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Abstract

In this paper, we study the finitely many constraints of fuzzy relation inequalities problem and opti-
mize the linear objective function on this region which is defined with fuzzy max-Lukasiewicz operator.
In fact Lukasiewicz t-norm is one of the four basic t-norms. A new simplification technique is given to
accelerate the resolution of the problem by removing the components having no effect on the solution
process. Also, an algorithm and one numerical example are offered to abbreviate and illustrate the
steps of the problem resolution process.
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1 Introduction

F
uzzy relation equations (FRE), fuzzy rela-
tion inequalities (FRI) and their connected

problems have been investigated by many re-
searchers in both theoretical and applied areas
[4, 5, 8, 11, 13, 18, 32, 33, 35, 42]. Sanchez [34]
started a development of the theory and applica-
tions of FRE treated as a formalized model for
non-precise concepts. Generally, FRE and FRI
has a number of properties that make it suitable
for formulizing the uncertain information upon
which many applied concepts are usually based.
The application of (FRE) and (FRI) can be seen
in many areas, for instance, fuzzy control, fuzzy
decision making, system analysis, fuzzy model-
ing, fuzzy arithmetic, fuzzy symptom, diagnosis,
and especially fuzzy medical diagnosis and so on
(see [1, 2, 5, 7, 8, 9, 23, 27, 30, 31, 32, 41, 44]).

An interesting extensively investigated kind

∗Corresponding author. shivanian@sci.ikiu.ac.ir
†Department of Mathematics, Imam Khomeini Inter-

national University, Qazvin, 34149-16818, Iran.

of such these problems is the optimization of the
objective functions on the region whose feasible
solutions sets have been defined as FRE or FRI
constraints [3, 10, 14, 16, 18, 21, 22, 25, 26, 37,
38, 39, 40]. Fang and Li solved the linear opti-
mization problem with respect to the FRE con-
straints by considering the max-min composition
[10]. The max-min composition is commonly used
when a system requires conservative solutions in
sense that the goodness of one value can not com-
pensate the badness of another value [21]. Recent
results in the literature, however, show that the
min operator is not always the best choice for in-
tersection operation. Instead, the max-product
composition provided results better or equivalent
to the max-min composition in some application
[1].

The fundamental result for fuzzy relation
equations with max-product composition goes
back to Pedrycz [30]. Recent study in this re-
gard can be found in Bourk and Fisher [3]. They
extended the study of an inverse solution of a sys-
tem of fuzzy relation equations with max-product
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composition. They provided theoretical results
for determining the complete solution sets as well
as the conditions for the existence of resolutions.
Their results showed that such complete solution
sets can be characterized by one maximum solu-
tion and a number of minimal solutions. Further-
more, the monograph by Di Nola, Sessa, Pedrycz
and Sanchez [8] contains a thorough discussion of
this class of equations. Nonetheless, recent pub-
lished literatures show that max-L composition
in which L is Lukasiewicz t-norm is played im-
portant role in applications [6, 7, 24, 28, 29, 36].

In this paper, we consider the linear opti-
mization problem of the fuzzy relation inequali-
ties (FRI) with max-Lukasiewicz operator which,
we show max-L for simplicity [20]. This problem
can be formulated as following:

min ctx
s.t. A ◦L x ≥ d1

B ◦L x ≤ d2

x ∈ [0, 1]n

(1.1)

where A = (aij)m×n, aij ∈ [0, 1], B = (bij)l×n,
bij ∈ [0, 1], are fuzzy matrices, d1 = (d1i )m×1 ∈
[0, 1]m,d2 = (d2i )l×1 ∈ [0, 1]l are fuzzy vectors
and,x = (xj)n×1 ∈ [0, 1]n is unknown fuzzy vec-
tor and, c = (cj)n×1 ∈ Rnis vector of cost coeffi-
cients, and “◦L” denotes the fuzzy max-L opera-
tor. Problem (1.1) can be rewritten as following
problem:

min ctx

s.t. ai ◦L x ≥ d1i , i ∈ I1 = {1, 2, ...,m},
bi ◦L x ≤ d2i , i ∈ I2 = {1, 2, ..., l},
0 ≤ xj ≤ 1, j ∈ J = {1, 2, ..., n},

