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Abstract

In this paper, a nonlinear Fokker-Planck equation is solved by using the modified Ado-
mian decomposition method (MADM), variational iteration method (VIM) and homotopy
analysis method (HAM). For each method, the approximate solution of this equation is
calculated in the form of the series which its components are computed by a recursive rela-
tion. In some theorems, the uniqueness of the solution (if it exists) and the convergence of
the proposed methods are proved. Finally, a numerical example is solved to demonstrate
the accuracy of the mentioned methods.

Keywords : Fokker-Planck equation; Modified Adomian decomposition method; Variational itera-
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1 Introduction

Fokker-Planck equation arises in a number of different fields in natural science, includ-
ing solid-state physics, quantum optics, chemical physics, theoretical biology and circuit
theory. The Fokker-Planck equation was first used by Fokker and Planck to describe the
Brownian motion of particles [21]. This equation has important applications in the various
areas such as plasma physics, surface physics, population dynamics, biophysics, engineer-
ing, polymer physics and etc [11, 19, 20, 24, 27]. In recent years, some works have been done
in order to find the numerical solution of this equation by applying the efficient and pow-
erful iterative methods such as Adomian decomposition method (ADM) [23],Variational
iteration method (VIM) [7, 22] and Homotopy perturbation method (HPM) [1, 6]. In this
work, we apply and compare the iterative methods MADM, VIM and HAM to solve the
non-linear Fokker-Planck equation as follows:
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ou 0 0?2
Frie [—a—xkl(fﬂ,t,u) to2

with the initial condition given by:

ko(z,t,u)].u, (L.1)

u(z,0) = f(z), z€R

where u(z,t) is unknown. In Eq. (1.1), ko(z,t,u) is called the diffusion and ky(z,t,u) is
the drift coefficient.
We can write Eq.(1.1) as follows:

Lyu = Lpp(u), (1.2)

where L; = % and Lpp = —a%kl (x,t,u) + ;—;lcg(x,t,u) is the Fokker-Planck operator
with one variable.

The coefficients k; and ko can be independent of time, assuming that the inverse
operator L; ! exists and it can be taken conveniently as the definite integral with respect
to 7 from 0 to ¢ as follows:

() :/0 ()dr.

Thus, applying the inverse operator L; ! to both sides of the Eq. (1.2) yields
Ly 'Ly = L; ' Lpp(u) = u(z,t) — u(z,0) = L; ' Lpp(u).
Therefore, using the initial condition we have
u(z,t) = f(z) + L; "Lpp(u). (1.3)

Now, we decompose the unknown function u(z,t) by sum of components defined by the
following decomposition series with ug identified as u(z,0).

u(z,t) = Zun(x,t). (1.4)
n=0

The paper is organized as follows. In Section 2, the iterative methods MADM, VIM and
HAM are introduced for solving Eq. (1.1). The existence and uniqueness of the solution
and convergence of the proposed methods are proved in this section, too. Finally, the
algorithm of iterative methods and the numerical example is presented in Section 3 to
compare and to illustrate the accuracy of these methods.

2 Description of methods
In Eq. (1.3), we assume f(z) is bounded for all z in J = R. We set,
—a%kl(x,t,u) :kll(x,t,u),

- , (2.5)
sozka(r,tu) = ky(r,t,u).
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In the following theorem, we suppose the non-linear terms kll (z,t,u)u and k;(x, t,u)u are
Lipschitz continuous with

| ky(z,t,w)u — ky(z,6,2)2 |< L Ju—2z|, L >0
| k(2 t,u)u — ky(x,t,2)2 |< L' |u—2z|, L' >0

and
a=b(L +L), 0<z,t<b be R

Theorem 2.1. Let 0 < « < 1, then non-linear Fokker-Planck equation (1.1), has a unique
solution.

Proof: Let u and u* be two different solutions of (1.3) then

|u—u*| = ‘fg [(kll (z, 7, u)u — k’l (z, 7, u™)u*) + (k;(a:, T, u)u — k;(a:, T, u*)u*)} dr‘
< f(f [| ky(x, 7 u)u — Ky (2, 7, u*)u® | + | ky(z, 7, w)u — Ey(z, 7, u*)u* |} dr
<H(L+1") Ju—u |
=a|lu—u|.

