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Abstract
In this work, the Taylor polynomial approximation for the solution of fuzzy Fredholm
integro-difference equations with mixed argument and variable coefficients under the con-
ditions is proposed. To do this, a Taylor matrix method is introduced. In this method,
the truncated Taylor expansions of the functions are taken in the fuzzy Fredholm integro-
difference equation and then their matrix forms is substituted into the mentioned equation.
Hence by solving the matrix equation, unknown fuzzy Taylor coefficient can be found. Fi-
nally, the proposed method is illustrated by solving an example.
Keywords : Taylor polynomial; Fuzzy Fredholm equation; Fuzzy difference equations; Fuzzy poly-

nomial approximation

————————————————————————————————–

1 Introduction

The fuzzy integral equation method is used for solving many problems in mathemati-
cal physics and engineering. This problems are often reduced to fuzzy integro-difference
equations. Taylor approach to solve linear differential, integral and integro-differential
equations have been presented in many papers [6, 8]. But this article presents the Taylor
approach for approximation of the solution of the fuzzy Fredholm integro-difference equa-
tion with mixed argument. In this paper, operational matrix of Taylor polynomial is used
and the fuzzy Fredholm integro-difference equation is reduced to the fuzzy linear system
of algebric equations by it that can be solved directly.
The concept of fuzzy numbers and arithmetic operations with these numbers were first in-
troduced and investigated by Zadeh [11] and, etc. Consequently, the fuzzy integral which
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is the same as that of Dubois and Prade in [3]. Park et al. in [7] have considered the
existence of solution of fuzzy integral equation in Banach space and Subrahmaniam and
Sudarsanam in [10] have proved the existence of solution of fuzzy functional equations.
This paper is organized as follows:
In Section 2, the basic concept of fuzzy number operation is brought. In Section 3, the
main section of the paper, Fuzzy Difference and Fredholm Integro-Difference Equation is
introduced and in Section 4, Taylor matrix method is discussed in details and the proposed
idea is illustrated by some examples. Finally conclusion is drawn in Section 5.

2 Preliminaries

There are various definitions for the concept of fuzzy numbers ([3, 5]).

Definition 2.1. An arbitrary fuzzy number u in the parametric form is represented by an
ordered pair of functions (u−r , u

+
r ) which satisfy the following requirements:

1. u−r is a bounded left-continuous non-decreasing function over [0, 1].

2. u+r is a bounded left-continuous non-increasing function over [0, 1].

3. u−r ≤ u+r , 0 ≤ r ≤ 1.

Definition 2.2. Let E be a set of all fuzzy numbers, we say that f(x) is a fuzzy valued
function if f : ℜ → E.

We use the Hausdorff distance between fuzzy numbers. This fuzzy number space as
shown in [2] can be embedded into Banach space B = c[0, 1]× c[0, 1] where the metric is
usually defined as follows: Let E be the set of all upper semicontinuous normal convex
fuzzy numbers with bounded r−level sets. Since the r−cuts of fuzzy numbers are always
closed and bounded, the intervals are written as u[r] = [u(r), u(r)], for all r. We denote
by ω the set of all nonempty compact subsets of R and by ωc the subsets of ω consisting
of nonempty convex compact sets. Recall that

ρ(x,A) = min
a∈A

∥x− a∥

is the distance of a point x ∈ R from A ∈ ω and the Hausdorff separation ρ(A,B) of
A,B ∈ ω is defined as

ρ(A,B) = max
a∈A

ρ(a,B).

Note that the notation is consistent, since ρ(a,B) = ρ({a}, B). Now, ρ is not a metric. In
fact, ρ(A,B) = 0 if and only if A ⊆ B. The Hausdorff metric dH on ω is defined by

dH(A,B) = max{ρ(A,B), ρ(B,A)}.

The metric d∞ is defined on E as

d∞(u, v) = sup{dH(u[r], v[r]) : 0 ≤ r ≤ 1}, u, v ∈ E.

for arbitrary (u, v) ∈ c[0, 1] × c[0, 1]. The following properties are well-known. (see e.g.
[5, 9])
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(i) d∞(u+ w, v + w) = d∞(u, v), ∀u, v, w ∈ E,

(ii) d∞(k.u, k.v) = |k|d∞(u, v), ∀k ∈ R, u, v ∈ E,

(iii) d∞(u+ v, w + e) ≤ d∞(u,w) + d∞(v, e), ∀u, v, w, e ∈ E,

(iv) d∞(u, v) = d∞(v, u), ∀u, v ∈ E,

Theorem 2.1. , [9].

