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Abstract
A numerical method for solving the Lane-Emden equations as singular initial value prob-
lems is presented. The method is based on using integral operator and convert Lane-Emden
equations to integral equations and interpolation by radial basis functions (RBFs). Also,
Legendre-Gauss quadrature integration method utilized to reduce the solution of integral
equations to the solution of algebraic equations. Several examples are given and numerical
examples are presented to demonstrate the validity and applicability of the method.
Keywords : Lane-Emden equations; Strictly positive functions; Radial basis functions.
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1 Introduction

Recently, a lot of attention has been focused on the study of singular initial value problems
(IVPs) in the second-order ordinary differential equations (ODEs). Many problems arising
in the field of mathematical physics and astrophysics can be modelled by Lane-Emden type
initial value problems, which can be written in the form:

y′′ +
α

x
y′ + f(y) = 0, 0 < x ≤ 1, α ≥ 0, (1.1)

subject to conditions

y(0) = A, y′(0) = B, (1.2)

where A and B are constants and f(y) is a real-valued continuous function. This equation
was used to model various phenomena such as the theory of stellar structure, the thermal
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behaviour of a spherical cloud of gas, isothermal gas spheres and the theory of thermionic
currents [12, 16, 33].

On the other hand, another class of singular initial value problems of Lane-Emden
type can also be given in the form:

y′′ +
α

x
y′ + f(x, y) = g(x), 0 < x ≤ 1, α ≥ 0, (1.3)

subject to conditions given in Eq. (1.2), where A and B are constants, f(x, y) is a
continuous real valued function, and g(x) ∈ C[0, 1]. Eq. (1.3) differs from the classical
Lane-Emden type Eq. (1.2), for the function f(x, y) and for the inhomogeneous term g(x).

Since, Lane-Emden type equations have significant applications in many fields of the
scientific and technical world, a variety of forms of f(y) have been investigated by many
researchers. A discussion of the formulation of these models and the physical structure of
the solutions can be found in the literature. For example, it models the thermal behavior
of a spherical cloud of gas acting under the mutual attraction of its molecules and subject
to the classical laws of thermodynamics [16, 38, 41] when f(y) = ym, the gravitational

potential of the degenerate white-dwarf stars [12] when f(y) = (y2 − C)
3
2 , the isothermal

gas spheres [16] when f(y) = ey and so on.
Recently many analytical methods have been used to solve Lane-Emden equations,

the main difficulty arises in the singularity of the equation at x = 0. Currently most
techniques in use for handling the Lane-Emden type problems are based on either series
solutions or perturbation techniques. Bender et al. [5] handled the solution of Lane-Emden
equations as well as those of a variety of nonlinear problems in quantum mechanics and
astrophysics by means of perturbation methods based on the existence of a small param-
eter. Approximate solutions to the above problems were presented by Shawagfeh [38] and
Wazwaz [41, 42] by applying the Adomian method which provides a convergent series so-
lution. Nouh [29] accelerated the convergence of a power series solution of the LaneEmden
equation by using an Euler-Abel transformation and Pade approximation. Mandelzweig
and Tabakin [26] applied Bellman and Kalaba’s quasilinearization method and Ramos
[31] used an piecewise linearization technique based on the piecewise linearization of the
Lane-Emden equation. Bozkhov and Martins [7] and later Momoniat and Harley [28]
applied the Lie Group method successfully to generalized Lane-Emden equations of the
first kind. Exact solutions of generalized Lane-Emden solutions of the first kind are in-
vestigated by Goenner and Havas [17]. Liao [22] solved Lane-Emden type equations by
applying a homotopy analysis method. He [18] obtained an approximate analytical solu-
tion of the Lane-Emden equation by applying a variational approach which uses a semi
inverse method. Ramos [32] presented a series approach to the Lane-Emden equation and
gave the comparison with He’s homotopy perturbation method. The authors of this paper,
Yldrm and Ozis [30] and also Chowdhury and Hashim [14] gave the solutions of a class
of singular second-order IVPs of Lane-Emden type by using He’s homotopy perturbation
method. Youseffi [44] converted the Lane-Emden equation to an integral equation and
then using Legendre wavelets, obtained an approximate solution for 0 < x ≤ 1.