From which we get (1 —«) | v —u* |[< 0. Since 0 < @ < 1. then | u — u* |= 0. Implies
u = u* and completes the proof.

2.1 Description of the MADM
The ADM is applied to the following general non-linear equation
Lu+ Ru+ Nu = g(x), (2.6)

where wu is the unknown function, L is the highest order derivative operators which is
assumed to be easily invertible, R is a linear differential operator of order less than L, Nu
represents the non-linear terms, and g is the source term. Applying the inverse operator
L~ to both sides of Eq. (2.6), and using the given conditions, we obtain

u= f(z) — L Y(Ru) — L™Y(Nu), (2.7)

where the function f(z) represents the terms arising from integrating the source term
g(z). The non-linear operator Nu = G(u) is decomposed as

Gu) =) Ay, (2.8)
n=0

where A,, n > 0 are the Adomian polynomials determined formally as follows :

0 = LIV Mo 2.9
=0

These polynomials can be introduced as [26]
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AO = G(“O)a
A1 = ulG'(uo),
1
Ay = UQGI(U()) + EU%G”(UO)’ (2.10)

1
As = u3G' (ug) + uiusG" (ug) + gU%G"'(Uo),

The standard decomposition technique represents the solution of u in Eq. (1.3) as the
following series,

(0]
u= ", (2.11)
n=0

where, the components g, u1,... are usually determined recursively by
up = f(z)
U1 = —L Y (Ruy) — L™ Y(A,), n>0. (2.12)

Substituting Eq. (2.10) into the Eq. (2.12) leads to the determination of the components
of u. Having determined the components wg,u1,... the solution u in the series form
defined by Eq. (2.11) follows immediately.

The modified decomposition method was introduced by Wazwaz [26]. The modified
form was established based on the assumption that the function f(z) can be divided into
two parts, namely fi(z) and fo(z). Under this assumption we set

f(x) = fi(z) + fa(z). (2.13)

Accordingly, a slight variation was proposed only on the components uy and u;. The
suggestion was that only the part f; be assigned to the zeroth component wgy, whereas
the remaining part fys be combined with the other terms given in Eq. (2.12) to define u;.
Consequently, the modified recursive relation

up = f1(=),
uy = fa(z) — L7 (Rug) — L™ (Ay), (2.14)

U1 = —L7 Y (Ru,) — L7Y(A,), n>1,

was developed. Some of the applications of the decomposition method can be found in
2,3, 8, 16, 25].

To obtain the approximation solution of Eq. (1.1), according to the MADM, we can
write the iterative formula (2.14) as follows:

uo(z,t) = f1(z),
w(e0) = fo(o) + Ly (= Lo [No] + Laa[Mo)), (2.15)

Uni1(2,t) = Ly (= Lg[Np] + Lyx[My]), n > 1.
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The non-linear expression N(u) = ki(z,t,u)u and M (u) = ko(z,t,u)u by the infinite
series of the Adomian polynomial are given by:

N(u) = 27010:0 N, (2 16)
M(u) = 3020 Mn,

Also, we consider
k‘,l (I, ta u)u = Z?),O:[) ATL?
k;(x,t,u)u = 27010:0 B,

where N,,, M,,, A,, and B,, are Adomian polynomials. Also, we can write the following
relations for A4, and B, [12]:

(2.17)

Z A = kll(xata Sn)Sns Z B = k;(xvtv Sn)Sn. (2.18)
=0 =0

Theorem 2.2. The series solution u(z,t) =Y .oy ui(z,t) of problem (1.3) using MADM
convergence when 0 < a < 1 and | uy(z,t) |< oo.

Proof: Let (C[J],] . ||) be the Banach space of all continuous functions on J with the
norm || f(¢) ||= maz | f(¢) |, for all ¢ in J and s, and s, be arbitrary partial sums with
n > m. We will prove that s, is a Cauchy sequence in this Banach space.

