9375¢™") + (e7" — 0.1875¢" — 0.9375¢™")al. (8.25)

For more details, see Fig. 3 and Fig. 4.
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Fig. 3. The solid line and the dotted line show the initial fuzzy number and the numerical
solution by using the IPCTSM, respectively .
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Fig. 4. The solid line and the dotted line show the initial fuzzy number and the numerical
solution by using FEuler’s method, respectively.

9 Conclusion

In this paper, we developed the numerical solution of the hybrid fuzzy differential system
by the improved predictor-corrector method, in which the explicit three-step method is
used as a predictor and also an iteration of the implicit two-step method as a corrector.
By Theorems (7.1), (7.2), (7.3) and (7.4), we proved that the improved predictor corrector
three-step method is convergent and stable. We presented the examples based on examples
in [1, 7, 8,9, 10] to illustrate our results using the improved predictor-corrector three-step
method and the Euler method.
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