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epted 18 July 2011.|||||||||||||||||||||||||||||||-Abstra
tIn this paper, a nonlinear Fokker-Plan
k equation is solved by using the modi�ed Ado-mian de
omposition method (MADM), variational iteration method (VIM) and homotopyanalysis method (HAM). For ea
h method, the approximate solution of this equation is
al
ulated in the form of the series whi
h its 
omponents are 
omputed by a re
ursive rela-tion. In some theorems, the uniqueness of the solution (if it exists) and the 
onvergen
e ofthe proposed methods are proved. Finally, a numeri
al example is solved to demonstratethe a

ura
y of the mentioned methods.Keywords : Fokker-Plan
k equation; Modi�ed Adomian de
omposition method; Variational itera-tion method; Homotopy analysis method.||||||||||||||||||||||||||||||||{1 Introdu
tionFokker-Plan
k equation arises in a number of di�erent �elds in natural s
ien
e, in
lud-ing solid-state physi
s, quantum opti
s, 
hemi
al physi
s, theoreti
al biology and 
ir
uittheory. The Fokker-Plan
k equation was �rst used by Fokker and Plan
k to des
ribe theBrownian motion of parti
les [21℄. This equation has important appli
ations in the variousareas su
h as plasma physi
s, surfa
e physi
s, population dynami
s, biophysi
s, engineer-ing, polymer physi
s and et
 [11, 19, 20, 24, 27℄. In re
ent years, some works have been donein order to �nd the numeri
al solution of this equation by applying the eÆ
ient and pow-erful iterative methods su
h as Adomian de
omposition method (ADM) [23℄,Variationaliteration method (VIM) [7, 22℄ and Homotopy perturbation method (HPM) [1, 6℄. In thiswork, we apply and 
ompare the iterative methods MADM, VIM and HAM to solve thenon-linear Fokker-Plan
k equation as follows:�Email address: Shadan Behzadi�yahoo.
om . 143



144 Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156�u�t = [� ��xk1(x; t; u) + �2�x2k2(x; t; u)℄:u; (1.1)with the initial 
ondition given by:u(x; 0) = f(x); x 2 R;where u(x; t) is unknown. In Eq. (1.1), k2(x; t; u) is 
alled the di�usion and k1(x; t; u) isthe drift 
oeÆ
ient.We 
an write Eq.(1.1) as follows: Ltu = LFP (u); (1.2)where Lt = ��t and LFP = � ��xk1(x; t; u) + �2�x2k2(x; t; u) is the Fokker-Plan
k operatorwith one variable.The 
oeÆ
ients k1 and k2 
an be independent of time, assuming that the inverseoperator L�1t exists and it 
an be taken 
onveniently as the de�nite integral with respe
tto � from 0 to t as follows: L�1t (:) = Z t0 (:)d�:Thus, applying the inverse operator L�1t to both sides of the Eq. (1.2) yieldsL�1t Ltu = L�1t LFP (u)) u(x; t)� u(x; 0) = L�1t LFP (u):Therefore, using the initial 
ondition we haveu(x; t) = f(x) + L�1t LFP (u): (1.3)Now, we de
ompose the unknown fun
tion u(x; t) by sum of 
omponents de�ned by thefollowing de
omposition series with u0 identi�ed as u(x; 0).u(x; t) = 1Xn=0un(x; t): (1.4)The paper is organized as follows. In Se
tion 2, the iterative methods MADM, VIM andHAM are introdu
ed for solving Eq. (1.1). The existen
e and uniqueness of the solutionand 
onvergen
e of the proposed methods are proved in this se
tion, too. Finally, thealgorithm of iterative methods and the numeri
al example is presented in Se
tion 3 to
ompare and to illustrate the a

ura
y of these methods.2 Des
ription of methodsIn Eq. (1.3), we assume f(x) is bounded for all x in J = R. We set,� ��xk1(x; t; u) = k01(x; t; u);�2�x2k2(x; t; u) = k02(x; t; u): (2.5)



Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156 145In the following theorem, we suppose the non-linear terms k01(x; t; u)u and k02(x; t; u)u areLips
hitz 
ontinuous withj k01(x; t; u)u� k01(x; t; z)z j� L0 j u� z j; L0 > 0j k02(x; t; u)u� k02(x; t; z)z j� L00 j u� z j; L00 > 0and � = b (L0 + L00); 0 � x; t � b; b 2 R:Theorem 2.1. Let 0 < � < 1, then non-linear Fokker-Plan
k equation (1.1), has a uniquesolution.Proof: Let u and u� be two di�erent solutions of (1.3) thenj u� u� j = ���R t0 h(k01(x; �; u)u� k01(x; �; u�)u�) + (k02(x; �; u)u � k02(x; �; u�)u�)i d� ���� R t0 hj k01(x; �; u)u � k01(x; �; u�)u� j + j k02(x; �; u)u � k02(x; �; u�)u� ji d�� b (L0 + L00) j u� u� j= � j u� u� j :From whi
h we get (1 � �) j u � u� j� 0. Sin
e 0 < � < 1. then j u � u� j= 0. Impliesu = u� and 
ompletes the proof.2.1 Des
ription of the MADMThe ADM is applied to the following general non-linear equationLu + Ru + Nu = g(x); (2.6)where u is the unknown fun
tion, L is the highest order derivative operators whi
h isassumed to be easily invertible, R is a linear di�erential operator of order less than L;Nurepresents the non-linear terms, and g is the sour
e term. Applying the inverse operatorL�1 to both sides of Eq. (2.6), and using the given 
onditions, we obtainu = f(x)� L�1(Ru)� L�1(Nu); (2.7)where the fun
tion f(x) represents the terms arising from integrating the sour
e termg(x). The non-linear operator Nu = G(u) is de
omposed asG(u) = 1Xn=0An; (2.8)where An; n � 0 are the Adomian polynomials determined formally as follows :An = 1n! [ dnd�n [N( 1Xi=0 �iui)℄℄�=0: (2.9)These polynomials 
an be introdu
ed as [26℄



146 Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156
A0 = G(u0);A1 = u1G0(u0);A2 = u2G0(u0) + 12!u21G00(u0); (2.10)A3 = u3G0(u0) + u1u2G00(u0) + 13!u31G000(u0); :::The standard de
omposition te
hnique represents the solution of u in Eq. (1.3) as thefollowing series, u = 1Xn=0un; (2.11)where, the 
omponents u0; u1; : : : are usually determined re
ursively byu0 = f(x)un+1 = �L�1(Run)� L�1(An); n � 0: (2.12)Substituting Eq. (2.10) into the Eq. (2.12) leads to the determination of the 
omponentsof u. Having determined the 
omponents u0; u1; : : : the solution u in the series formde�ned by Eq. (2.11) follows immediately.The modi�ed de
omposition method was introdu
ed by Wazwaz [26℄. The modi�edform was established based on the assumption that the fun
tion f(x) 
an be divided intotwo parts, namely f1(x) and f2(x). Under this assumption we setf(x) = f1(x) + f2(x): (2.13)A

ordingly, a slight variation was proposed only on the 
omponents u0 and u1. Thesuggestion was that only the part f1 be assigned to the zeroth 
omponent u0, whereasthe remaining part f2 be 
ombined with the other terms given in Eq. (2.12) to de�ne u1.Consequently, the modi�ed re
ursive relationu0 = f1(x);u1 = f2(x)� L�1(Ru0)� L�1(A0); (2.14)...un+1 = �L�1(Run)� L�1(An); n � 1;was developed. Some of the appli
ations of the de
omposition method 
an be found in[2, 3, 8, 16, 25℄.To obtain the approximation solution of Eq. (1.1), a

ording to the MADM, we 
anwrite the iterative formula (2.14) as follows:u0(x; t) = f1(x);u1(x; t) = f2(x) + L�1t (�Lx[N0℄ + Lxx[M0℄);...un+1(x; t) = L�1t (�Lx[Nn℄ + Lxx[Mn℄); n � 1: (2.15)



Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156 147The non-linear expression N(u) = k1(x; t; u)u and M(u) = k2(x; t; u)u by the in�niteseries of the Adomian polynomial are given by:N(u) = P1n=0Nn;M(u) = P1n=0Mn; (2.16)Also, we 
onsider k01(x; t; u)u = P1n=0An;k02(x; t; u)u = P1n=0Bn; (2.17)where Nn, Mn, An and Bn are Adomian polynomials. Also, we 
an write the followingrelations for An and Bn [12℄:nXi=0 Ai = k01(x; t; sn)sn; ; nXi=0 Bi = k02(x; t; sn)sn: (2.18)Theorem 2.2. The series solution u(x; t) = P1i=0 ui(x; t) of problem (1.3) using MADM
onvergen
e when 0 < � < 1 and j u1(x; t) j<1.Proof: Let (C[J ℄; k : k) be the Bana
h spa
e of all 
ontinuous fun
tions on J with thenorm k f(t) k= max j f(t) j, for all t in J and sn and sm be arbitrary partial sums withn � m. We will prove that sn is a Cau
hy sequen
e in this Bana
h spa
e.From Eqs. (2.15) and (2.17), we have,k sn � sm k = max8t2J j sn � sm j= max8t2J ��Pni=m+1 ui(x; t)��= max8t2J ���Pni=m+1 R t0 (Ai�1 + Bi�1)d� ���= max8t2J ���R t0 �(Pni=m+1Ai�1) + (Pni=m+1Bi�1)� d� ��� :From Eq. (2.18), we havePni=m+1Ai�1 = k01(x; t; (sn�1))sn�1 � k01(x; t; (sm�1))sm�1;Pni=m+1Bi�1 = k02(x; t; (sn�1))sn�1 � k02(x; t; (sm�1))sm�1:So, k sn � sm k = max8t2J ���R t0 [(k01(x; �; sn�1)sn�1 � k01(x; �; sm�1)sm�1)+ (k02(x; �; sn�1)sn�1 � k02(x; �; sm�1)sm�1)℄ d� ���� max8t2J R t0 h���(k01(x; �; sn�1)sn�1 � k01(x; �; sm�1)sm�1)���+ ���k02(x; �; sn�1)sn�1 � k02(x; �; sm�1)sm�1���i d�� R t0 (L0 + L00)jsn�1 � sm�1jd�� � k sn�1 � sm�1 k :



148 Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156Let n = m + 1, then k sm+1 � sm k � � k sm � sm�1 k� �2 k sm�1 � sm�2 k...� �m k s1 � s0 k :From the triangular inequality we havek sn � sm k �k sm+1 � sm k + k sm+2 � sm+1 k +:::+ k sn � sn�1 k� [�m + �m+1 + ::: + �n�1℄ k s1 � s0 k� �m[1 + � + �2 + ::: + �n�m�1℄ k s1 � s0 k� �m[1��n�m1�� ℄ k u1(x; t) k :Sin
e 0 < � < 1, we have (1� �n�m) < 1, thenk sn � sm k� �m1� � max8t2J j u1(x; t) j :But j u1(x; t) j< 1 ( sin
e f(x) is bounded), so, as m ! 1, then k sn � sm k! 0. We
on
lude that sn is a Cau
hy sequen
e in C[J ℄, therefore the series is 
onvergen
e and theproof is 
omplete.2.2 Des
ription of the VIMIn the VIM [12, 13, 14, 15℄ and [10℄, we 
onsider the following non-linear di�erentialequation: L(u) + N(u) = g(t); (2.19)where L is a linear operator, N is a non-linear operator and g is the known analyti
alfun
tion. Therefore; u = f(x) � L�1(N(u)) where, f = L�1(g). In this 
ase, a 
orre
tfun
tion 
an be 
onstru
ted as follows:un+1(t) = un(t) + Z t0 �(�)fL(un(�)) + N(un(�))� g(�)gd�; n � 0; (2.20)where � is a general Lagrange multiplier whi
h 
an be identi�ed optimally via variationaltheory. Here the fun
tion un(�) is a restri
ted variations whi
h means Æun = 0. Therefore,we �rst determine the Lagrange multiplier � that will be identi�ed optimally via integra-tion by parts. The su

essive approximation un(t), n � 0 of the solution u(t) will bereadily obtained upon using the obtained Lagrange multiplier and by using any sele
tivefun
tion u0. The zeroth approximation u0 may be sele
ted any fun
tion that just satis�esat least the initial and boundary 
onditions. With determined �, several approximationsun(t), n � 0 follow immediately. Consequently, the exa
t solution may be obtained byusing u(t) = limn!1un(t): (2.21)
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tively, easily and a

urately a large 
lass of non-linear problems with approximations 
onverge rapidly to a