From Egs. (2.15) and (2.17), we have,

| $n—8m || = mazyics | $Sn — Sm |
= matvicy |y iy Uiz, )]
= mazares | S Jy (At + Bio1)dr|
= mazvies |y (Sl A1)+ (Sl Bi1)] d]
From Eq. (2.18), we have
E?:m—l—l Aior = kll (7,2, (5n-1))sn—1— kll (7,1, (Sm-1))sm—1,

er‘l:erl Bi_1 = k;(a:, ty(Sn—1))Sn—1 — k;(x, t, (Sm—1))Sm—1-
So,

lsn = s | = mazvies |fyT0k @, 7501501 = Ky @7 5001 3-1)
+ (k;(I,T, Sp—1)Sn—1 — k;(a:,T, Sm—1)Sm—1)] dT‘
< mazyies f[f H(kll(x,r, Sp—1)Sn—1 — kll(x,r, sm_l)sm_l)‘
+ ‘k;(l‘,T, Sp—1)8n—1 — k;(!L‘,T, sm_l)sm_lu dr

< UL 4 L")|spo1 — Smei|dr

<al sp-1—8m-1] -



148 Sh. Sadigh Behzadi | IJIM Vol. 3, No. 3 (2011) 1/3-156

Let n =m + 1, then

| sm+1—sm || < sm—sm-1l

< O(2 || Sm—1 — Sm—2 H

<a™ [l si—=sol .
From the triangular inequality we have
| sn—sm | <[l smt1 —sm | + | sSmt2 — sm1 | +-c4 || 50— sn—1 |
<la™+a™t a1 st —so |
<a™l+a+a?+...+am ™| sp —so |

m

< "  w(y) | -

Since 0 < @ < 1, we have (1 —a"™™) < 1, then

am
| sn — sm |I< =g Matvies | uy(z,t) | .

But | uq(z,t) |< oo ( since f(x) is bounded), so, as m — oo, then || s, — s, [|[— 0. We
conclude that s, is a Cauchy sequence in C[J], therefore the series is convergence and the
proof is complete.

2.2 Description of the VIM

In the VIM [12, 13, 14, 15] and [10], we consider the following non-linear differential
equation:
L(u) + N(u) = g(t), (2.19)

where L is a linear operator, N is a non-linear operator and ¢ is the known analytical
function. Therefore; u = f(z) — L~ '(N(u)) where, f = L~ '(g). In this case, a correct
function can be constructed as follows:

Unt1(t) = up(t) +/0 AT {L(un (7)) + N(up(7)) — g(7)}dr, n >0, (2.20)

where A is a general Lagrange multiplier which can be identified optimally via variational
theory. Here the function u,(7) is a restricted variations which means du,, = 0. Therefore,
we first determine the Lagrange multiplier A that will be identified optimally via integra-
tion by parts. The successive approximation wu,(t), n > 0 of the solution u(¢) will be
readily obtained upon using the obtained Lagrange multiplier and by using any selective
function uy. The zeroth approximation ug may be selected any function that just satisfies
at least the initial and boundary conditions. With determined A, several approximations
un(t), n > 0 follow immediately. Consequently, the exact solution may be obtained by
using

u(t) = lHm uy(¢). (2.21)

n—o0
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The VIM has been shown to solve effectively, easily and accurately a large class of non-
linear problems with approximations converge rapidly to accurate solutions.

To obtain the approximation solution of Eq. (1.3), according to the VIM, we can write
iteration formula (2.20) as follows:

Un41(2,8) = un(,t) + Ly (A(@)[un (2, ) — f(z)

(2.22)
—L;l(—LmN[un(a:, 7)) + LoaMun(z, 7)])]),
where N and M are non-linear operators corresponding to ki and ko respectively.
To find the optimal A(x), we proceed as follows:
Ount1(z,) = Sup(z,t) + OL; (M) [u(z,t) — f ()
_L;l(_LIN[“n (2, 7)] + Loa Mun(z, 7)])]) (2.23)

= dun (2, 1) + M) 0up (z,t) — Ly [0un (z, 7)\ (z)].
From Eq. (2.23), the stationary conditions can be obtained as follows:

A(z)=0

and
1+ A(z) |z=¢= 0.