(i) If we define 0̃ = χ0, then 0̃ ∈ E is a neutral element with respect to addition, i.e.
u+ 0̃ = 0̃ + u = u, for all u ∈ E.

(ii) With respect to 0̃, none of u ∈ E \R, has opposite in E.

(iii) For any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0 and any u ∈ E, we have (a+b).u = a.u+b.u;
however, this relation dose not necessarily hold for any a, b ∈ R, in general.

(iv) For any λ ∈ R and any u, v ∈ E, we have λ.(u+ v) = λ.u+ λ.v;

(v) For any λ, µ ∈ R and any u ∈ E, we have λ.(µ.u) = (λ.µ).u.

Definition 2.3. Consider x, y ∈ E. If there exists z ∈ E such that x = y + z, then z is
called the H-difference of x and y and it is denoted by x⊖ y.

In this paper, the sign ”⊖” always stands for H-difference and note that x⊖ y ̸= x+(−y).
Let us recall the definition of strongly generalized differentiability introduced in [2].

Lemma 2.1. ,[2]. Let u, v ∈ E be such that u(1) − u(0) > 0, u(0) − u(1) > 0 and
len(v) = (v(0)−v(0)) ≤ min{u(1)−u(0), u(0)−u(1)}. Then the H-difference u⊖v exists.

Definition 2.4. ,[1]. Let f : (a, b) × E → E and x0 ∈ (a, b). We Define the nth-
order differential of f as follow: We say that f is strongly generalized differentiable of the
nth−order at x0. If there exists an element f (s)(x0) ∈ E, ∀s = 1, . . . , n, such that

(i) for all h > 0 sufficiently small,

∃f (s−1)(x0 + h)⊖ f (s−1)(x0), ∃f (s−1)(x0)⊖ f (s−1)(x0 − h)

and the limits(in the metric d∞)

lim
h↘0

f (s−1)(x0 + h)⊖ f (s−1)(x0)

h
= lim

h↘0

f (s−1)(x0)⊖ f (s−1)(x0 − h)

h
= f (s)(x0)

or

(ii) for all h > 0 sufficiently small,

∃f (s−1)(x0)⊖ f (s−1)(x0 + h), ∃f (s−1)(x0 − h)⊖ f (s−1)(x0)

and the limits(in the metric d∞)

lim
h↘0

f (s−1)(x0)⊖ f (s−1)(x0 + h)

−h
= lim

h↘0

f (s−1)(x0 − h)⊖ f(x0)

−h
= f (s)(x0)

or
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(iii) for all h > 0 sufficiently small,

∃f (s−1)(x0 + h)⊖ f (s−1)(x0), ∃f (s−1)(x0 − h)⊖ f (s−1)(x0)

and the limits(in the metric d∞)

lim
h↘0

f (s−1)(x0 + h)⊖ f (s−1)(x0)

h
= lim

h↘0

f (s−1)(x0 − h)⊖ f (s−1)(x0)

−h
= f (s)(x0)

or

(iv) for all h > 0 sufficiently small,

∃f (s−1)(x0)⊖ f (s−1)(x0 + h), ∃f (s−1)(x0)⊖ f (s−1)(x0 − h)

and the limits(in the metric d∞)

lim
h↘0

f (s−1)(x0)⊖ f (s−1)(x0 + h)

−h
= lim

h↘0

f (s−1)(x0)⊖ f (s−1)(x0 − h)

h
= f (s)(x0)

(h and −h at denominators mean 1
h and −1

h , respectively ∀s = 1 . . . n)

3 Fuzzy Fredholm integro-difference equation

In this section, we are going to introduce Taylor expansion method for solving fuzzy
Fredholm integro-difference equation.

Definition 3.1. The Linear equation

K∑
k=0

Pk(x)y(x+ k) +

∫ b

a
K(x, t)y(t)dt = g(x) (3.1)

under conditions
R∑

r=0

ciry(cr) = µ̃i, i = 0, . . . ,K (3.2)

is called fuzzy Fredholm integro-difference equation where Pk(x), g(x) and K(x, t) are crisp
functions that have positive derivatives on interval [a, b] and cir and cr are crisp constants
and µ̃i is fuzzy constant.