In the present article, we are concerned with the application of radial basis functions
to the numerical solution of Eq. (1.3). The method consists of convert of Lane-Emden
equations to integral equations and expanding the solution by radial basis functions with
unknown coefficients. The properties of radial basis functions together with the Gaussian
integration formula are then utilized to evaluate the unknown coefficients and find an
approximate solution to Eq. (1.3).
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2 Radial basis functions

In this section the RBFs method is defined as a technique for interpolation of the scattered
data. Some well-known radial basis functions (RBFs) are listed in Table 1. Let r be the
Euclidean distance between a fixed point x∗ ∈ Rd and any x ∈ Rd i.e. ∥x − x∗∥2. A
radial function ϕ∗ = ϕ(∥x − x∗∥2) depends only on the distance between x ∈ Rd and
fixed point x∗ ∈ Rd. This property results that the radial basis function ϕ∗ is radially
symmetric about x∗. It is clear that the functions in Table 1 are globally supported,
infinitely differentiable and depend on a free parameter c.

Let {x0, x1, ..., xN} be a given set of distinct points in Rd. The main idea behind the
use of RBFs is interpolation by translation of a single function i.e. the interpolating RBFs
approximation is considered as

F (x) =
N∑
i=0

λiϕi(x), (2.4)

Table 1.
Some well-known functions that generate RBFs.

Name of function Definition

Gaussian (GA) ϕ(r) = exp (−c2r2)

Hardy Multiquadric (MQ) ϕ(r) =
√
r2 + c2

Inverse Multiquadrics (IMQ) ϕ(r) = (
√
r2 + c2)−1

Inverse Quadric (IQ) ϕ(r) = (r2 + c2)−1

where ϕi(x) = ϕ(∥x− xi∥2) and λi are unknown scalars for i = 0, 1, · · · , N . Assume that
we want to interpolate the given values fi = f(xi), i = 0, 1, · · · , N . The unknown scalars
λi are chosen so that F (xi) = fi for i = 0, 1, · · · , N which results in the following linear
system of equations

AZ = f, (2.5)

where Ai,j = ϕi(xj), Z = [λ0, λ1, · · · , λN ] and f = [f0, f1, · · · , fN ]. Since all applicable ϕ
have global support, this method produces a dense matrix A. The matrix A can be shown
to be positive definite (and therefore nonsingular) for distinct interpolation points for GA,
IMQ and IQ by Schoenberg’s Theorem [37]. Also using the Micchelli Theorem [27] we can
show that A is invertible for distinct sets of the scattered points in the case of MQ.

Although the matrixA is nonsingular in the above cases, usually it is very ill-conditioned
i.e. the condition number of A

ks(A) = ∥A∥s∥A−1∥s, s = 1, 2,∞, (2.6)

is a very large number. Therefore a small perturbation in initial data may produce a large
amount of perturbation in the solution. Thus we have to use more precision arithmetic
than the standard floating point arithmetic in our computation. For a fixed number
of interpolation points the condition number of A depends on the shape parameter c,
support of the RBFs and minimum separation distance of interpolation points. Also the
condition number grows with N for fixed values of shape parameter c. In practice, the
shape parameter c must be adjusted with the number of interpolating points in order to
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produce an interpolation matrix which is well conditioned enough to be inverted in finite
precision arithmetic [35].

Despite research done by many scientists to develop algorithms for selecting the values
of c which produce the most accurate interpolation (e.g. see [11, 34]), the optimal choice
of shape parameter is still an open question.