urate solutions.To obtain the approximation solution of Eq. (1.3), a

ording to the VIM, we 
an writeiteration formula (2.20) as follows:un+1(x; t) = un(x; t) + L�1t (�(x)[un(x; t)� f(x)�L�1t (�LxN [un(x; �)℄ + LxxM [un(x; �)℄)℄); (2.22)where N and M are non-linear operators 
orresponding to k1 and k2 respe
tively.To �nd the optimal �(x), we pro
eed as follows:Æun+1(x; t) = Æun(x; t) + ÆL�1t (�(x)[u(x; t)� f(x)�L�1t (�LxN [un(x; �)℄ + LxxM [un(x; �)℄)℄)= Æun(x; t) + �(x)Æun(x; t)� L�1t [Æun(x; �)�0(x)℄: (2.23)From Eq. (2.23), the stationary 
onditions 
an be obtained as follows:�0(x) = 0and 1 + �(x) jx=t= 0:Therefore, the Lagrange multipliers 
an be identi�ed as �(x) = �1 and by substituting inEq. (2.22), the following iteration formula is obtained.u0(x; t) = f(x);un+1(x; t) = un(x; t)� L�1t [un(x; t)� f(x)�L�1t (k01(x; �; un(x; t))un(x; t) + k02(x; �; un(x; t))un(x; t))℄ n � 0: (2.24)Relation (2.24) will enable us to determine the 
omponents un(x; t) re
ursively for n � 0.From Eq. (2.24), when n tends to in�nity, we 
on
lude thatu(x; t) = u(x; t) � L�1t [u(x; t)� f(x)�L�1t (k01(x; �; u(x; t))u(x; t) + k02(x; �; u(x; t))u(x; t))℄: (2.25)In the following theorem, we assume that� = 1� t(1� (L0 + L00)t); t 2 R+ :Theorem 2.3. The series solution u(x; t) = P1i=0 ui(x; t) of problem (1.3) using VIM
onverges when 0 < � < 1.Proof: By subtra
ting both sides of Eq. (2.25) from Eq. (2.24),un+1(x; t)� u(x; t) = un(x; t)� u(x; t)�L�1t hun(x; t)� u(x; t)� L�1t �k01(x; �; un(x; t))un(x; t)�k01(x; �; u(x; t))u(x; t) + k02(x; �; un(x; t))un(x; t)�k02(x; �; u(x; t))u(x; t)�i :



150 Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156If we set, en+1(x; t) = un+1(x; t)� un(x; t)en(x; t) = un(x; t)� u(x; t)j en(x; t�) j= maxt j en(x; t) jthen sin
e en is a de
reasing fun
tion with respe
t to t from the mean value theorem, we
an writeen+1(x; t) = en(x; t) + L�1t [�en(x; t) + L�1t (k01(x; �; un(x; t))un(x; t)�k01(x; �; u(x; t))u(x; t) + k02(x; �; un(x; t))un(x; t) � k02(x; �; u(x; t))u(x; t))℄� en(x; t) + L�1t [�en + L�1t j en(x; t) j (L0 + L00)℄� en(x; t)� ten(x; �) + (L0 + L00)L�1t L�1t j en(x; t) j)� (1� t)en(x; t) + (L0 + L00)t2 j en(x; t�) j� (1� t(1� (L0 + L00)t)) j en(x; t�) j;where 0 � � � t. Hen
e, en+1(x; t) � � j en(x; t�) j :Therefore, ken+1k = max8x;t j en+1(x; t) j� � max8x;t j en(x; t) j= �kenk:Sin
e 0 < � < 1, then kenk ! 0 as n tends to in�nity. So, the series 
onverges and theproof is 
omplete.2.3 Des
ription of the HAMConsider the following non-linear operatorN [u℄ = 0; (2.26)where u(x; t) is unknown fun
tion. Let u0(x; t) denotes an initial guess of the exa
tsolution u, h 6= 0 an auxiliary parameter, H(x; t) 6= 0, an auxiliary fun
tion, and L, anauxiliary non-linear operator with the property L[r(x; t)℄ = 0 when r(x; t) = 0. Then,using q 2 [0; 1℄ as an embedding parameter, we 
onstru
t a homotopy as follows:(1� q)L[�(x; t; q) � u0(x; t)℄ � qhH(x; t)N [�(x; t; q)℄ = Ĥ[�(x; t; q);u0(x; t);H(x; t); h; q℄:(2.27)It should be emphasized that we have great freedom to 
hoose the initial guess u0(x; t),the auxiliary non-linear operator L, the non-zero auxiliary parameter h, and the auxiliaryfun
tion H(x; t) [17, 18, 4, 5, 9℄. Enfor
ing the homotopy (2.27) to be zero, i.e.,Ĥ[�(x; t; q);u0(x; t);H(x; t); h; q℄ = 0; (2.28)we have the so-
alled zero-order deformation equation(1� q)L[�(x; t; q) � u0(x; t)℄ = qhH(x; t)N [�(x; t; q)℄: (2.29)



Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156 151When q = 0, the zero-order deformation Eq. (2.29) be
omes�(x; t; 0) = u0(x; t); (2.30)and when q = 1, sin
e h 6= 0 and H(x; t) 6= 0, the zero-order deformation Eq. (2.29) isequivalent to �(x; t; 1) = u(x; t): (2.31)Thus, a

ording to Eqs. (2.30) and (2.31), as the embedding parameter q in
reases from0 to 1, �(x; t; q) varies 
ontinuously from the initial approximation u0(x; t) to the exa
tsolution u(x; t). Su
h a kind of 
ontinuous variation is 
alled deformation in homotopy.Due to Taylor's theorem, �(x; t; q) 
an be expanded in a power series of q as follows:�(x; t; q) = u0(x; t) + 1Xm=1um(x; t)qm; (2.32)where um(x; t) = 1m! �m�(x; t; q)�qm jq=0 :Let the initial guess u0(x; t), the auxiliary non-linear parameter L, the nonzero auxil-iary parameter h and the auxiliary fun
tion H(x; t) be properly 
hosen so that the powerseries (2.32) of �(x; t; q) 
onverges at q = 1, then, we have under these assumptions thesolution series u(x; t) = �(x; t; 1) = u0(x; t) + 1Xm=1 um(x; t): (2.33)From Eq. (2.32), we 
an write Eq. (2.29) as follows:(1� q)L[�(x; t; q)� u0(x; t)℄ = (1� q)L[P1m=1 um(x; t) qm℄= q h H(x; t)N [�(x; t; q)℄ (2.34)then,  L[ 1Xm=1 um(x; t) qm℄� q L[ 1Xm=1 um(x; t)qm℄ = q h H(x; t)N [�(x; t; q)℄: (2.35)By di�erentiating (2.35) m times with respe
t to q, we obtainfL[P1m=1 um(x; t) qm℄� q L[P1m=1 um(x; t)qm℄g(m) = fq h H(x; t)N [�(x; t; q)℄g(m)= m! L[um(x; t)� um�1(x; t)℄= h H(x; t) m�m�1N [�(x;t;q)℄�qm�1 jq=0 :Therefore, L[um(x; t)� �mum�1(x; t)℄ = hH(x; t)<m(um�1(x; t)); (2.36)where, <m(um�1(x; t)) = 1(m� 1)! �m�1N [�(x; t; q)℄�qm�1 jq=0; (2.37)



152 Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156and �m = � 0; m � 1;1; m > 1:Note that the high-order deformation Eq. (2.36) is governing the non-linear operator L,and the term <m(um�1(x; t)) 
an be expressed simply by (2.37) for any non-linear operatorN . To obtain the approximation solution of Eq. (1.3), a

ording to HAM, letN [u℄ = u(x; t)� f(x)� L�1t (� ��xk1(x; �; u)u + �2�x2k2(x; �; u)u):So, <m(um�1(x; t)) = um�1(x; t)�L�1t (� ��xk1(x; �; um�1)um�1 + �2�x2k2(x; �; um�1)um�1)�(1� �m)f(x): (2.38)Substituting Eq. (2.38) into the Eq. (2.36)L[um(x; t)� �mum�1(x; t)℄ = hH(x; t) �um�1(x; t)� L�1t �� ��xk1(x; �; um�1)um�1+ �2�x2 k2(x; �; um�1)um�1�� (1� �m)f(x)i : (2.39)We take an initial guess u0(x; t) = f(x), an auxiliary non-linear operator Lu = u,a nonzero auxiliary parameter h = �1, and auxiliary fun
tion H(x; t) = 1. This issubstituted into the Eq. (2.39) to give the re
urren
e relation:u0(x; t) = f(x);um(x; t) = L�1t (� ��xk1(x; �; um�1)um�1 + �2�x2 k2(x; �; um�1)um�1); m � 1: (2.40)Let u(x; t) = 1Xm=0 um(x; t); limm!1um(x; t) = 0: (2.41)If j um(x; t) j< 1 (2.42)then, the series solution (2.41) 
onvergen
e uniformly.Theorem 2.4. If the series solution (2.41) of problem (1.3) using HAM is 
onvergentthen it 
onverges to the exa
t solution of the problem (1.3).Proof: We 
an write,nXm=1[um(x; t)� �mum�1(x; t)℄ = u1 + (u2 � u1) + ::: + (un � un�1) = un(x; t): (2.43)Hen
e, limn!1un(x; t) = 0: (2.44)



