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Abstract

The Degasperis-Procesi equation can be derived as a member of a oneparameter family of asymptotic
shallow water approximations to the Euler equations with the same asymptotic accuracy as that of
the Camassa- Holm equation. In this paper, the Degasperis-Procesi equation is solved by using the
Adomian’s decomposition method , modified Adomian’s decomposition method , variational iteration
method , modified variational iteration method, homotopy perturbation method, modified homotopy
perturbation method and homotopy analysis method. The existence and uniqueness of the solution
and convergence of the proposed methods are proved in details. Finally an example shows the accuracy
of these methods.
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1 Introduction

I
t has been shown that many important dy-
namic problems in physics and other fields

are usually characterized by nonlinear evolution
equations which are often called governing equa-
tions [3, 42, 36, 27]. To understand the physical
mechanism of these problems one has to study the
solutions to the associated governing equations.
Searching for the exact solutions of the nonlin-
ear physical models has been a major concern
for both mathematicians and physicists since they
can provide much physical information and more
insight into the physical aspects of the problems
and thus maybe lead to further applications. Re-
cently, some mathematician have studied the nu-
merical solution of the Degasperis-Procesi equa-
tion by numerical method [28, 21, 12, 29, 32, 20].
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In this work, we develope the ADM, MADM,
VIM, MVIM, HPM, MHPM and HAM to solve
this equation as follows [28, 21, 29, 32, 20]:

ut − uxx = uuxxx + 3uxuxx − 4uux. (1.1)

With the initial condition:

u(x, 0) = g(x). (1.2)

The paper is organized as follows. In Section 2,
the mentioned iterative methods are introduced
for solving Eq.(1.1). In Section 3 we prove
the existence , uniqueness of the solution and
convergence of the proposed methods. Finally,
the numerical example is shown in Section 4.
In order to obtain an approximate solution of
Eq.(1.1), let us integrate one time Eq.(1.1) with
respect to t using the initial condition we obtain,
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u(x, t) = g(x)

+

∫ t

0
F1(u(x, τ) dτ +

∫ t

0
F2(u(x, τ)) dτ

+ 3

∫ t

0
F3(u(x, τ)) dτ

− 4

∫ t

0
F4(u(x, τ)) dτ,

(1.3)

where,

F1(u(x, t)) = uxx(x, t),
F2(u(x, t)) = u(x, t)uxxx(x, t),
F3(u(x, t)) = ux(x, t)uxx(x, t),
F4(u(x, t)) = u(x, t)ux(x, t).

In Eq.(1.3), we assume g(x) is bounded for all x
in J = [0, T ](T ∈ R). The terms F1(u(x, t)) ,
F2(u(x, t)), F3(u(x, t)) and F4(u(x, t)) are Lips-
chitz continuous with | F1(u) − F1(u

∗) |≤ L1 |
u − u∗ | , | F2(u) − F2(u

∗) |≤ L2 | u − u∗ |,
| F3(u) − F3(u

∗) |≤ L3 | u − u∗ | and | F4(u) −
F4(u

∗) |≤ L4 | u− u∗ |.

2 The iterative methods

2.1 Description of the MADM and
ADM

The Adomian decomposition method is applied
to the following general nonlinear equation

Lu+Ru+Nu = f, (2.4)

where u(x, t) is the unknown function, L is the
highest order derivative operator which is as-
sumed to be easily invertible, R is a linear dif-
ferential operator of order less than L,Nu rep-
resents the nonlinear terms, and f is the source
term. Applying the inverse operator L−1 to both
sides of Eq.(2.4), and using the given conditions
we obtain

u(x, t) = z(x)− L−1(Ru)− L−1(Nu), (2.5)

where the function z(x) represents the terms aris-
ing from integrating the source term f . The non-
linear operator Nu = G1(u) is decomposed as

G1(u) =

∞∑
n=0

An, (2.6)

where An, n ≥ 0 are the Adomian polynomials
determined formally as follows:

An =
1

n!
[
dn

dλn
[N(

∞∑
i=0

λiui)]]λ=0. (2.7)

The first Adomian polynomials (introduced in [7,
14, 34] ) are:

A0 = G1(u0),

A1 = u1G
′
1(u0),

A2 = u2G
′
1(u0) +

1

2!
u21G

′′
1(u0), (2.8)

A3 = u3G
′
1(u0) + u1u2G

′′
1(u0) +

1

3!
u31G

′′′
1 (u0), ...

2.1.1 Adomian decomposition method

The standard decomposition technique represents
the solution of u(x, t) in Eq.(2.4) as the following
series,

u(x, t) =
∞∑
i=0

ui(x, t), (2.9)

where, the components u0, u1, . . . which can be
determined recursively

u0(x, t) = g(x),

u1(x, t) =

∫ t

0
A0(x, t) dt+

∫ t

0
B0(x, t) dt

+3

∫ t

0
Z0(x, t) dt− 4

∫ t

0
K0(x, t) dt,

...

un+1(x, t) =

∫ t

0
An(x, t) dt+

∫ t

0
Bn(x, t) dt+

3

∫ t

0
Zn(x, t) dt− 4

∫ t

0
Kn(x, t) dt,

n ≥ 0. (2.10)

Substituting Eq.(2.8) into Eq.(2.10) leads to the
determination of the components of u.