Our idea in this article is approximation of fuzzy valued function y(x) by Taylor ex-
pansion. We suppose the solution is expressed in form

y(x) =

N∑
n=0

ãn(x− c)n (3.3)
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3.1 Fundamental matrix relations

Consider the linear difference equation with variable coefficient (3.1). Let us find the
truncated Taylor expansion of each term in expression (3.1) at x = c and their matrix
representations.
We first consider y(x) in the matrix form

[y(x)] = XA (3.4)

where desired solution y(x) of Eq. (3.1) is defined by Taylor polynomial in (3.3),

X =
[
1 (x− c) (x− c)2 · · · (x− c)N

]
and

A =
[
ã0 ã1 ã2 · · · ãN

]T
Now we write the expression y(x+ k) as follows:

y(x+ k) =

N∑
n=0

ãn ((x− c) + k)n =

N∑
n=0

n∑
i=0

Cn
i (x− c)n−ikiãn (3.5)

where

Cn
i =

(
n
i

)
=

n!

i!(n− i)!

and in the matrix form
[y(x+ k)] = XXkA (3.6)

where

Xk =



C0
0 C1

1k
1 C2

2k
2 · · · CN

N kN

0 C1
0 C2

1k
1 · · · CN

N−1k
N−1

0 0 C2
0 · · · CN

N−2k
N−2

...
...

...
...

0 0 0 · · · CN
0


The Taylor polynomial expansion of the function Pk(x) about x = c can be written as
follows:

Pk(x) =

N∑
r=0

pkr(x− c)r, pkr =
P

(r)
k (c)

r!
(3.7)

If we rename the first part of Eq. (3.1) L1(x) i.e.,

L1(x) =
K∑
k=0

Pk(x)y(x+ k)

then we have

L1(x) =

K∑
k=0

N∑
r=0

pkr(x− c)ry(x+ k) (3.8)
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Using Eq. (3.5), the expansion of (x− c)ry(x+ k) becomes

(x− c)ry(x+ k) =

N∑
n=0

n∑
i=0

Cn
i (x− c)n−i+rkiãn

or the matrix form
[(x− c)ry(x+ k)] = XIrXkA (3.9)

where

Ir =



0 0 0 · · · 0 0

0 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 1 · · · 0 0


(N+1)×(N+1)

Consequently, the matrix form of the Eq. (3.8) is as follows:

[L1(x)] =

K∑
k=0

N∑
r=0

pkrXIrXkA (3.10)

Now, we obtain the matrix form for Fredholm integral part of Eq. (3.1). To this end,
we approximate the kernel function K(x, t) by truncated Taylor series of degree N about
x = c and t = c in the form

K(x, t) =

N∑
n=0

N∑
m=0

knm(x− c)n(t− c)m (3.11)

where

knm =
1

n!m!

∂n+mK(c, c)

∂xn∂tm
, n,m = 0, 1, . . . , N

The Eq. (3.11) can be written in the matrix form

[K(x, t)] = XKT T (3.12)

where
K = [knm]Nn,m=0, T =

[
1 (t− c) (t− c)2 · · · (t− c)N

]
We see from Eq. (3.4)

[y(t)] = TA (3.13)
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Substituting the expressions (3.12) and (3.13) into the Fredholm integral part of Eq. (3.1),

[F (x)] =

∫ b

a
XKT TTAdt = XKHA (3.14)

where

F (x) =

∫ b

a
K(x, t)y(t)dt

and

H =

[∫ b

a
T TTdt

]
= [hnm], hnm =

(b− c)n+m+1 − (a− c)n+m+1

n+m+ 1

The nonhomogenous part of Eq. (3.1) can be obtained

g(x) =

N∑
n=0

gn(x− c)n, gn =
g(n)(c)

n!

or the matrix form
[g(x)] = XG (3.15)

where
G =

[
g0 g1 g2 · · · gN

]T
3.2 Method of solution

Now, we are going to construct the matrix form of Eq. (3.1). We first substitute the matrix
relations defined (3.10), (3.14) and (3.15) into Eq. (3.1) and then obtain the matrix form
equation

K∑
k=0

N∑
r=0

pkrIrXkA+KHA = G

then [
K∑
k=0

N∑
r=0

pkrIrXk +KH

]
A = G (3.16)

which corresponds to a system of (N + 1) algebraic equations for the (N + 1) unknown
coefficient ã0, ã1, . . . , ãN . We can write Eq. (3.16) in the form