3 Legendre-Gauss nodes and weights

Let LM+1(x) be the Legendre polynomial of order M + 1 on [−1, 1]. Then the Legendre-
Gauss nodes are

−1 < x0 < x1 < · · · < xM < 1, (3.7)

where {xi}Mi=0 are the zeros of LM+1(x). No explicit formulas are known for the points xi,
and so they are computed numerically using subroutines [10]. Also we approximate the
integral of f on [−1, 1] as ∫ 1

−1
f(x)dx ≃

M∑
i=0

wif(xi), (3.8)

where xi are Legendre-Guass nodes in Eq. (3.7) and the weights wi given in [10]

wi =
2

(1− x2i )[L
′
M+1(xi)]

2
, i = 0, 1, · · · ,M. (3.9)

It is well known [21] that the integration in Eq. (3.8) is exact whenever f(x) is a polynomial
of degree ≤ 2M + 1.

4 Solution of the problem via radial basis functions

Consider the Lane-Emden equations given in Eq. (1.3). Define integral operator

L(.) =

∫ x

0
t−α

∫ t

0
sα(.)dsdt. (4.10)

Operating with L on Eq. (1.3), it then follows:

y(x) = A+ L(g(x))− L(f(x, y)), (4.11)

where

A = y(0). (4.12)

Let

G(x) = A+ L(g(x)), (4.13)

and

F (t, y(t)) = −t−α

∫ t

0
sαf(s, y(s))ds. (4.14)
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So, we can get

y(x) = G(x) +

∫ x

0
F (t, y(t))dt, (4.15)

which is nonlinear Volterra integral equation. Let ϕ(x) be a radial basis function and we
approximate y(x) with interpolation by function ϕ(x) i.e.,

y(x) ≃
N∑
j=0

cjϕ(x− xj) = CTΨ(x), (4.16)

where C and Ψ(x) are (N + 1)× 1 matrices given by

C = [c0, c1, · · · cN ]T , Ψ(x) = [ϕ(x− x0), ϕ(x− x1), · · ·ϕ(x− xN )]T .

Also xj are shifted the Chebyshev-Gauss-Radau nodes on [0, 1]

xj =
1

2
cos

(
2πj

2N + 1

)
+

1

2
, j = 0, 1, · · · , N. (4.17)

Now by substituting Eq. (4.16) in Eq. (4.15) we have:

CTΨ(x) = G(x) +

∫ x

0
F (t, CTΨ(t))dt. (4.18)

For obtaining cj , j = 0, 1, · · · , N in the above equation, by collocating at the points x = xi
for i = 0, 1, · · · , N we have:

CTΨ(xi) = G(xi) +

∫ xi

0
F (t, CTΨ(t))dt. (4.19)

By change of variable t = xi
2 (τ + 1), Eq. (4.19) can be written as:

CTΨ(xi) = G(xi) +
xi
2

∫ 1

−1
F (

xi
2
(τ + 1), CTΨ(

xi
2
(τ + 1)))dτ. (4.20)

By applying numerical integration method given in Eq. (3.8), we can approximate the
integral in Eq. (4.20) and hence the above equation can be written as follow:

CTΨ(xi) = G(xi) +
xi
2

M∑
k=0

wkF (
xi
2
(τk + 1), CTΨ(

xi
2
(τk + 1))), (4.21)

for i = 0, 1, · · · , N and wk are given in Eq. (3.9). From (4.14) and numerical integration
method given in Eq. (3.8), we obtain:

F (
xi
2
(τk + 1), CTΨ(

xi
2
(τk + 1))) ≃ −

[xi
2 (τk + 1)]1−α

2

M∑
p=0

wp[ξ
(i)
k,p]

αf(ξ
(i)
k,p, C

TΨ(ξ
(i)
k,p)),(4.22)

where ξ
(i)
k,p =

xi
4 (τk + 1)(τp + 1). So by substituting Eq. (4.22) in Eq. (4.21) we have:

CTΨ(xi) = G(xi) +
xi
2

M∑
k=0

M∑
p=0

wkw
(i)
k,pf(ξ

(i)
k,p, C

TΨ(ξ
(i)
k,p)), i = 0, 1, · · ·N, (4.23)
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where

w
(i)
k,p = −

[xi
2 (τk + 1)]1−α

2
[ξ

(i)
k,p]

αwp. (4.24)

This is a nonlinear system of equations that can be solved via Newton’s iteration method
to obtain unknown vector CT .