Therefore, the Lagrange multipliers can be identified as A(z) = —1 and by substituting in
Eq. (2.22), the following iteration formula is obtained.

up(z,t) = f(z),
Uns1(2,8) = un(z,t) — L7 un(z,1) — f(z) (2.24)
— LYK (2,7, (2, 8) Yum (2, 1) + Ky (2, 7y un (2, 8) un (,1))] 1 > 0.
Relation (2.24) will enable us to determine the components uy,(z,t) recursively for n > 0.
From Eq. (2.24), when n tends to infinity, we conclude that
u(z,t) = u(e,t) — Ly [u(z,t) - f(z)
, , (2.25)
— Ly (ky (, 7y ule, 1)ule, 8) + ko (2, 7, ul, 1)u(z, )],
In the following theorem, we assume that
B=1-t(1— (L' +L"), teR".

Theorem 2.3. The series solution u(z,t) = > .2 ui(z,t) of problem (1.8) using VIM
converges when 0 < B < 1.

Proof: By subtracting both sides of Eq. (2.25) from Eq. (2.24),

Unt1(z,t) —u(z,t) = up(z,t) —u(z,t)
—L;l [un(x,t) —u(z,t) — L;l (k‘,l(I,T, U (2, 1)) up (z,t)
—kll (z, 7 u(z,t)u(z, t) + k;(x, T, Up (2, ) )upy (2, 1)

—k;(x,T,u(x,t))u(x,t))} .
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If we set,
en+1(2,t) = unt1(z,t) — un(z,t)

en(z,t) = up(z,t) —u(z,t)
| en(z,t*) |= maxy | e, (z,1) |

then since e, is a decreasing function with respect to ¢ from the mean value theorem, we
can write

eni1(z,t) = en(z,t) + L; H—en(x,t) + Ly (K (2,7, un (5, 1) )y (, 1)
—ky (z, Ty, )z, t) + Ey(z, 7y g (2, 1) Jun (2, 1) — ky(z, 7, u(z, t))u(z, t))]
<en(z,t) + L [—en + L' | en(z,t) | (L' + L")
< en(,t) = te(2,n) + (L' + L)L L [ en(a,t) |)
< (1 —t)en(z,t) + (L' + LY | ez, t*) |
< (1 —t(1 = (L' + L") | en(w,t*) |,

where 0 < n <t. Hence, e,q1(z,t) < 5| en(z,t*)|.
Therefore,
lentall = mazyey | enyr(z,) |

< B mazyyy | en(z,1) |

= Bllenl-

Since 0 < 8 < 1, then ||ey|| = 0 as n tends to infinity. So, the series converges and the
proof is complete.

2.3 Description of the HAM

Consider the following non-linear operator
Nlu] =0, (2.26)

where u(z,t) is unknown function. Let wg(z,t) denotes an initial guess of the exact
solution u, h # 0 an auxiliary parameter, H(z,t) # 0, an auxiliary function, and L, an
auxiliary non-linear operator with the property L[r(z,t)] = 0 when r(z,¢t) = 0. Then,
using g € [0, 1] as an embedding parameter, we construct a homotopy as follows:

(1 - Q)L[¢($a £ Q) - ’LL[)(,Q?, t)] - qhH(IE, t)N[¢(I, £ Q)] = H[¢(I, £ Q); Uo (I, t)a H(I, t)a ha Q]-

(2.27)
It should be emphasized that we have great freedom to choose the initial guess ug(z, 1),
the auxiliary non-linear operator L, the non-zero auxiliary parameter h, and the auxiliary
function H (z,t) [17, 18, 4, 5, 9]. Enforcing the homotopy (2.27) to be zero, i.e.,