(1.2)

where ai and bi are i’th row of the matrices A and
B, respectively and the constraints are expressed
by the max-L operator definition as:

∀i ∈ I1 :

ai ◦L x = max
j∈J

{max(aij + xj − 1, 0)} ≥ d1i

∀i ∈ I2 :

bi ◦L x = max
j∈J

{max(aij + xj − 1, 0)} ≤ d2i ,

(1.3)

In Section 2, the feasible solutions set of the
problem (1.2) and its properties are studied also,
necessary and sufficient conditions are given to

realize the feasibility of the problem (1.2). In
Section 2, some simplification operations are pre-
sented to accelerate the resolution process. Also,
in Section 4 an algorithm is introduced to solve
the problem and one example is given to illustrate
the algorithm. Finally, a conclusion is stated in
Section 5.

2 The characteristics of the fea-
sible solution set

Definition 2.1 Define S(A, d1)i = {x ∈ [0, 1]n :
ai ◦L x ≥ d1i } for each i ∈ I1, S(B, d2)i =
{x ∈ [0, 1]n : bi ◦L x ≤ d2i } for each i ∈ I2,
and S(A,B, d1, d2) = S(A, d1)

∩
S(B, d2) = {x ∈

[0, 1]n : A ◦L x ≥ d1, B ◦L x ≤ d2}.

Lemma 2.1 (a) S(A, d1) ̸= ∅ if only if for each
i ∈ I1 there exists some j ∈ J such that d1i ≤ aij.

(b) If S(A, d1) ̸= ∅ then 1 = [1, 1, ..., 1]t1×n is
the single maximum solution of S(A, d1).

Proof.

(a) Suppose x ∈ S(A, d1). Thus, x ∈ S(A, d1)i,
∀i ∈ I1 by Definition 2.1, and thus, by Relation
(1.3), for each i ∈ I1 there are some ji ∈ J such
thatmax(aiji + xji − 1, 0) ≥ d1i . Since for each
i ∈ I1 and j ∈ J we have d1i ≥ 0 andxj ≤ 1, then
d1i ≤ aiji + xji − 1 ≤ aiji therefore for each i ∈ I1

there exists some j ∈ J such that d1i ≤ aij. Con-
versely, suppose there exist some ji ∈ J such that
d1i ≤ aiji, ∀i ∈ I1. Set x = 1 = [1, 1, ..., 1]t1×n.
Since x ∈ [0, 1]n andmax

j∈J
{max(aiji+xji−1, 0)} ≥

max(aiji + xji − 1, 0) ≥ aiji + xji − 1 = aiji ≥ d1i ,
∀i ∈ I1 hence, by Relation (1.3), x ∈ S(A, d1)i,
∀i ∈ I1 and as a result x ∈ S(A, d1).

(b) Proof of this part is easily attained from the
part (a) and this fact that xj ≤ 1,∀j ∈ J .

Lemma 2.2 (a) S(B, d2) ̸= ∅
(b) The single minimum solution of S(B, d2) is
0 = [0, 0, ..., 0]t1×n.

Proof.

Setx = 0 = [0, 0, ..., 0]t1×n. We select i ∈ I2

arbitrary and constant hereafter. Since, 0 ≤
bij , d

2
i ≤ 1 we have bij + xj − 1 ≤ d2i ,∀j ∈ J

thenmax(bij + xj − 1, 0) ≤ d2i ,∀j ∈ J and hence
max
j∈J

{max(bij + xj − 1, 0)} ≤ d2i therefore x ∈

S(B, d2) and then part (a) and (b) are proved.

Theorem 2.1 ( Necessary condition)
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If S(A,B, d1, d2) ̸= ∅ then,∀i ∈ I1∃j ∈ J Such
that d1i ≤ aij.
Proof.
This Theorem is clearly proved from Lemmas 2.1
and 2.2 and Definition 2.1.