5 Numerical examples

We use the method presented in this paper to solve four examples given in [30, 14, 43,
20, 1, 15, 4]. By choosing appropriate Radial basis function ϕ(x) and shape parameter c
we can get high accurate solution and best choice of the ϕ(x) depends on the form of the
problem. In all examples, we use GA-RBF and MQ-RBF and also we use the maximum
errors for different N which is given as

E∞ = max{|y(x)−
N∑
j=0

cjϕ(x− xj)| : x ∈ [0, 1]}.

All of the computations have been done using the Maple 13 with 150 digits precision,
M = 10 and we solved obtained system by Newton’s iteration method with start point
[0, 0, ..., 0].

Error Analysis: Madych have proven exponential convergence property of multiquadratic
approximation [23]. He has shown that under certain conditions, the interpolation error is
ε = O(λ

c
h ) where c is the shape parameter, h is the mesh size and 0 < λ < 1 is a constant.

It implies we can improve the approximated solution either by reducing the size of h or
by increasing the magnitude of c. It means that if c → ∞ then ε → 0. Since increasing of
c can improve the accuracy exponentially without extra computation [13, 19, 23, 24], it is
preferred to decrease error rather than reducing h.

However, according to ’uncertainty principle’ of Schaback [36], as the error becomes
smaller, the matrix becomes more ill-conditioned; hence the solution will break down as
c becomes too large. The experimental results confirm such behavior of the error values
as c becomes larger. The numerical results for Examples 1,2 and 3 on interval [0, 1] are
demonstrated in Fig.s 2 and 3, which show according to the findings of Madych, the
error functions decrease exponentially as c becomes larger in bounded interval. After that
according to the research of Schaback the error values decline as c becomes too large. The
best c is different for various problems and not the same RBFs.

Example 5.1. Consider the homogeneous Lane-Emden type equation [14, 43, 20, 1]

y′′ +
2

x
y′ − (4x2 + 6)y = 0, 0 < x ≤ 1, (5.25)

subject to conditions

y(0) = 1, y′(0) = 0. (5.26)

The exact solution of this test problem is y(x) = ex
2
.
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This type of equation has been solved by [14, 43, 20, 1] with the homotopy-perturbation
method, variational iteration method, power series with Padé approximation and modified
Legendre-spectral method respectively.

In Table 2, we list the results obtained by the RBF collocation method proposed in
this paper with GA-RBF (c = 0.001) and MQ-RBF (c = 2). Also we contrast our results
with the corresponding results reported by Karimi Vanani et al. [20] and Adibi et al. [1].

Table 2.
Maximum absolute errors for different values of N for Example 5.1.

N GA-RBF (c = 0.001) MQ-RBF (c = 2) Method [1] Method [20]

5 6.51× 10−4 1.35× 10−3 7.80× 10−4 —
10 2.15× 10−8 7.80× 10−7 1.17× 10−5 —
12 2.51× 10−10 3.52× 10−8 — 2.26× 10−4

15 2.44× 10−13 3.58× 10−10 1.40× 10−8 —
16 2.30× 10−14 7.54× 10−11 — 3.05× 10−6

20 5.38× 10−15 1.53× 10−13 3.59× 10−10 2.73× 10−8

24 7.49× 10−16 2.80× 10−16 — 1.72× 10−10

25 4.52× 10−16 5.59× 10−17 3.96× 10−13 —
28 1.42× 10−18 1.42× 10−18 — 8.15× 10−13

30 1.41× 10−18 1.41× 10−18 5.35× 10−14 —

From the contents of Table 3, it is clear that the choice of the shape parameter has
an auxiliary role in the stability of the problem.The dimension of matrix A should be
small sufficiently to guarantee the stability of the solution of the resulted linear system.

Table 3.
Some values of shape parameter c, k∞(A) using GA-RBF with N = 18 for Example 5.1.

