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Iterative methods for solving non-linearFokker-Plank equationSh. Sadigh Behzadi �Young Researhers Club, Central Tehran Branh , Islami Azad University, P.O.Box: 15655/461,Tehran, Iran.Reeived 17 April 2011; revised 10 July 2011; aepted 18 July 2011.|||||||||||||||||||||||||||||||-AbstratIn this paper, a nonlinear Fokker-Plank equation is solved by using the modi�ed Ado-mian deomposition method (MADM), variational iteration method (VIM) and homotopyanalysis method (HAM). For eah method, the approximate solution of this equation isalulated in the form of the series whih its omponents are omputed by a reursive rela-tion. In some theorems, the uniqueness of the solution (if it exists) and the onvergene ofthe proposed methods are proved. Finally, a numerial example is solved to demonstratethe auray of the mentioned methods.Keywords : Fokker-Plank equation; Modi�ed Adomian deomposition method; Variational itera-tion method; Homotopy analysis method.||||||||||||||||||||||||||||||||{1 IntrodutionFokker-Plank equation arises in a number of di�erent �elds in natural siene, inlud-ing solid-state physis, quantum optis, hemial physis, theoretial biology and iruittheory. The Fokker-Plank equation was �rst used by Fokker and Plank to desribe theBrownian motion of partiles [21℄. This equation has important appliations in the variousareas suh as plasma physis, surfae physis, population dynamis, biophysis, engineer-ing, polymer physis and et [11, 19, 20, 24, 27℄. In reent years, some works have been donein order to �nd the numerial solution of this equation by applying the eÆient and pow-erful iterative methods suh as Adomian deomposition method (ADM) [23℄,Variationaliteration method (VIM) [7, 22℄ and Homotopy perturbation method (HPM) [1, 6℄. In thiswork, we apply and ompare the iterative methods MADM, VIM and HAM to solve thenon-linear Fokker-Plank equation as follows:�Email address: Shadan Behzadi�yahoo.om . 143



144 Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156�u�t = [� ��xk1(x; t; u) + �2�x2k2(x; t; u)℄:u; (1.1)with the initial ondition given by:u(x; 0) = f(x); x 2 R;where u(x; t) is unknown. In Eq. (1.1), k2(x; t; u) is alled the di�usion and k1(x; t; u) isthe drift oeÆient.We an write Eq.(1.1) as follows: Ltu = LFP (u); (1.2)where Lt = ��t and LFP = � ��xk1(x; t; u) + �2�x2k2(x; t; u) is the Fokker-Plank operatorwith one variable.The oeÆients k1 and k2 an be independent of time, assuming that the inverseoperator L�1t exists and it an be taken onveniently as the de�nite integral with respetto � from 0 to t as follows: L�1t (:) = Z t0 (:)d�:Thus, applying the inverse operator L�1t to both sides of the Eq. (1.2) yieldsL�1t Ltu = L�1t LFP (u)) u(x; t)� u(x; 0) = L�1t LFP (u):Therefore, using the initial ondition we haveu(x; t) = f(x) + L�1t LFP (u): (1.3)Now, we deompose the unknown funtion u(x; t) by sum of omponents de�ned by thefollowing deomposition series with u0 identi�ed as u(x; 0).u(x; t) = 1Xn=0un(x; t): (1.4)The paper is organized as follows. In Setion 2, the iterative methods MADM, VIM andHAM are introdued for solving Eq. (1.1). The existene and uniqueness of the solutionand onvergene of the proposed methods are proved in this setion, too. Finally, thealgorithm of iterative methods and the numerial example is presented in Setion 3 toompare and to illustrate the auray of these methods.2 Desription of methodsIn Eq. (1.3), we assume f(x) is bounded for all x in J = R. We set,� ��xk1(x; t; u) = k01(x; t; u);�2�x2k2(x; t; u) = k02(x; t; u): (2.5)



Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156 145In the following theorem, we suppose the non-linear terms k01(x; t; u)u and k02(x; t; u)u areLipshitz ontinuous withj k01(x; t; u)u� k01(x; t; z)z j� L0 j u� z j; L0 > 0j k02(x; t; u)u� k02(x; t; z)z j� L00 j u� z j; L00 > 0and � = b (L0 + L00); 0 � x; t � b; b 2 R:Theorem 2.1. Let 0 < � < 1, then non-linear Fokker-Plank equation (1.1), has a uniquesolution.Proof: Let u and u� be two di�erent solutions of (1.3) thenj u� u� j = ���R t0 h(k01(x; �; u)u� k01(x; �; u�)u�) + (k02(x; �; u)u � k02(x; �; u�)u�)i d� ���� R t0 hj k01(x; �; u)u � k01(x; �; u�)u� j + j k02(x; �; u)u � k02(x; �; u�)u� ji d�� b (L0 + L00) j u� u� j= � j u� u� j :From whih we get (1 � �) j u � u� j� 0. Sine 0 < � < 1. then j u � u� j= 0. Impliesu = u� and ompletes the proof.2.1 Desription of the MADMThe ADM is applied to the following general non-linear equationLu + Ru + Nu = g(x); (2.6)where u is the unknown funtion, L is the highest order derivative operators whih isassumed to be easily invertible, R is a linear di�erential operator of order less than L;Nurepresents the non-linear terms, and g is the soure term. Applying the inverse operatorL�1 to both sides of Eq. (2.6), and using the given onditions, we obtainu = f(x)� L�1(Ru)� L�1(Nu); (2.7)where the funtion f(x) represents the terms arising from integrating the soure termg(x). The non-linear operator Nu = G(u) is deomposed asG(u) = 1Xn=0An; (2.8)where An; n � 0 are the Adomian polynomials determined formally as follows :An = 1n! [ dnd�n [N( 1Xi=0 �iui)℄℄�=0: (2.9)These polynomials an be introdued as [26℄



146 Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156
A0 = G(u0);A1 = u1G0(u0);A2 = u2G0(u0) + 12!u21G00(u0); (2.10)A3 = u3G0(u0) + u1u2G00(u0) + 13!u31G000(u0); :::The standard deomposition tehnique represents the solution of u in Eq. (1.3) as thefollowing series, u = 1Xn=0un; (2.11)where, the omponents u0; u1; : : : are usually determined reursively byu0 = f(x)un+1 = �L�1(Run)� L�1(An); n � 0: (2.12)Substituting Eq. (2.10) into the Eq. (2.12) leads to the determination of the omponentsof u. Having determined the omponents u0; u1; : : : the solution u in the series formde�ned by Eq. (2.11) follows immediately.The modi�ed deomposition method was introdued by Wazwaz [26℄. The modi�edform was established based on the assumption that the funtion f(x) an be divided intotwo parts, namely f1(x) and f2(x). Under this assumption we setf(x) = f1(x) + f2(x): (2.13)Aordingly, a slight variation was proposed only on the omponents u0 and u1. Thesuggestion was that only the part f1 be assigned to the zeroth omponent u0, whereasthe remaining part f2 be ombined with the other terms given in Eq. (2.12) to de�ne u1.Consequently, the modi�ed reursive relationu0 = f1(x);u1 = f2(x)� L�1(Ru0)� L�1(A0); (2.14)...un+1 = �L�1(Run)� L�1(An); n � 1;was developed. Some of the appliations of the deomposition method an be found in[2, 3, 8, 16, 25℄.To obtain the approximation solution of Eq. (1.1), aording to the MADM, we anwrite the iterative formula (2.14) as follows:u0(x; t) = f1(x);u1(x; t) = f2(x) + L�1t (�Lx[N0℄ + Lxx[M0℄);...un+1(x; t) = L�1t (�Lx[Nn℄ + Lxx[Mn℄); n � 1: (2.15)



Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156 147The non-linear expression N(u) = k1(x; t; u)u and M(u) = k2(x; t; u)u by the in�niteseries of the Adomian polynomial are given by:N(u) = P1n=0Nn;M(u) = P1n=0Mn; (2.16)Also, we onsider k01(x; t; u)u = P1n=0An;k02(x; t; u)u = P1n=0Bn; (2.17)where Nn, Mn, An and Bn are Adomian polynomials. Also, we an write the followingrelations for An and Bn [12℄:nXi=0 Ai = k01(x; t; sn)sn; ; nXi=0 Bi = k02(x; t; sn)sn: (2.18)Theorem 2.2. The series solution u(x; t) = P1i=0 ui(x; t) of problem (1.3) using MADMonvergene when 0 < � < 1 and j u1(x; t) j<1.Proof: Let (C[J ℄; k : k) be the Banah spae of all ontinuous funtions on J with thenorm k f(t) k= max j f(t) j, for all t in J and sn and sm be arbitrary partial sums withn � m. We will prove that sn is a Cauhy sequene in this Banah spae.From Eqs. (2.15) and (2.17), we have,k sn � sm k = max8t2J j sn � sm j= max8t2J ��Pni=m+1 ui(x; t)��= max8t2J ���Pni=m+1 R t0 (Ai�1 + Bi�1)d� ���= max8t2J ���R t0 �(Pni=m+1Ai�1) + (Pni=m+1Bi�1)� d� ��� :From Eq. (2.18), we havePni=m+1Ai�1 = k01(x; t; (sn�1))sn�1 � k01(x; t; (sm�1))sm�1;Pni=m+1Bi�1 = k02(x; t; (sn�1))sn�1 � k02(x; t; (sm�1))sm�1:So, k sn � sm k = max8t2J ���R t0 [(k01(x; �; sn�1)sn�1 � k01(x; �; sm�1)sm�1)+ (k02(x; �; sn�1)sn�1 � k02(x; �; sm�1)sm�1)℄ d� ���� max8t2J R t0 h���(k01(x; �; sn�1)sn�1 � k01(x; �; sm�1)sm�1)���+ ���k02(x; �; sn�1)sn�1 � k02(x; �; sm�1)sm�1���i d�� R t0 (L0 + L00)jsn�1 � sm�1jd�� � k sn�1 � sm�1 k :



148 Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156Let n = m + 1, then k sm+1 � sm k � � k sm � sm�1 k� �2 k sm�1 � sm�2 k...� �m k s1 � s0 k :From the triangular inequality we havek sn � sm k �k sm+1 � sm k + k sm+2 � sm+1 k +:::+ k sn � sn�1 k� [�m + �m+1 + ::: + �n�1℄ k s1 � s0 k� �m[1 + � + �2 + ::: + �n�m�1℄ k s1 � s0 k� �m[1��n�m1�� ℄ k u1(x; t) k :Sine 0 < � < 1, we have (1� �n�m) < 1, thenk sn � sm k� �m1� � max8t2J j u1(x; t) j :But j u1(x; t) j< 1 ( sine f(x) is bounded), so, as m ! 1, then k sn � sm k! 0. Weonlude that sn is a Cauhy sequene in C[J ℄, therefore the series is onvergene and theproof is omplete.2.2 Desription of the VIMIn the VIM [12, 13, 14, 15℄ and [10℄, we onsider the following non-linear di�erentialequation: L(u) + N(u) = g(t); (2.19)where L is a linear operator, N is a non-linear operator and g is the known analytialfuntion. Therefore; u = f(x) � L�1(N(u)) where, f = L�1(g). In this ase, a orretfuntion an be onstruted as follows:un+1(t) = un(t) + Z t0 �(�)fL(un(�)) + N(un(�))� g(�)gd�; n � 0; (2.20)where � is a general Lagrange multiplier whih an be identi�ed optimally via variationaltheory. Here the funtion un(�) is a restrited variations whih means Æun = 0. Therefore,we �rst determine the Lagrange multiplier � that will be identi�ed optimally via integra-tion by parts. The suessive approximation un(t), n � 0 of the solution u(t) will bereadily obtained upon using the obtained Lagrange multiplier and by using any seletivefuntion u0. The zeroth approximation u0 may be seleted any funtion that just satis�esat least the initial and boundary onditions. With determined �, several approximationsun(t), n � 0 follow immediately. Consequently, the exat solution may be obtained byusing u(t) = limn!1un(t): (2.21)



Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156 149The VIM has been shown to solve e�etively, easily and aurately a large lass of non-linear problems with approximations onverge rapidly to aurate solutions.To obtain the approximation solution of Eq. (1.3), aording to the VIM, we an writeiteration formula (2.20) as follows:un+1(x; t) = un(x; t) + L�1t (�(x)[un(x; t)� f(x)�L�1t (�LxN [un(x; �)℄ + LxxM [un(x; �)℄)℄); (2.22)where N and M are non-linear operators orresponding to k1 and k2 respetively.To �nd the optimal �(x), we proeed as follows:Æun+1(x; t) = Æun(x; t) + ÆL�1t (�(x)[u(x; t)� f(x)�L�1t (�LxN [un(x; �)℄ + LxxM [un(x; �)℄)℄)= Æun(x; t) + �(x)Æun(x; t)� L�1t [Æun(x; �)�0(x)℄: (2.23)From Eq. (2.23), the stationary onditions an be obtained as follows:�0(x) = 0and 1 + �(x) jx=t= 0:Therefore, the Lagrange multipliers an be identi�ed as �(x) = �1 and by substituting inEq. (2.22), the following iteration formula is obtained.u0(x; t) = f(x);un+1(x; t) = un(x; t)� L�1t [un(x; t)� f(x)�L�1t (k01(x; �; un(x; t))un(x; t) + k02(x; �; un(x; t))un(x; t))℄ n � 0: (2.24)Relation (2.24) will enable us to determine the omponents un(x; t) reursively for n � 0.From Eq. (2.24), when n tends to in�nity, we onlude thatu(x; t) = u(x; t) � L�1t [u(x; t)� f(x)�L�1t (k01(x; �; u(x; t))u(x; t) + k02(x; �; u(x; t))u(x; t))℄: (2.25)In the following theorem, we assume that� = 1� t(1� (L0 + L00)t); t 2 R+ :Theorem 2.3. The series solution u(x; t) = P1i=0 ui(x; t) of problem (1.3) using VIMonverges when 0 < � < 1.Proof: By subtrating both sides of Eq. (2.25) from Eq. (2.24),un+1(x; t)� u(x; t) = un(x; t)� u(x; t)�L�1t hun(x; t)� u(x; t)� L�1t �k01(x; �; un(x; t))un(x; t)�k01(x; �; u(x; t))u(x; t) + k02(x; �; un(x; t))un(x; t)�k02(x; �; u(x; t))u(x; t)�i :



150 Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156If we set, en+1(x; t) = un+1(x; t)� un(x; t)en(x; t) = un(x; t)� u(x; t)j en(x; t�) j= maxt j en(x; t) jthen sine en is a dereasing funtion with respet to t from the mean value theorem, wean writeen+1(x; t) = en(x; t) + L�1t [�en(x; t) + L�1t (k01(x; �; un(x; t))un(x; t)�k01(x; �; u(x; t))u(x; t) + k02(x; �; un(x; t))un(x; t) � k02(x; �; u(x; t))u(x; t))℄� en(x; t) + L�1t [�en + L�1t j en(x; t) j (L0 + L00)℄� en(x; t)� ten(x; �) + (L0 + L00)L�1t L�1t j en(x; t) j)� (1� t)en(x; t) + (L0 + L00)t2 j en(x; t�) j� (1� t(1� (L0 + L00)t)) j en(x; t�) j;where 0 � � � t. Hene, en+1(x; t) � � j en(x; t�) j :Therefore, ken+1k = max8x;t j en+1(x; t) j� � max8x;t j en(x; t) j= �kenk:Sine 0 < � < 1, then kenk ! 0 as n tends to in�nity. So, the series onverges and theproof is omplete.2.3 Desription of the HAMConsider the following non-linear operatorN [u℄ = 0; (2.26)where u(x; t) is unknown funtion. Let u0(x; t) denotes an initial guess of the exatsolution u, h 6= 0 an auxiliary parameter, H(x; t) 6= 0, an auxiliary funtion, and L, anauxiliary non-linear operator with the property L[r(x; t)℄ = 0 when r(x; t) = 0. Then,using q 2 [0; 1℄ as an embedding parameter, we onstrut a homotopy as follows:(1� q)L[�(x; t; q) � u0(x; t)℄ � qhH(x; t)N [�(x; t; q)℄ = Ĥ[�(x; t; q);u0(x; t);H(x; t); h; q℄:(2.27)It should be emphasized that we have great freedom to hoose the initial guess u0(x; t),the auxiliary non-linear operator L, the non-zero auxiliary parameter h, and the auxiliaryfuntion H(x; t) [17, 18, 4, 5, 9℄. Enforing the homotopy (2.27) to be zero, i.e.,Ĥ[�(x; t; q);u0(x; t);H(x; t); h; q℄ = 0; (2.28)we have the so-alled zero-order deformation equation(1� q)L[�(x; t; q) � u0(x; t)℄ = qhH(x; t)N [�(x; t; q)℄: (2.29)



Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156 151When q = 0, the zero-order deformation Eq. (2.29) beomes�(x; t; 0) = u0(x; t); (2.30)and when q = 1, sine h 6= 0 and H(x; t) 6= 0, the zero-order deformation Eq. (2.29) isequivalent to �(x; t; 1) = u(x; t): (2.31)Thus, aording to Eqs. (2.30) and (2.31), as the embedding parameter q inreases from0 to 1, �(x; t; q) varies ontinuously from the initial approximation u0(x; t) to the exatsolution u(x; t). Suh a kind of ontinuous variation is alled deformation in homotopy.Due to Taylor's theorem, �(x; t; q) an be expanded in a power series of q as follows:�(x; t; q) = u0(x; t) + 1Xm=1um(x; t)qm; (2.32)where um(x; t) = 1m! �m�(x; t; q)�qm jq=0 :Let the initial guess u0(x; t), the auxiliary non-linear parameter L, the nonzero auxil-iary parameter h and the auxiliary funtion H(x; t) be properly hosen so that the powerseries (2.32) of �(x; t; q) onverges at q = 1, then, we have under these assumptions thesolution series u(x; t) = �(x; t; 1) = u0(x; t) + 1Xm=1 um(x; t): (2.33)From Eq. (2.32), we an write Eq. (2.29) as follows:(1� q)L[�(x; t; q)� u0(x; t)℄ = (1� q)L[P1m=1 um(x; t) qm℄= q h H(x; t)N [�(x; t; q)℄ (2.34)then,  L[ 1Xm=1 um(x; t) qm℄� q L[ 1Xm=1 um(x; t)qm℄ = q h H(x; t)N [�(x; t; q)℄: (2.35)By di�erentiating (2.35) m times with respet to q, we obtainfL[P1m=1 um(x; t) qm℄� q L[P1m=1 um(x; t)qm℄g(m) = fq h H(x; t)N [�(x; t; q)℄g(m)= m! L[um(x; t)� um�1(x; t)℄= h H(x; t) m�m�1N [�(x;t;q)℄�qm�1 jq=0 :Therefore, L[um(x; t)� �mum�1(x; t)℄ = hH(x; t)<m(um�1(x; t)); (2.36)where, <m(um�1(x; t)) = 1(m� 1)! �m�1N [�(x; t; q)℄�qm�1 jq=0; (2.37)



152 Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156and �m = � 0; m � 1;1; m > 1:Note that the high-order deformation Eq. (2.36) is governing the non-linear operator L,and the term <m(um�1(x; t)) an be expressed simply by (2.37) for any non-linear operatorN . To obtain the approximation solution of Eq. (1.3), aording to HAM, letN [u℄ = u(x; t)� f(x)� L�1t (� ��xk1(x; �; u)u + �2�x2k2(x; �; u)u):So, <m(um�1(x; t)) = um�1(x; t)�L�1t (� ��xk1(x; �; um�1)um�1 + �2�x2k2(x; �; um�1)um�1)�(1� �m)f(x): (2.38)Substituting Eq. (2.38) into the Eq. (2.36)L[um(x; t)� �mum�1(x; t)℄ = hH(x; t) �um�1(x; t)� L�1t �� ��xk1(x; �; um�1)um�1+ �2�x2 k2(x; �; um�1)um�1�� (1� �m)f(x)i : (2.39)We take an initial guess u0(x; t) = f(x), an auxiliary non-linear operator Lu = u,a nonzero auxiliary parameter h = �1, and auxiliary funtion H(x; t) = 1. This issubstituted into the Eq. (2.39) to give the reurrene relation:u0(x; t) = f(x);um(x; t) = L�1t (� ��xk1(x; �; um�1)um�1 + �2�x2 k2(x; �; um�1)um�1); m � 1: (2.40)Let u(x; t) = 1Xm=0 um(x; t); limm!1um(x; t) = 0: (2.41)If j um(x; t) j< 1 (2.42)then, the series solution (2.41) onvergene uniformly.Theorem 2.4. If the series solution (2.41) of problem (1.3) using HAM is onvergentthen it onverges to the exat solution of the problem (1.3).Proof: We an write,nXm=1[um(x; t)� �mum�1(x; t)℄ = u1 + (u2 � u1) + ::: + (un � un�1) = un(x; t): (2.43)Hene, limn!1un(x; t) = 0: (2.44)



Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156 153So, using Eq. (2.44) and the de�nition of the non-linear operator L, we have1Xm=1L[um(x; t)� �mum�1(x; t)℄ = L[ 1Xm=1[um(x; t)� �mum�1(x; t)℄℄ = 0:Therefore from Eq. (2.36), we an obtain that,1Xm=1L[um(x; t)� �mum�1(x; t)℄ = hH(x; t) 1Xm=1<m�1(ym�1(x; t)) = 0:Sine h 6= 0 and H(x; t) 6= 0 , we have1Xm=1<m�1(ym�1(x; t)) = 0: (2.45)By substituting <m�1(ym�1(x; t)) into the relation (2.45) and simplifying it, we onludethatP1m=1 <m�1(ym�1(x; t)) = P1m=1 [um�1(x; t)�L�1t (� ��xk1(x; �; um�1)um�1 + �2�x2 k2(x; �; um�1)um�1)� (1� �m)f(x)℄= u(x; t)� f(x)� L�1t [� ��x P1m=1 k1(x; �; um�1)um�1+ �2�x2 P1m=1 k2(x; �; um�1)um�1℄:(2.46)From Eqs. (2.45) and (2.46), we haveu(x; t) = f(x) + L�1t (� ��xk1(x; �; u)u + �2�x2 k2(x; �; u)u);therefore, u(x; t) must be the exat solution of Eq. (1.3).3 Numerial exampleIn this setion, we ompute a numerial example whih is solved by the MADM, VIM andHAM. The programs have been provided with Mathematia 6 aording to the followingalgorithm. In this algorithm, " is a given positive value.Algorithm:Step 1. Set n 0.Step 2. Calulate the reursive relation (2.24) for VIM, (2.15) for MADM or (2.40)for HAM,Step 3. If j un+1 � un j< " then go to step 4, else n n + 1 and go to step 2,Step 4. Print u(x; t) = Pni=0 ui(x; t) as the approximate of the exat solution.Example 3.1. We onsider the following non-linear Fokker-Plank equation:k1(x; t; u) = xu



154 Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156k2(x; t; u) = exf(x) = x + e�x;with exat solution u(x; t) = xe�t, " = 10�2 and � = 0:025317.Table 1Numerial results of Example (3.1)x = 0:01t Error(HAM, n=3) Error(VIM,n=4) Error(MADM,n=6)0.05 3:28868 � 10�2 1:89901 � 10�3 3:53043 � 10�20.06 3:49605 � 10�2 1:8771 � 10�3 3:84109 � 10�20.07 3:52263 � 10�2 1:85837 � 10�3 3:98804 � 10�20.08 3:3554 � 10�2 1:83798 � 10�3 3:95778 � 10�20.09 2:98136 � 10�2 1:81753 � 10�3 3:73678 � 10�20.1 2:38754 � 10�2 1:79701 � 10�3 3:31154 � 10�2Table 1 shows that approximate solution of the non-linear Fokker-Plank equation isonvergent with 3 iterations by using the HAM. By omparing the results of Table 1, wean observe that the HAM is more rapid onvergene than the MADM and VIM.4 ConlusionIn this paper, the iterative methods have been suessfully employed to obtain the approx-imate solution of the non-linear Fokker-Plank equation. For this purpose, we applied theMADM, VIM and HAM and we proved the onvereny of these methods. Also, we pre-sented that the HAM was more rapid onvergene than the MADM and VIM by solvinga numerial example. These methods may be used to solve the nonlinear Fokker-Plankequation in the form of [23℄�u�t = [� NXi=1 ��xiki(x; t; u) + NXi;j=1 �2�xi�xj ki;j(x; t; u)℄u;where x = (x1; x2; : : : ; xN ). For further researh, one an apply the homotopy perturbationmethod or modi�ed form of this method to solve the Fokker-Plank equation and omparethe results with the mentioned iterative methods.Referenes[1℄ S. Abbasbandy, Modi�ed homotopy perturbation method for nonlinear equationsand omparsion with Adomian deomposition method, Appl.Math.Comput 172(2006)431-438.[2℄ E. Babolian, A.Q. Davari, Numerial implemenatation of Adomian deompositionmethod for linear Volterra integral equations of the seond kind, Appl.Math.Comput165 (2005) 223-227.[3℄ S.H. Behriy, H. Hashish, I.L. E-Kalla, A. Elsaid, A new algorithm for the deompo-sition solution of nonlinear di�erential equations 54 (2007) 459-466.



Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156 155[4℄ Sh.S. Behzadi, The onvergene of homotopy methods for nonlinear Klein-Gordonequation, J.Appl.Math.Informatis, 28(2010)1227-1237.[5℄ Sh.S. Behzadi, M.A.Fariborzi Araghi, The use of iterative methods for solving Naveir-Stokes equation, J.Appl.Math.Informatis, 29(2011) 1-15.[6℄ J. Biazar, K. Hosseini, P. Gholamin, Homotopy Perturbation Method for Fokker-Plank equations. International Mathematial Forum 3(2008) 945-954.[7℄ M. Dehgan, M. Tatari, The use of He's variational iteration method for solving theFokker-Plank equation, Phys.Sripta 74 (2006) 310-316.[8℄ M.A. Fariborzi Araghi, Sh. Sadigh Behzadi, Solving nonlinear Volterra-Fredholm inte-gral di�erential equations using the modi�ed Adomian deomposition method, Com-put. Methods in Appl. Math. 9 (4) (2009) 1-11.[9℄ M.A. Fariborzi Araghi, Sh.S. Behzadi, Numerial solution of nonlinear Volterra-Fredholm integro-di�erential equations using Homotopy analysis method. Journal ofApplied Mathematis and Computing, DOI: 10.1080/00207161003770394, 2010.[10℄ M.A. Fariborzi Araghi, Sh.S. Behzadi, Solving nonlinear Volterra-Fredholm integro-di�erential equations using He's variational iteration method. International Journalof Computer Mathematis, DOI: 10.1007/s12190-010-0417-4, 2010.[11℄ G. Harrison, Numerial solution of the Fokker-Plank equation using moving �niteelements, Numer. Methods Partial Di�erential Equations 4 (1998) 219-232.[12℄ J.H. He, Variational iteration method for autonomous ordinary di�erential system,Appl. Math. Comput. 114 (2000) 115-123.[13℄ J.H. He, Approximate analytial solution for seepage folw with frational derivativesin porous media, Comput. Methods. Appl. Meh. Eng., 167 (1998) 57-68.[14℄ J.H. He, Wang Shu-Qiang, Variational iteration method for solving integro-di�erentialequations, Physis Letters A. 367 (2007) 188-191.[15℄ J.H. He, Variational priniple for some nonlinear partial di�erential equations withvariable oÆients, Chaos, Solitons and Fratals 19 (4)(2004) 847-851.[16℄ I.L.El. Kalla, Convergene of the Adomian method applied to a lass of nonlinearintegral equations 21 (2008) 327-76.[17℄ S.J. Liao, Beyond Perturbation: Introdution to the Homotopy AnalysisMethod.Chapman and Hall/CRC Press,Boa Raton,2003.[18℄ S.J. Liao, Notes on the homotopy analysis method:some de�nitions and theorems,Communiation in Nonlinear Siene and Numerial Simulation 14 (2009) 983-997.[19℄ V. Palleshi, M.de. Rosa, Numerial solution of the Fokker-Plank equation,II.Multidimensional ase,Phys.Lett. A 163 (1992) 381-391.[20℄ V. Palleshi, F. Sarri, G. Marozzi, M.R. Torquati, Numerial solution of the Fokker-Plank equation:A fast and aurate algorithm, Phys.Lett.A 146 (1990) 378-386.



156 Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156[21℄ H. Risken, The Fokker-Plank equation:Methods of solution and appliation, SpringerVerlag, Berlin, Heidelberg,1989.[22℄ A. Sadighi, D.D. Ganji, Y. Sabzehmeidani, A study on Fokker-Plank equation byvariational iteration method and Homotopy-perturbation method, International Jour-nal of Nonlinear Siene 4 (2007) 92-102.[23℄ M. Tatari, M. Dehghan, M. Razzaghi, Appliation of the Adomian deompositionmethod for the Fokker-Plank equation, Math.Comput.Modelling, 54 (2007) 639-650.[24℄ V. Vanaja, Numerial solution of simple Fokker-Plank equation, Appl.Numer.Math.9 (1992) 533-540.[25℄ A.M. Wazwaz, Constrution of solitary wave solution and rational solutions for theKdV equation by ADM, Chaos,Solution and fratals 12 (2001) 2283-2293.[26℄ A.M. Wazwaz, A �rst ourse in integral equations, WSPC, New Jersey; 1997.[27℄ M.P. Zorzano, H. Mais, L. Vazquez, Numerial solution of two-dimensional Fokker-Plank equations, Appl.Math.Comput. 98 (1999) 109-117.