Definition 2.2 Set x = (xj)n×1, where xj =
min
i∈I2

{min{1+ d2i − bij , 1}} = min{1,min
i∈I2

{1+ d2i −

bij}}.

Lemma 2.3 x is the single maximum solution of
S(B, d2).
Proof.
Suppose x ∈ S(B, d2) then, x ∈ S(B, d2)i,∀i ∈ I2,
and then, max

j∈J
{max(bij +xj − 1, 0)} ≤ d2i ,∀i ∈ I2

by definition 2.1 and Relation 3, therefore bij +
xj − 1 ≤ d2i ,∀i ∈ I2 and ∀j ∈ J , and hence, for
each j ∈ J , we have xj ≤ 1 + d2i − bij,∀i ∈ I2,
and then, xj ≤ min

i∈I2
{1 + d2i − bij},∀j ∈ J . By the

way, sincexj ≤ 1, ∀j ∈ J , therefore we havexj ≤
min{1,min

i∈I2
{1 + d2i − bij}} = xj, and then x ≤ x,

because of being arbitrary j ∈ J , and the proof is
completed.

Theorem 2.2

S(B, d2) = [0, x].

Proof.
It is clearly proved from part (b) of Lemma 2.2
and Lemma 2.3.

Definition 2.3 Let Ji = {j ∈ J : d1i ≤ aij},∀i ∈
I1. For each j ∈ Ji, we define ix(j) = (ix(j)k)n×1

such that

ix(j)k =

{
1 + d1i − aij k = j
0 k ̸= j

Lemma 2.4 Assume i ∈ I1 is a fixed number.
(a) For each j ∈ Ji, the vectors ix(j) are the min-
imal solutions of S(A, d1)i.
(b) If d1i = 0 then 0 is the single minimum solu-
tion of S(A, d1)i.
Proof.
(a) Suppose j ∈ Ji andi ∈ I1, since ix(j)j = 1 +

d1i − aij then, ix(j) ∈ S(A, d1)i through relation
3. Now by contrary, let there exist x ∈ S(A, d1)i
such thatx < ix(j) , as a result xj < 1 + d1i − aij
and xk = 0 fork ∈ J−{j}. After thataij+xj−1 <
d1i , ∀j ∈ J and followed thatx /∈ S(A, d1)i, by
means of Relation 1.3, that is a contradiction.

(b) The proof of this part of lemma is clear
because the one of the minimal solutions will
beix(j) = 0.

Corollary 2.1 If S(A, d1)i ̸= ∅, then
S(A, d1)i =

∪
j∈Ji

[ix(j), 1], where i ∈ I1.

Proof.
Take into account S(A, d1)i ̸= ∅ means

the vector 1 is the maximum solution and the
vectorsix(j), ∀j ∈ Ji are the minimal solutions
in S(A, d1)i as a result of Lemmas 2.1 and 2.4,
respectively. Now, letx ∈

∪
j∈Ji

[ix(j), 1], so, for

somej ∈ Ji, x ∈ [ix(j), 1] and also x ∈ [0, 1]n

and xj ≥ ix(j)j = 1 + d1i − aij via Definition 2.3,

Hence, x ∈ S(A, d1)i through Relation 1.3. Con-
versely, letx ∈ S(A, d1)i. Then there exits some
j′ ∈ J such that xj′ ≥ 1 + d1i − aij′ as a result of
Relation 1.3. Since,x ∈ [0, 1]n so,1+d1i −aij′ ≤ 1,
thend1i ≤ aij′, and for that reason j′ ∈ Ji. There-
fore, ix(j′) ≤ x ≤ 1 that implies x ∈

∪
j∈Ji

[ix(j), 1].

Definition 2.4 Let e = (e(1), e(1.2), ...e(m)) ∈
J1×J2×...×Jm such that e(i) = j ∈ Ji. We define
x(e)j = max

i∈Iej
{1+d1i −aij} if Iej ̸= ∅ and x(e)j = 0

if Iej = ∅, where Iej = {i ∈ I1 : e(i) = j}.

Lemma 2.5 Let S(A, d1) ̸= ∅, then S(A, d1) =∪
x(e)∈X(e)

[x(e), 1], whereX(e) = {x(e) : e ∈ JI}.