Shape parameter c E∞ k∞(A)

0.05 0.1672×10−15 0.5149×1079

0.1 0.1872×10−15 0.7492×1068

1 0.4748×10−13 0.8409×1032

5 0.9163×10−4 0.1671×1010

10 0.1947×10−1 0.7006×106

30 0.8709 0.2528×103

Example 5.2. Consider the nonhomogeneous Lane-Emden equation [30, 15, 4, 6]

y′′ +
8

x
y′ + xy = x5 − x4 + 44x2 − 30x, 0 < x ≤ 10, (5.27)

subject to conditions

y(0) = 0, y′(0) = 0, (5.28)

for which the exact solution is y(x) = x4 − x3.

In Table 4, we list the results obtained by the RBF collocation method proposed in this
paper with GA-RBF (c = 0.001) and MQ-RBF (c = 1000). Also we contrast our results
with the corresponding results reported by Bhrawy et al. [6]. The displayed results show
that the RBF method is more accurate than shifted Jacobi collocation method (SJC) [6].
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Table 4.
Some values of shape parameter c, k∞(A) using GA-RBF with N = 18 for Example 5.2.

x GA-RBF (c = 0.001) MQ-RBF (c = 1000) SJC(α = β = −1
2 ) SJC(α = 1

2 , β = −1
2 )

0 3.46× 10−20 7.85× 10−18 4.54× 10−13 1.13× 10−13

1 2.78× 10−20 7.52× 10−18 4.54× 10−13 1.13× 10−13

2 2.53× 10−20 7.82× 10−18 0 5.68× 10−14

3 2.60× 10−20 8.84× 10−18 6.82× 10−13 2.86× 10−14

4 1.84× 10−20 6.68× 10−18 0 5.68× 10−14

5 7.47× 10−22 1.18× 10−19 1.13× 10−13 0
6 2.12× 10−20 8.95× 10−18 4.54× 10−13 2.27× 10−13

7 3.82× 10−20 1.64× 10−17 0 0
8 4.46× 10−20 1.96× 10−17 0 0
9 5.20× 10−20 2.33× 10−17 0 0
10 6.65× 10−20 3.04× 10−17 0 0

Example 5.3. (The isothermal gas spheres equation) Consider the nonlinear, homoge-
neous Lane-Emden type equation [15, 4, 2, 3]

y′′ +
2

x
y′ + ey = 0, 0 < x ≤ 2.5, (5.29)

subject to conditions

y(0) = 0, y′(0) = 0. (5.30)

A series solution obtained by Wazwaz [41], Liao [22], Singh et al. [39] and Ramos [32]
by using ADM, HAM, MHAM and series expansion respectively:

y(x) ≃ −1

6
x2 +

1

5.4!
x4 − 8

21.6!
x6 +

122

81.8!
x8 − 61.67

495.10!
x10. (5.31)

Table 5 shows the comparison of y(x) obtained by the RBF method proposed in this paper
with (GA-RBF ,N = 10, c = 0.3) and those obtained by Wazwaz [41].

The resulting graph of the isothermal gas spheres equation in comparison to the pre-
sented method and those obtained by Wazwaz [41] is shown in Fig. 1.

Table 5.
Comparison between present method and Wazwaz method [41].

x GA-RBF (c = 0.3) Wazwaz [41] Error

0.0 0.0000000000 0.0000000000 0.0
0.1 -0.0016658328 -0.0016658338 9.91× 10−10

0.2 -0.0066533691 -0.0066533671 2.07× 10−9

0.5 -0.0411539552 -0.0411539568 1.55× 10−9

1.0 -0.1588276770 -0.1588273536 2.23× 10−7

1.5 -0.3380194261 -0.3380131102 6.31× 10−6

2.0 -0.5598230040 -0.5599626601 1.39× 10−4

2.5 -0.8063408705 -0.8100196713 3.67× 10−3
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Fig. 1. Graph of isothermal gas sphere equation in comparison with Wazwaz solution [41].

Fig. 2. Horizontal axis is related to shape parameter (c) and vertical axis shows error values with

log mode when the solutions are approximated by using GA-RBF with N = 10 on interval [0, 1].