Sh. Sadigh Behzadi = IJIM Vol. 3, No. 3 (2011) 143-156 153So, using Eq. (2.44) and the de�nition of the non-linear operator L, we have1Xm=1L[um(x; t)� �mum�1(x; t)℄ = L[ 1Xm=1[um(x; t)� �mum�1(x; t)℄℄ = 0:Therefore from Eq. (2.36), we 
an obtain that,1Xm=1L[um(x; t)� �mum�1(x; t)℄ = hH(x; t) 1Xm=1<m�1(ym�1(x; t)) = 0:Sin
e h 6= 0 and H(x; t) 6= 0 , we have1Xm=1<m�1(ym�1(x; t)) = 0: (2.45)By substituting <m�1(ym�1(x; t)) into the relation (2.45) and simplifying it, we 
on
ludethatP1m=1 <m�1(ym�1(x; t)) = P1m=1 [um�1(x; t)�L�1t (� ��xk1(x; �; um�1)um�1 + �2�x2 k2(x; �; um�1)um�1)� (1� �m)f(x)℄= u(x; t)� f(x)� L�1t [� ��x P1m=1 k1(x; �; um�1)um�1+ �2�x2 P1m=1 k2(x; �; um�1)um�1℄:(2.46)From Eqs. (2.45) and (2.46), we haveu(x; t) = f(x) + L�1t (� ��xk1(x; �; u)u + �2�x2 k2(x; �; u)u);therefore, u(x; t) must be the exa
t solution of Eq. (1.3).3 Numeri
al exampleIn this se
tion, we 
ompute a numeri
al example whi
h is solved by the MADM, VIM andHAM. The programs have been provided with Mathemati
a 6 a

ording to the followingalgorithm. In this algorithm, " is a given positive value.Algorithm:Step 1. Set n 0.Step 2. Cal
ulate the re
ursive relation (2.24) for VIM, (2.15) for MADM or (2.40)for HAM,Step 3. If j un+1 � un j< " then go to step 4, else n n + 1 and go to step 2,Step 4. Print u(x; t) = Pni=0 ui(x; t) as the approximate of the exa
t solution.Example 3.1. We 
onsider the following non-linear Fokker-Plan
k equation:k1(x; t; u) = xu
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t solution u(x; t) = xe�t, " = 10�2 and � = 0:025317.Table 1Numeri
al results of Example (3.1)x = 0:01t Error(HAM, n=3) Error(VIM,n=4) Error(MADM,n=6)0.05 3:28868 � 10�2 1:89901 � 10�3 3:53043 � 10�20.06 3:49605 � 10�2 1:8771 � 10�3 3:84109 � 10�20.07 3:52263 � 10�2 1:85837 � 10�3 3:98804 � 10�20.08 3:3554 � 10�2 1:83798 � 10�3 3:95778 � 10�20.09 2:98136 � 10�2 1:81753 � 10�3 3:73678 � 10�20.1 2:38754 � 10�2 1:79701 � 10�3 3:31154 � 10�2Table 1 shows that approximate solution of the non-linear Fokker-Plan
k equation is
onvergent with 3 iterations by using the HAM. By 
omparing the results of Table 1, we
an observe that the HAM is more rapid 
onvergen
e than the MADM and VIM.4 Con
lusionIn this paper, the iterative methods have been su

essfully employed to obtain the approx-imate solution of the non-linear Fokker-Plan
k equation. For this purpose, we applied theMADM, VIM and HAM and we proved the 
onveren
y of these methods. Also, we pre-sented that the HAM was more rapid 
onvergen
e than the MADM and VIM by solvinga numeri
al example. These methods may be used to solve the nonlinear Fokker-Plan
kequation in the form of [23℄�u�t = [� NXi=1 ��xiki(x; t; u) + NXi;j=1 �2�xi�xj ki;j(x; t; u)℄u;where x = (x1; x2; : : : ; xN ). For further resear
h, one 
an apply the homotopy perturbationmethod or modi�ed form of this method to solve the Fokker-Plan
k equation and 
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