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The problem of determining the radiated fields from thin wire antennas corresponds
to solving Pocklington’s integral equation or Hallén’s integral equation, both of the form of
first kind Fredholm integral equation [2, 7, 14]. The current density on the surface of the
antenna is usually considered as the unknown function to be determined and the kernels
appeared in the mentioned integral equations are complex. Once the current distribution
is calculated, other antenna parameters such as radiation pattern can be obtained.

This paper proposes a collocation method for solving Hallén’s integral equation for
the thin wire dipole antenna. The method uses Sinc cardinal functions as basis functions.
The advantage of this method is the use of a set of entire domain basis functions, be-
cause by calculating only a few expansion coefficients, we can have a relatively reasonable
approximation of the solution for the whole of the domain.

The paper is organized as follows. Section 2 poses Hallén’s integral equation for mod-
eling of radiation from the dipole antenna. The collocation method mentioned above is
presented in section 3. Then, Hallén’s integral equation is solved by the proposed method
to obtain the current density on the antenna and its radiation pattern. Finally, conclusions
will be in section 4.

2 Hallén’s integral equation for the thin wire dipole antenna

A practical center-fed dipole antenna usually consists of a pair of tubular conductors
of radius a aligned in tandem so that there is a small feeding gap at the center [7], as
shown in Fig. 1. The total length is ℓ. A voltage is applied across the gap, often by means
of a two-wire transmission line. The resulting current distribution on the pair of tubular
conductors gives rise to radiating field.
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Fig. 1. Center-fed dipole antenna.

Referring to Fig. 1, let us assume that the length of the diploe is much larger than its
radius (ℓ ≫ a) and its radius is much smaller than the wavelength (a ≪ λ), so that the
effects of the end faces of the dipole can be neglected. Therefore, the boundary conditions
for a wire with infinite conductivity are those of vanishing total tangential electric field
on the surface of the antenna and vanishing current at its ends [2]. For convenience, we
assume that a constant voltage Vi is applied at the input terminals of the dipole, i.e., the
delta-gap excitation.

Under the above conditions, an integral equation may be constructed for analysis of the
dipole antenna, in which the unknown function is the current distribution on the antenna.
After an extensive mathematical procedure, the final form of the integral equation is∫ ℓ/2

−ℓ/2

e−jβR

4πR
Iz(z′)dz′ = C cos βz − j

2η0
sinβ|z|, (2.1)

where
R =

√
(z − z′)2 + a2. (2.2)
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In Eq. (2.1), Iz is the unknown function (current density on the antenna) to be determined,
β is the phase constant, η0 = 120π Ω is the free space intrinsic impedance, j is the
imaginary unit, and C is an unknown constant coefficient which should be determined
within the solution of the integral equation.

Equation (2.1) is referred to as Hallén’s integral equation with the reduced kernel
approximation. Obviously, this equation has the form of first kind Fredholm integral
equation. Solution of Eq. (2.1) gives the current distribution along the dipole. Since, in
this problem, the current distribution Iz is even (due to the symmetry of the structure),
then Hallén’s integral equation can be rewritten in the form∫ ℓ/2

0
G(z, z′) Iz(z′)dz′ = C cos βz − j

2η0
sinβz, (2.3)

in which

G(z, z′) =
e−jβR

4πR
+

e−jβR′

4πR′ , (2.4)

R =
√

(z − z′)2 + a2, (2.5)

R′ =
√

(z + z′)2 + a2, (2.6)

where z ∈ [0, ℓ/2].
Once the current distribution on the surface of a radiation structure is calculated one

can obtain the radiation patterns for the structure. The normalized electric field pattern
of a center-fed dipole antenna may be obtained in terms of the current density as follows:

f(θ) =

∣∣∣sin θ
∫ ℓ/2
−ℓ/2 Iz(z′) ejβz′ cos θdz′

∣∣∣
max

∣∣∣sin θ
∫ ℓ/2
−ℓ/2 Iz(z′) ejβz′ cos θdz′

∣∣∣ , (2.7)

for 0 6 θ 6 180o.

3 Solution of Hallén’s equation

This section presents an efficient numerical method for the solution of Hallén’s integral
equation to obtain the current distribution on the dipole antenna. Firstly, we introduce
the basis functions required for implementation of the method.