Fig. 3. Horizontal axis is related to shape parameter (c) and vertical axis shows error values with

log mode when the solutions are approximated by using MQ-RBF with N = 10 on interval [0, 1].
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6 Conclusion

The aim of present work is to develop an efficient and accurate method for solving the
Lane-Emden equations as singular initial value problems. The properties of the radial basis
functions together with the Gaussian integration method are used to reduce the problem to
the solution of nonlinear algebraic equations. This technique is very simple, the elements
of system can be obtained easily and involve less computation. The illustrative example
confirm the validity of the method.

References

[1] H. Adibi , AM. Rismani, On using a modified Legendre-spectral method for solving
singular IVPs of Lane-Emden type, Comput. Math. Appli. 60 (2010) 2126-2130.

[2] A. Aslanov, Determination of convergence intervals of the series solutions of Emden-
Fowler equations using polytropes and isothermal spheres, Phys. Lett. A 372 (2008)
3555-3561.

[3] A. Aslanov, A generalization of the LaneEmden equation, Int. J. Comput. Math. 85
(2008) 1709-1725.

[4] AS. Bataineh, MSM. Noorani, I. Hashim, Homotopy analysis method for singular
IVPs of Emden-Fowler type, Commun. Nonlinear. Sci. Numer. Simul. 14 (2009) 1121-
1131.

[5] CM. Bender, KA. Milton, SS. Pinsky, LM. Simmons, A new perturbation approach
to nonlinear problems, J. Math. Phys. 30 (1989) 1447-1455.

[6] AH. Bhrawy, AS. Alofi, A JacobiGauss collocation method for solving nonlinear La-
neEmden type equations, Commun. Nonlinear. Sci. Numer. Simul. 17 (2012) 62-70.

[7] Y. Bozkhov, ACG. Martins, Lie point symmetries and exact solutions of quasilinear
differential equations with critical exponents, Nonlinear Anal. 57 (2004) 773-793.

[8] MD. Buhmann, Spectral convergence of multiquadric interpolation, Proc. Edinburg.
Math. Soc. 36 (1993) 319-333.

[9] MD. Buhmann, Radial Basis Functions, Cambridge University Press, Cambridge,
2003.

[10] C. Canuto, MY. Hussaini, A. Quarteroni, TA. Zang, Spectral Methods in Fluid Dy-
namics, Springer-Verlag, New York, 1988.

[11] RE. Carlson, TA. Foley, Interpolation of track data with radial basis functions, Com-
put. Math. Appl. 24 (1992) 27-34.

[12] S. Chandrasekhar, Introduction to the Study of Stellar Structure, Dover, New York,
1967.

[13] AH-D. Cheng, MA. Golberg, EJ. Kansa, G. Zammito, Exponential convergence and h-
c multiquadric collocation method for partial differential equations, Numer. Methods
Partial Differential Eq. 19 (2003) 571-594.



M. Heydari, et al / IJIM Vol. 4, No. 2 (2012) 135-146 145

[14] MSH. Chowdhury, I. Hashim, Solutions of a class of singular second-order IVPs by
homotopy-perturbation method, Phys. Lett. A. 368 (2007) 305-313.

[15] MSH. Chowdhury, I. Hashim, Solutions of Emden-Fowler equations by homotopy
perturbation method, Nonlinear Anal. 10 (2009) 104-115.

[16] HT. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover, New
York, 1962.

[17] H. Goenner, P. Havas, Exact solutions of the generalized Lane-Emden equation, J.
Math. Phys. 41 (2000) 7029-7042.

[18] JH. He, Variational approach to the Lane-Emden equation, Appl. Math. Comput.
143 (2003) 539-541.

[19] C-S. Huang, CF. Lee, AH-D. Cheng, Error estimate, optimal shape factor, and
high precision computation of multiquadric collocation method, Eng. Anal. Boundary
Elem. 31 (2007) 614-623.