Proof.
If S(A, d1) ̸= ∅ then, S(A, d1)i ̸= ∅, ∀i ∈ I1.
Hence, by Corollary 2.1 and Definitions 2.1 and
2.4, we have

S(A, d1) =
∩
i∈I1

S(A, d1)i =∩
i∈I1

[
∪
j∈Ji

[ix(j), 1]] =
∩
i∈I1

[
∪

e(i)∈Ji

[ix(e(i)), 1]]

=
∪
e∈JI

[
∩
i∈I1

[ix(e(i)), 1]] =
∪
e∈JI

[x(e), 1]

=
∪

x(e)∈X(e)

[x(e), 1] (2.4)

From Lemma 2.5, it is obvious that S(A, d1) =∪
x(e)∈X0(e)

[x(e), 1] and X0(e) = S0(A, d1), where

X0(e) and S0(A, d1) are the set of minimal solu-
tions of X(e) and S(A, d1), respectively.
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Corollary 2.2 (a) If d1i = 0 for i ∈ I1, then we
can remove the i’th row of the matrix A.
(b) If j /∈ Ji, ∀i ∈ I1 then we can omit j’th col-
umn of the matrix A for the purpose of finding
x(e).
Proof.
(a) It is proved from Definition 2.4 and the part
(b) of the Lemma 2.4, because we will get minimal
elements of S(A, d1)
(b) It is proved only by using Definition 2.4.

It is recalled that in part (a), by Definition 2.4
and the part (b) of the Lemma 2.4, the i’th row
of the matrix A has no effect in the calculation
of the vectors x(e) belong to X0(e) = S0(A, d1),
and also in part (b), before calculating the vec-
tors x(e), ∀e ∈ IJ , we can remove j’th column of
the matrix A by the use of Definition 2.4 and set
x(e)j = 0.

Theorem 2.3 If S(A,B, d1, d2) ̸= ∅, then
S(A,B, d1, d2) =

∪
x(e)∈X0(e)

[x(e), x].

Proof.
It is obvious from Definition 2.1, Theorem 2.2
and Lemma 2.5.

Corollary 2.3 (Necessary and Sufficient
Condition)
S(A,B, d1, d2) ̸= ∅ if only if x ∈ S(A, d1) or,
equivalently, S(A,B, d1, d2) ̸= ∅ if only if there
exists some e ∈ JI such thatx(e) ≤ x.
Proof:
It is clearly resulted from Theorem 2.2, Lemma
2.2 and Lemma 2.3.

3 Simplification operations and
resolution algorithm

In order to solve the problem (1.2), it is initially
converted into two follow sub-problems

min c+tx
s.t. A ◦L x ≥ d1 (4a)

B ◦L x ≤ d2

x ∈ [0, 1]n

min c−tx
s.t. A ◦L x ≥ d1 (4b)

B ◦L x ≤ d2

x ∈ [0, 1]n

where, c+j = max(0, cj) and c−j = min(0, cj).
It is understandable that x is an optimal solution
of (4b). Also, (4a) achieves its optimal points at

somex(e) ∈ X0(e). Once x(e0) optimizes (4a), we
set x∗ = (x∗j )n×1 such that

x∗j =

{
xj , cj ≤ 0
x(e0)j , cj > 0

Now following lemma gives us an optimal point
of the problem (1.2).

Lemma 3.1 x∗ is an optimal solution of the
problem (1.2).
Proof. See the Theorem 2.1 in [14].

In order to calculate x∗, it is enough to find x
and x(e0) . Although x is easily attained through
Definition 2.2, but x(e0) is not so, because, X0(e)
is attained by pairwise comparison of X(e) mem-
bers. For that reason, having complete set of
X0(e) is time-consuming, especially, while X(e)
has several members. Therefore, simplification
operations can hasten the resolution of the prob-
lem (4a). With the intention of simplification the
vectors e ∈ JI is removed at what time x(e) is
not optimal of (4a). One of such these operations
is given by Corollary 2.2. Other operations are
attained by follow theorems.