H(p(z,t;q);uo(w, 1), H(z,t),h,q] =0, (2.28)

we have the so-called zero-order deformation equation

(1 —q)L[$(x,t; q) — uo(z,1)] = ghH (z,t) N{p(x, t; )] (2.29)
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When g = 0, the zero-order deformation Eq. (2.29) becomes
¢(I,t; 0) = U’O(xat)a (230)

and when ¢ = 1, since h # 0 and H(z,t) # 0, the zero-order deformation Eq. (2.29) is
equivalent to
oz, t; 1) = u(z,t). (2.31)

Thus, according to Egs. (2.30) and (2.31), as the embedding parameter ¢ increases from

0 to 1, ¢(z,t;q) varies continuously from the initial approximation ug(z,t) to the exact

solution u(z,t). Such a kind of continuous variation is called deformation in homotopy.
Due to Taylor’s theorem, ¢(z,t;q) can be expanded in a power series of ¢ as follows:

oo

$(@,t:9) = uolz,0) + 3 um(z, £)q™, (2:32)
m=1
where L om(e.t:q)
"zt q

Let the initial guess ug(z,t), the auxiliary non-linear parameter L, the nonzero auxil-
iary parameter h and the auxiliary function H(z,t) be properly chosen so that the power
series (2.32) of ¢(z,t;q) converges at ¢ = 1, then, we have under these assumptions the

solution series
o0

u(z,t) = p(a,t;1) = ug(z,t) + 3 um(,1). (2.33)

m=1

From Eq. (2.32), we can write Eq. (2.29) as follows:

(1 —q)L{g(z,t;9) —uo(z,t)] = (1 —q) L[> 50— um(z,t) ¢™]
=q h H(z,t)N[¢p(z,t;q)]

(2.34)

then,
LY tm(@,t) ¢" —q LY um(z,t)q™] = q h H(z,t)N[p(z, t; q)]. (2.35)
m=1 m=1

By differentiating (2.35) m times with respect to ¢, we obtain

{LI ey um(@, 1) @™ = a L0y um(z, )™} = {q h H(z,t)N[g(z, t;q)]}™

=m! Lupy(x,t) — upm-1(z,1)]

m—1 .
—h He,t) m2 sl

Therefore,
L[um(x, t) — XmUm-—1 (I, t)] = hH(IE, t)%m (umfl (I, t))a (236)

where,

1 9™ 'Ng(z,t;q)]

R (um—1(z,1)) = (m —1)! g1

lg=0, (2.37)
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and

_J 0, m<1,
Xm =11, m>1

Note that the high-order deformation Eq. (2.36) is governing the non-linear operator L,
and the term R, (up,—1(x, t)) can be expressed simply by (2.37) for any non-linear operator
N.

To obtain the approximation solution of Eq. (1.3), according to HAM, let

Nlu) = u(z,t) — f(2) — Ly H(— 2 ki (z, 7, u)u + Lok (2, 7, u)u).
So,
R (um—1(z,t)) = um—1(z,t)
—Lt_l(—a%kl (T, Ty Up—1 ) Um—1 + g—;kg(x, Ty Um—1)Um—1) (2.38)
—(1 = xm) f(2).
Substituting Eq. (2.38) into the Eq. (2.36)
L{uy (2, t) — Xmum-1(z,t)] = hH(z,t) [um,l(x,t) — L;l (_a%kl (T, Ty U —1 ) Um—1

—|—5a—;k2(x, T, um_1)Um—1> - (1- Xm)f(x)} .

(2.39)
We take an initial guess ug(z,t) = f(z), an auxiliary non-linear operator Lu = u,
a nonzero auxiliary parameter h = —1, and auxiliary function H(z,t) = 1. This is
substituted into the Eq. (2.39) to give the recurrence relation:
uo(z,t) = f(z),
(2.40)
— 2
U (z,t) = L 1(—8%k1(x,7, Um—1)Um—1 + %kQ(IL‘,T, Um—1)Um—1), m > 1.
Let
o0
u(z,t) = Z Um (z, 1), n}gnoo Um(z,t) = 0. (2.41)
m=0
If
| um(z,1) |< 1 (2.42)

then, the series solution (2.41) convergence uniformly.