[20] S. Karimi Vanani, A. Aminataei, On the numerical solution of differential equations
of Lane-Emden type, Comput. Math. Appli. 59 (2010) 2815-2820.

[21] C. Kui-Fang, Strictly positive definite functions, J. Approx. Theory. 87 (1996) 148-
158.

[22] S. Liao, A new analytic algorithm of Lane-Emden type equations, Appl. Math. Com-
put. 142 (2003) 1-16.

[23] WR. Madych, Miscellaeous error bounds for multiquadratic and related interpolators,
Comput. Math. Appl. 24 (1992) 121-138.

[24] WR. Madych, Bounds on multivariate polynomials and exponential error estimates
for multiquadric interpolation, J. Approx. Theory. 70 (1992) 94-114.

[25] WR. Madych, S.A. Nelson, Multivariate interpolation and conditionally positive def-
inite functions, II, Math. Comput. 54 (1990) 211-230.

[26] VB. Mandelzweig, F. Tabakin, Quasilinearization approach to nonlinear problems in
physics with application to nonlinear ODEs, Comput. Phys. Commun. 141 (2001)
268-281.

[27] CA. Micchelli, Interpolation of scattered data: Distance matrices and conditionally
positive definite functions, Constructive Approximation 2 (1986) 11-22.

[28] E. Momoniat, C. Harley, Approximate implicit solution of a Lane-Emden equation,
New Astron. 11 (2006) 520-526.

[29] MI. Nouh, Accelerated power series solution of polytropic and isothermal gas spheres,
New Astron. 9 (2004) 467-473.

[30] T. Ozis, A. Yldrm, Solutions of singular IVPs of Lane-Emden type by homotopy
pertutbation method, Phys. Lett. A 369 (2007) 70-76.



146 M. Heydari, et al / IJIM Vol. 4, No. 2 (2012) 135-146

[31] JI. Ramos, Linearization method in classical and quantum mechanics, Comput Phys.
Commun. 153 (2003) 199-208.

[32] JI. Ramos, Series approach to the LaneEmden equation and comparison with the
homotopy perturbation method, Chaos Solitons Fractals 38 (2008) 400-408.

[33] OU. Richardson, The Emission of Electricity from Hot Bodies, Zongmans Green and
Company, London, 1921.

[34] S. Rippa, An algorithm for selecting a good parameter c in radial basis function
interpolation, Adv. Comput. Math. 11 (1999) 193-210.

[35] SA. Sarra, Adaptive radial basis function method for time dependent partial differ-
ential equations, Appl. Numer. Math. 54 (2005) 79-94.

[36] R. Schaback, Error estimate and condition numbers for radial basis function interpo-
lation, Adv. Comput. Math. 3 (1995) 251-264.

[37] IJ. Schoenberg, Metric spaces and completely monotone functions, Annals of Math-
ematics 39 (1938) 811-841.

[38] NT. Shawagfeh, Nonperturbative approximate solution for Lane-Emden equation, J.
Math. Phys. 34 (9) (1993) 4364-4369.

[39] OP. Singh, R.K. Pandey, V.K. Singh, An analytic algorithm of LaneEmden type
equations arising in astrophysics using modified homotopy analysis method, Comput.
Phys. Commun. 180 (2009) 1116-1124.

[40] AR. Vahidi, M. Didgar, Improving the Accuracy of the Solutions of Riccati Equations,
Int. J. Industrial. Mathematics. 4 (2012) 11-20.

[41] AM. Wazwaz, A new algorithm for solving differential equations of Lane-Emden type,
Appl. Math. Comput. 118 (2001) 287-310.

[42] AM. Wazwaz, A new method for solving singular value problems in the second order
ordinary differential equations, Appl. Math. Comput. 128 (2001) 45-57.

[43] A. Yldrm, T. Ozis, Solutions of singular IVPs of Lane-Emden type by the variational
iteration method, Nonlinear Anal. 70 (2009) 2480-2484.

[44] SA. Yousefi, Legendre wavelet method for solving differential equations of Lane-
Emden type, Appl. Math. Comput. 181 (2006) 1417-1422.