Definition 3.1 LetJ i = {j ∈ Ji : 1 + d1i − aij ≤
xj},∀i ∈ I1 where x comes from Definition 2.2.

Theorem 3.1 S(A,B, d1, d2) ̸= ∅ if only ifJ i ̸=
∅,∀i ∈ I1.
Proof.
Suppose S(A,B, d1, d2) ̸= ∅. Therefore by Corol-
lary 2.3, x ∈ S(A,B, d1, d2) and so we havex ∈
S(A, d1)i,∀i ∈ I1. Thus, for each i ∈ I1there ex-
ists some j ∈ J such that xj ≥ 1 + d1i − aij, as
a result of Corollary 2.12.1, consequently J i ̸= ∅,
∀i ∈ I1. Conversely, supposeJ i ̸= ∅,∀i ∈ I1. It
means that, ∀i ∈ I1 there exists some j ∈ J such
thatxj ≥ 1 + d1i − aij. Hence, x ∈ S(A, d1)i,
∀i ∈ I1 through Corollary 2.1, as a result x ∈
S(A, d1). This fact go with Lemma 2.3 impliesx ∈
S(A,B, d1, d2), therefore, S(A,B, d1, d2) ̸= ∅.

Theorem 3.2 LetS(A,B, d1, d2) ̸= ∅, then
S(A,B, d1, d2) =

∪
x(e)∈X(e)

[x(e), x] where, X(e) =

{x(e) : e ∈ JI = J1 × J2 × ...× Jm}.
Proof.
By considering Theorem 3.1, it is sufficient to
show x(e) /∈ S(A,B, d1, d2)once e /∈ JI .
Supposee /∈ JI . Thus, there exist i′ ∈ I1 and
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j′ ∈ Ji′ such that e(i′) = j′ and 1+d1i′−ai′j′ > xj′,
Then i′ ∈ Iej′ and by means of Definition 2.4,

x(e)j′ = max
i∈Ie

j′
{1 + d1i − aij′} ≥ 1 + d1i′ − ai′j′ >

xj′. Therefore, x(e) ≤ x will not be correct,
and as a consequence of Theorem 3.13.1, we can
obtainx(e) /∈ S(A,B, d1, d2).

It is noticeable that as a result of Definition 3.1,
we haveJ i ⊆ Ji , ∀i ∈ I1 that meansX(e) ⊆ X(e).
Also, by Theorem 3.2, S0(A,B, d1, d2) ⊆ X(e)
in which S0(A,B, d1, d2) is minimal elements of
S(A,B, d1, d2). Thus, the region of search can be
reduced to find the set S0(A,B, d1, d2).

Definition 3.2 Let J∗
i = {j ∈ J i : c−j ̸= 0},

∀i ∈ I1.

Theorem 3.3 Suppose x(e0)is an optimal solu-
tion in (4a) and J∗

i′ ̸= ∅ for somei′ ∈ I1, then
there existx(e′) such thate′(i′) ∈ J∗

i′ and also,
x(e′) is the optimal solution in (4a).

Proof.

Suppose J∗
i′ ̸= ∅ for some i′ ∈ I1 ande0(i

′) = j′.
Define e′ ∈ JI such that e′(i′) = k ∈ J∗

i′ and
e′(i) = e0(i) for each i ∈ I1 and i ̸= i′. By means
of Definition 2.4, we have

x(e0)j′ = max
i∈Ie0

j′

{1 + d1i − aij′}

≥ max
i∈Ie0

j′ &i ̸=i′
{1 + d1i − aij′} = x(e′)j′

and x(e0)j = x(e′)j for each j ∈ J and j ̸= j′, k.
Therefore, with noting c+k = 0 we have:

c+tx(e0) = cj′+x(e0)j′ +∑
j∈J&j ̸=j′

cj+x(e0)j ≥ cj′+x(e
′)j′ +∑

j∈J&j ̸=j′

cj+x(e
′)j = c+tx(e′)

Therefore x(e′) is an optimal solution in (4a)
then, proof is completed.