3.1 Basis functions

The Sinc cardinal functions are mathematically defined as [5]

Cj(x; h) =
sin

[
π(x − jh)/h

]
π(x − jh)/h

, (3.8)

where h has positive real value. The collocation points regarding these functions are evenly
spaced, such that

xi = ih, i ∈ Z. (3.9)

The Sinc cardinal functions are also referred to as Whittaker cardinal functions.
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An arbitrary function f(x) may be approximated by a finite series of the above func-
tions if f(x) decays sufficiently fast as |x| → ∞ [5]. In this case we have

f(x) ≃
∑

j

fjCj(x), for sufficiently small h, (3.10)

where fj = f(xj) and xj ’s are defined by (3.9).

3.2 Formulation of the method

Since Hallén’s equation has the form of a first kind Fredholm integral equation, therefore
we propose the collocation method for the solution of a typical first kind equation as∫ b

a
k(s, t)x(t)dt = f(s), a 6 s 6 b, (3.11)

where the functions k and f are known but x is the unknown function to be determined.
Moreover, k ∈ L2

(
[a, b] × [a, b]

)
and f ∈ L2

(
[a, b]

)
, in which L2 is the space of square

integrable functions.
Considering a finite number of the Sinc cardinal functions, we can approximate the

unknown function x by (3.10) as

x(t) ≃
n+m∑
j=n

xjCj(t), (3.12)

in which m is the number of the basis functions such that h = b−a
m . Also, n = [ a

h ] = [ a
b−am].

Substituting (3.12) into (3.11) gives

∫ b

a
k(s, t)

n+m∑
j=n

xjCj(t)

 dt ≃ f(s). (3.13)

By choosing m + 1 points si = ih in interval [a, b] we obtain

∫ b

a
k(si, t)

n+m∑
j=n

xjCj(t)

 dt ≃ f(si),

i = n, n + 1, . . . , n + m,

(3.14)

or

n+m∑
j=n

(∫ b

a
k(si, t)Cj(t)dt

)
xj ≃ f(si),

i = n, n + 1, . . . , n + m.

(3.15)

Equation (3.15) is a linear system of algebraic equations in terms of the unknown
vector x = [xn, xn+1, . . . , xn+m]. Solution of this system gives the expansion coefficients
for (3.12). Hence, an approximate solution x(s) ≃

∑j=n+m
j=n xjCj(s) is obtained for Fred-

holm integral equation of the first kind.
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3.3 Numerical results

Now, we use the proposed method for solving Hallén’s integral equation and consequently
obtaining the current distribution on the dipole antenna. The numerical results are shown
in figures 2 − 4 as the current density graphs for different values of ℓ and a (in terms of
the wavelength). By calculating the current density we can obtain the radiation pattern
for the antenna. The normalized electric field patterns of the dipole are shown in figures
5 − 7 . Also, the three-dimensional radiation patterns are given in figures 8 − 10. All the
computations have been performed at frequency f = 0.3 GHz.
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Fig. 2. Current distribution along the diploe antenna for ℓ = 0.65λ and a = 0.001ℓ.
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Fig. 3. Current distribution along the diploe antenna for ℓ = 1.8λ and a = 0.001ℓ.
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Fig. 4. Current distribution along the diploe antenna for ℓ = 3.6λ and a = 0.0005ℓ.
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Fig. 5. Normalized electric field pattern of the diploe antenna for ℓ = 0.65λ and a = 0.001ℓ.
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Fig. 6. Normalized electric field pattern of the diploe antenna for ℓ = 1.8λ and a = 0.001ℓ.
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Fig. 7. Normalized electric field pattern of the diploe antenna for ℓ = 3.6λ and a = 0.0005ℓ.
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Fig. 8. Three-dimensional radiation pattern of the diploe antenna for ℓ = 0.65λ and a = 0.001ℓ.

−1 −0.5 0 0.5 1

−1−0.500.51
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 9. Three-dimensional radiation pattern of the diploe antenna for ℓ = 1.8λ and a = 0.001ℓ.
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Fig. 10. Three-dimensional radiation pattern of the diploe antenna for ℓ = 3.6λ and a = 0.0005ℓ.

4 Conclusion

An effective numerical method for analysis of thin wire dipole antenna was proposed by
using a set of cardinal functions. The method was applied in the solution of Hallén’s
integral equation to obtain the current distribution on the surface of the antenna. The
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numerical results confirmed the efficiency of the method in view of calculating the current
density and radiation pattern graphs.
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