WA = G (3.17)

so that

W =

K∑
k=0

N∑
r=0

pkrIrXk +KH = [wnh], n, h = 0, 1, . . . , N

We can obtain the matrix form of the conditions (3.2), by means of relation (3.4)

R∑
r=0

cirCrA = [µ̃i], i = 0, 1, . . . ,K, a ≤ cir ≤ b (3.18)

where
Cr =

[
1 (cr − c) (cr − c)2 · · · (cr − c)N

]
149

A. Gomashi et al. / IJIM Vol. 2, No. 2 (2010) 143-152 149

IJIM Journal
Text Box



Clearly, the matrix form for (3.2) is

UiA = [µ̃i], i = 0, 1, . . . ,K (3.19)

where

Ui =
R∑

r=0

cirCr =
[
ui0 ui1 ui2 · · · uiN

]
To obtain the solution of Eq. (3.1) under the conditions (3.2), replacing the row matrix
(3.19) by the last K + 1 rows of the matrix (3.17), we have

W
′
=



w00 w01 · · · w0N

w10 w11 · · · w1N

· · · · · · · · · · · ·

wN−K−1,0 wN−K−1,1 · · · wN−K−1,N

u00 u01 · · · u0N

u10 u11 · · · u1N

· · · · · · · · · · · ·

uK0 uK1 · · · uKN


(N+1)×(N+1)

(3.20)

and
G

′
=

[
g0 g1 · · · gN−K−1 µ̃0 µ̃1 · · · µ̃K

]T
(3.21)

Now, we solve the linear fuzzy system

W
′
A = G

′

4 Example

Example 4.1. Consider fuzzy integro-difference equation

y(x+ 1) + xy(x) +

∫ 1

−1
(xex + t)y(t)dt = (1− x)ex+1 + xex − 2

e

with conditions
y(0) = (r, 2− r), y(1/2) = (r − 1, 1− r)

and approximate the solution y(x) by the polynomial

y(x) =

5∑
n=0

ãnx
n

It is clear that N = 5, c = 0, P0(x) = x, P1(x) = 1 and K = 1 Using matrix form (3.16),[
1∑

k=0

5∑
r=0

pkrIrXk +KH

]
A = G
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then

I0 = X0 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, X1 =



1 1 1 1 1 1

0 1 2 3 4 5

0 0 1 3 6 10

0 0 0 1 4 10

0 0 0 0 1 5

0 0 0 0 0 1



K =



0 1 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1/2 0 0 0 0 0

1/6 0 0 0 0 0

1/24 0 0 0 0 0


, I1 =



0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0



H =



2 0 2/3 0 2/5 0

0 2/3 0 2/5 0 2/7

2/3 0 2/5 0 2/7 0

0 2/5 0 2/7 0 2/9

2/5 0 2/7 0 2/9 0

0 2/7 0 2/9 0 2/11


, G =



1.982522

1.000000

−0.359140

−0.406093

−0.173118

−0.048942


So,

W
′
=



1 5/3 1 7/5 1 9/7

3 1 8/3 3 22/5 5

2 1 5/3 3 32/3 10

1 0 4/3 1 21/5 10

1 0 0 0 0 0

1 1/2 1/4 1/8 1/16 1/32


, G

′
=



1.982522

1.000000

−0.359140

−0.406093

(r, 2− r)

(r − 1, 1− r)


Therefore, we solve W

′
A = G

′
by using Friedman et al. proposed method in [4] and

obtain

A =



ã0

ã1

ã2

ã3

ã4

ã5


=



(r, 2− r)

(−0.7321 + 0.381r, 0.0299− 0.381r)

(−6.14 + 0.2623r,−5.6227− 0.2623r)

(4.7211 + 1.0601r, 6.8414− 1.0601r)

(−1.7056 + 0.1278r,−1.4499− 0.1278r)

(0.7159 + 0.0127r, 0.7413− 0.0127r)
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5 Conclusion

In this paper, we proposed Taylor polynomial approximation for finding the solution of
fuzzy Fredholm integro-difference equation. To do this, the matrix form of this method
was introduced and the mentioned equations were transformed into the fuzzy linear system
and then by solving the fuzzy linear system the fuzzy coefficients were obtained.
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