Corollary 3.1 If J∗
i ̸= ∅ for some i ∈ I1 then by

omitting i’th row we reach a reduced problem for
which each optimal solution is an optimal solution
for the previous (main) problem.

Proof.

It is resulted from Theorem 3.3 and also, notes
that c+j = 0 for each j ∈ J∗

i .

Definition 3.3 Letj1, j2 ∈ J , cj1 > 0 and cj2 >
0. We say j2 dominates j1 if only if
(a) j1 ∈ J i implies j2 ∈ J i,∀i ∈ I1.
(b) For each i ∈ I1such that j1 ∈ J i , cj1(1+d1i −
aij1) ≥ cj2(1 + d1i − aij2) .

Theorem 3.4 Suppose x(e0) is the optimal in
(4a) and j2 dominates j1 for j1, j2 ∈ J , then,
there exist x(e′) such that Ie

′
j1

= ∅ and also, x(e′)
is an optimal solution in (4a).
Proof. Define e′ = (e′(i))m×1 such that

e′(i) =

{
e0(i) i /∈ Ie0j1
j2 i ∈ Ie0j1

It is obvious that Ie
′

j1
= ∅ and so x(e′)j1 = 0. Also,

x(e0)j = x(e′)j for each j ∈ J andj ̸= j1, j2,
x(e′)j2 = 1 + d1i0 − ai0j2. Now, if i0 /∈ Ie0j1 then:

x(e0)j2 = x(e′)j2 = 1 + d1i0 − ai0j2 ,

so we have

c+tx(e0) = c+j1x(e0)j1 +
∑

j∈J&j ̸=j1

cj+x(e0)j

≥
∑

j∈J&j ̸=j1

cj+x(e
′)j = c+tx(e′)

That proof is completed in this case. Otherwise,
assume i0 ∈ Ie0j1 . We show c+tx(e0) ≥ c+tx(e′)
. As a result of definition 2.4, let x(e0)j2 = 1 +
d1i − aij2. Therefore, we have c+j2x(e0)j2 ≥ 0 by
Definition 3.3. Consequently, since

c+tx(e0) = c+j1x(e0)j1 + c+j2x(e0)j2

+
∑

j ̸=j1,j2

c+j x(e0)j ,

and

c+tx(e′) = c+j2x(e
′)j2 +

∑
j ̸=j1,j2

c+j x(e
′)j

It is sufficient to show c+j1x(e0)j1 ≥ c+j2x(e
′)j2.

Now, by definition 2.4, set

x(e0)j1 = 1 + d1i′ − ai′j1

Since j2 dominates j1, so we have

c+j1(1 + d1i′ − ai′j1) ≥ c+j2(1 + d1i0 − ai0j2)

That means c+j1x(e0)j1 ≥ c+j2x(e
′)j2once i0 = i′.

Otherwise, suppose i0 ̸= i′. Since i0 ∈ Ie0j1 and j2
dominates j1, thus

c+j1(1 + d1i0 − ai0j1) ≥ c+j2(1 + d1i0 − ai0j2)



134 E. Shivanian /IJIM Vol. 7, No. 2 (2015) 129-138

Also, through definition 2.4 we have x(e0)j1 =
max
i∈Ie0j1

{1 + d1i − aij1} = 1 + d1i′ − ai′j1that implies

1 + d1i′ − ai′j1 ≥ 1 + d1i − aij1 ,∀i ∈ Ie0j1

Therefore

c+j1(1 + d1i′ − ai′j1) ≥ c+j1(1 + d1i0 − ai0j1)

≥ c+j2(1 + d1i0 − ai0j2)

That results c+j1x(e0)j1 ≥ c+j2x(e
′)j2, hence

c+tx(e0) ≥ c+tx(e′), therefore proof is completed.

Corollary 3.2 If j2 dominates j1 for j1, j2 ∈ J ,
then, by omitting j1’th column we reach a reduced
problem for which each optimal solution is an op-
timal solution for the previous (main) problem.