Theorem 2.4. If the series solution (2.41) of problem (1.3) using HAM is convergent
then it converges to the exact solution of the problem (1.3).
Proof: We can write,

n

Z [Um (2, 1) — XmUm—1(z,t)] = w1 + (ug — u1) + oo + (U — Up—1) = up(z,t). (2.43)

m=1

Hence,
lim wuy(z,t) = 0. (2.44)
n—o0
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So, using Eq. (2.44) and the definition of the non-linear operator L, we have

(0] (0]
ZLumxt — XmUm—1(z,t)] =L Zumxt) XmUm—1(z,t)]] = 0.

Therefore from Eq. (2.36), we can obtain that,

Z L[um(xat) - Xmumfl(xat)] = hH(:E,t) Z §Rmfl(ymfl(ﬂjat)) = 0.

m=1 m=1

Since h # 0 and H(x,t) # 0 , we have

> R 1(Ym-1(z, 1) =0. (2.45)

m=1

By substituting R,,,—1 (ym—1(z,t)) into the relation (2.45) and simplifying it, we conclude
that

>t Rt (Ym—1(2,8)) =0 [um—1 (2, )
L7 (= 2k (2, 7y et YUmet Lk (2, T, U1 U1 )
— (L= xm)f(2)]
u(z,t) = f(@) = Ly [~ g5 ooy k1.(2, 7, 1) um—1

+8:v2 Em 1k2(x T, Um— l)um 1]
(2.46)
From Egs. (2.45) and (2.46), we have

u(x,t) :f( )+L ( oz kl(x T, U )u+3a_;k2(xa7-vu)u)a

therefore, u(z,t) must be the exact solution of Eq. (1.3).

3 Numerical example

In this section, we compute a numerical example which is solved by the MADM, VIM and
HAM. The programs have been provided with Mathematica 6 according to the following
algorithm. In this algorithm, € is a given positive value.

Algorithm:

Step 1. Set n < 0.

Step 2. Calculate the recursive relation (2.24) for VIM, (2.15) for MADM or (2.40)
for HAM,

Step 3. If | up41 — up, |< € then go to step 4, else n < n + 1 and go to step 2,

Step 4. Print u(z,t) =Y ;" ui(z,t) as the approximate of the exact solution.

Example 3.1. We consider the following non-linear Fokker-Planck equation:

kl(fE,t,U) = E
u
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ko(z,t,u) = €”
flz) =z +e™,
with ezact solution u(w,t) = re~!, ¢ = 1072 and a = 0.025317.

Table 1
Numerical results of Ezample (3.1)
z =0.01 |
t Error(HAM, n=3) Error(VIM,n=4) Error(MADM,n=6)

0.05 3.28868 x 1072 1.89901 x 10~3 3.53043 x 102
0.06 3.49605 x 1072 1.8771 x 1073 3.84109 x 1072
0.07 3.52263 x 1072 1.85837 x 1073 3.98804 x 1072
0.08 3.3554 x 1072 1.83798 x 1073 3.95778 x 1072
0.09 2.98136 x 102 1.81753 x 1073 3.73678 x 1072
0.1 2.38754 x 1072 1.79701 x 1073 3.31154 x 1072

Table 1 shows that approximate solution of the non-linear Fokker-Planck equation is
convergent with 3 iterations by using the HAM. By comparing the results of Table 1, we
can observe that the HAM is more rapid convergence than the MADM and VIM.

4  Conclusion

In this paper, the iterative methods have been successfully employed to obtain the approx-
imate solution of the non-linear Fokker-Planck equation. For this purpose, we applied the
MADM, VIM and HAM and we proved the converency of these methods. Also, we pre-
sented that the HAM was more rapid convergence than the MADM and VIM by solving
a numerical example. These methods may be used to solve the nonlinear Fokker-Planck
equation in the form of [23]

ou N 9 N 82
&=l ; 8—%ki(x,t,u) + Z mki,j(aﬁ,t,w]u,

ij=1 J

where z = (1, x9,...,2zyN). For further research, one can apply the homotopy perturbation
method or modified form of this method to solve the Fokker-Planck equation and compare
the results with the mentioned iterative methods.
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