4 An algorithm for finding an
optimal solution and example

Definition 4.1 Consider the Problem (1.1). We
call A = (aij)m×n and B = (bij)l×nthe char-
acteristic matrices of the matrix A and matrix
B, respectively, whereaij = 1 + d1i − aij for each

i ∈ I1and j ∈ J , also bij = 1 + d2i − bij for each
i ∈ I2and j ∈ J .

Algorithm: Given problem (1.2),

1. Find the matrices A and B by Definition 2.4.

2. If there exists i ∈ I1 such that aij < d1i ,
∀j ∈ J then stop. Problem 1.2 is infeasible
(see Theorem 2.1).

3. Calculate x from B by Definition 2.2.

4. If there exists i ∈ I1 such that d1i = 0 then
remove i’Th row of the matrix A (see the
part (a) of the Corollary 2.2).

5. If aij > xj then, set aij = 0∀i ∈ I1 and
∀j ∈ J .

6. If there exists i ∈ I1 such thataij = 0,∀j ∈ J
then stop. Problem (1.2) is infeasible (see
Theorem 3.1 and 3.2)

7. If there existsj′ ∈ Jsuch that, āij′ = 0, ∀i ∈
I1 then remove j′th column of the matrix A
(see Theorem 3.2) and set x(e0)j′ = 0.

8. For each i ∈ I1, if J∗
i ̸= ∅ then remove i’th

row of the matrix A (see Corollary 3.1).

9. Remove each column j ∈ J from A such that
cj < 0 and set x(e0)j = 0.

10. If j2 dominates j1 then remove the column j1
from A, ∀j1, j2 ∈ J (see Corollary 3.2) and
setx(e0)j1 = 0.

11. Let Jnew
i = {j ∈ J i : āij ̸= 0} and Jnew

I =
Jnew
1 × Jnew

2 × ... × Jnew
m . Find the vectors

x(e), ∀e ∈ Jnew
I by Definition 2.4 from A,

and x(e0) by pairwise comparison between
the vectors x(e).

12. Find x∗ via Lemma 3.1.

5 Numerical example

Consider the problem in below:

min 2x1 − x2 − 3x3 + 2.5x4 − x5

+6x6 − 3x7 + 2x8 + x9 + 5x10



1 0.16 0.37 0.95 0.17 0.07
0.08 0.51 0.26 0.1 0.3 0.4
0.99 0.59 0.28 0.34 0.34 0.74
0.83 0.75 0.25 0.35 0.2 0.5
0.73 0.84 0.94 0.44 0.54 0.84
0.37 0.7 0.55 0.4 0.2 0.2

0.77 0.14 0.8 0.6
0.3 0.35 0.9 1
0.19 0.21 0.7 0.65
0.2 0.2 0.95 0.85
0.99 0.44 0.1 0.5
0.73 0.24 0.98 0.9

 ◦L



x1
x2
x3
x4
x5
x6
x7
x8
x9
x10



≥



0
0.5
0.57
0.6
0.72
0.6


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
0 0.94 0.69 0.49 0.5 0.51

0.02 1 0.82 0.59 0.89 0.76
0.1 0.73 0.4 0.37 0.45 0.7
0.1 0.1 0.3 0.2 0.25 0.49

0.87 0.43 0.2 0.5
0.74 0.52 0.56 0.36
0.69 0.2 0.95 0.85
0.58 0.01 0.8 0.98

 ◦L



x1
x2
x3
x4
x5
x6
x7
x8
x9
x10



≤


0.7
0.76
0.6
0.5


xj ∈ [0, 1]n

Step 1:
The matrices A and B are as following

A =



0 0.84 0.63 0.05 0.83
1.42 0.99 1.24 1.4 1.2
0.58 0.98 1.29 1.23 1.23
0.77 0.85 1.35 1.25 1.4
0.99 0.88 0.78 1.28 1.18
1.23 0.9 1.05 1.2 1.4

0.93 0.23 0.86 0.2 0.4
1.1 1.2 1.15 0.6 0.5
0.83 1.38 1.36 0.87 0.92
1.1 1.4 1.4 0.65 0.75
0.88 0.73 1.28 1.62 1.22
1.4 0.87 1.36 0.62 0.7



B =


1.7 0.76 1.01 1.21 1.2
1.74 0.76 0.94 1.17 0.87
1.5 0.87 1.2 1.23 1.15
1.4 1.4 1.2 1.3 1.25

1.19 0.83 1.27 1.5 1.2
1 1.02 1.24 1.2 1.4
0.9 0.91 1.4 0.65 0.75
1.01 0.92 1.49 0.7 0.52


Step 2:
There is no i ∈ I1 such that aij < d1i ,∀j ∈ J
therefore we can go to step 3.
Step 3:

x =
[
1 0.76 0.94 1 0.87

0.9 0.83 1 0.65 0.52
]

Step 4:
Since d11 = 0, then first row from matrix A is
removed.
Step 5:
In according to this step, A is converted to as
following:

A =


0 0 0 0 0

0.58 0 0 0 0
0.77 0 0 0 0
0.99 0 0.78 0 0
0 0 0 0 0

0 0 0 0.6 0.5
0.83 0 0 0 0
0 0 0 0.65 0

0.88 0.73 0 0 0
0 0 0 0.62 0


Step 6:
There is no i ∈ I1 such that aij = 0, ∀j ∈ J
therefore we can go to step 7.
Step 7:
The second, fourth, fifth and eighth columns in
according with this step are removed and we have
x(e0)2 = x(e0)4 = x(e0)5 = x(e0)8 = 0, by the
way matrix A is converted to following:

A =


0 0 0 0 0.6 0.5

0.58 0 0.83 0 0 0
0.77 0 0 0 0.65 0
0.99 0.78 0.88 0.73 0 0
0 0 0 0 0.62 0


Step 8:
SinceJ∗

5 ̸= ∅, then we can delete fifth row, then
we get to

A =


0 0 0 0 0.6 0.5

0.58 0 0.83 0 0 0
0.77 0 0 0 0.65 0
0 0 0 0 0.62 0


Step 9:
Since c3, c7 < 0 then, we can remove third and
seventh columns and we get to

A =


0 0 0.6 0.5

0.58 0.83 0 0
0.77 0 0.65 0
0 0 0.62 0


Also, we have x(e0)3 = x(e0)7 = 0.
Step10:
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In the attained matrix, first and ninth columns
dominate sixth and tenth columns, respectively.
By removing sixth and tenth columns, matrix A
is converted to

A =


0 0.6

0.58 0
0.77 0.65
0 0.62


Also, we havex(e0)6 = x(e0)10 = 0.
Step11:
In the new matrix, we have Jnew

2 = {9}, Jnew
3 =

{1}, Jnew
4 = {1, 9} and Jnew

6 = {9}. For e1 =
(9, 1, 1, 9), x(e1)1 = 0.77 and x(e1)9 = 0.62, then

x(e1) = (0.77, 0, 0, 0, 0, 0, 0, 0, 0.62, 0)

Also, e2 = (9, 1, 9, 9) results in x(e2)1 = 0.58 and
x(e2)9 = 0.65, then

x(e2) = (0.58, 0, 0, 0, 0, 0, 0, 0, 0.65, 0)

Therefore minimal solutions are x(e1) and x(e2).
Since c+tx(e1) ≥ c+tx(e2), then x(e0) = x(e2) =
(0.58, 0, 0, 0, 0, 0, 0, 0, 0.65, 0) is optimal solution
for (4a).
Step12:
Since x(e0) optimizes the problem with objective
function c+tx then

x∗ = (0.58, 0.76, 0.94, 0, 0.87, 0, 0.83, 0, 0.65, 0)

6 Conclusion

In this paper, we studied the linear optimiza-
tion problem with fuzzy relational inequalities
constraints defined by max-Lukasiewicz operator.
First, we discussed the feasibility region charac-
terization, then; by introducing a new simplifica-
tion technique the usual difficulty of finding the
minimal solutions that optimize the problem with
objective function c+tx was solved. In this rela-
tion an algorithm together with some simplifica-
tion operations to accelerate the problem resolu-
tion was presented. At last, we gave an example
to more illustrate of the problem.
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