2.1.2 The modified Adomian decomposi-
tion method

The modified decomposition method was intro-
duced by Wazwaz [35]. The modified forms was
established on the assumption that the function
g(x) can be divided into two parts, namely g1(x)
and g2(x). Under this assumption we set

g(x) = g1(x) + g2(x). (2.11)
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Accordingly, a slight variation was proposed only
on the components u0 and u1. The suggestion was
that only the part g1 be assigned to the zeroth
component u0, whereas the remaining part g2 be
combined with the other terms given in Eq.(2.11)
to define u1. Consequently, the modified recur-
sive relation

u0 = g1(x),

u1 = g2(x)− L−1(Ru0)− L−1(A0), (2.12)

...

un+1 = −L−1(Run)− L−1(An), n ≥ 1,

was developed. To obtain the approximation so-
lution of Eq.(1.1), according to the MADM, we
can write the iterative formula Eq.(2.12) as fol-
lows:

u0 = g1(x),

u1 = g2(x) +
∫ t
0 A0(x, t) dt+

∫ t
0 B0(x, t) dt

+ 3
∫ t
0 Z0(x, t) dt− 4

∫ t
0 K0(x, t) dt,

...

un+1 =
∫ t
0 An(x, t) dt+

∫ t
0 Bn(x, t) dt

+ 3
∫ t
0 Zn(x, t) dt− 4

∫ t
0 Kn(x, t) dt, n ≥ 1.

(2.13)
The operators Fi(u(x, t)) (i = 1, 2, 3, 4) are usu-
ally represented by the infinite series of the Ado-
mian polynomials as follows:

F1(u) =

∞∑
i=0

Ai,

F2(u) =
∞∑
i=0

Bi,

F3(u) =

∞∑
i=0

Zi,

F4(u) =

∞∑
i=0

Ki.

where Ai, Bi, Zi and Ki are the Adomian poly-
nomials. Also, we can use the following formula
for the Adomian polynomials [13]:

An = F1(sn)−
∑n−1

i=0 Ai,

Bn = F2(sn)−
∑n−1

i=0 Bi,

Zn = F3(sn)−
∑n−1

i=0 Zi,

Kn = F4(sn)−
∑n−1

i=0 Ki.

(2.14)

Where sn =
∑n

i=0 ui(x, t) is the partial sum.

2.2 Description of the VIM and
MVIM

In the VIM [1, 2, 15, 22, 23, 24, 25, 38], it has
been considered the following nonlinear differen-
tial equation:

Lu+Nu = g, (2.15)

where L is a linear operator, N is a nonlinear
operator and g is a known analytical function.
In this case, the functions un may be determined
recursively by

un+1(x, t) = un(x, t)+∫ t

0
λ(x, τ){L(un(x, τ))+N(un(x, τ))−g(x, τ)}dτ,

(2.16)

n ≥ 0,

where λ is a general Lagrange multiplier which
can be computed using the variational theory.
Here the function un(x, τ) is a restricted varia-
tions which means δun = 0. Therefore, we first
determine the Lagrange multiplier λ that will be
identified optimally via integration by parts. The
successive approximation un(x, t), n ≥ 0 of the
solution u(x, t) will be readily obtained upon us-
ing the obtained Lagrange multiplier and by using
any selective function u0. The zeroth approxima-
tion u0 may be selected any function that just sat-
isfies at least the initial and boundary conditions.
With λ determined, then several approximation
un(x, t), n ≥ 0 follow immediately. Consequently,
the exact solution may be obtained by using

u(x, t) = lim
n→∞

un(x, t). (2.17)

The VIM has been shown to solve effectively, eas-
ily and accurately a large class of nonlinear prob-
lems with approximations converge rapidly to ac-
curate solutions. To obtain the approximation
solution of Eq.(1.1), according to the VIM, we
can write iteration Eq.(2.16) as follows:

un+1(x, t) = un(x, t) + L−1
t (λ[un(x, t)− g(x)−∫ t

0 F1(un(x, t)) dt−
∫ t
0 F2(un(x, t)) dt−

3
∫ t
0 F3(un(x, t)) dt+ 4

∫ t
0 F4(un(x, t)) dt]),

n ≥ 0.
(2.18)
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Where,

L−1
t (.) =

∫ t

0
(.) dτ.

To find the optimal λ, we proceed as

δun+1(x, t) = δun(x, t) + δL−1
t (λ[un(x, t)− g(x)

−
∫ t
0 F1(un(x, t)) dt−

∫ t
0 F2(un(x, t)) dt−

3
∫ t
0 F3(un(x, t)) dt+ 4

∫ t
0 F4(un(x, t)) dt]).

(2.19)
From Eq.(2.19), the stationary conditions can be
obtained as follows: λ

′
= 0 and 1+λ = 0. There-

fore, the Lagrange multipliers can be identified
as λ = −1 and by substituting in Eq.(2.18), the
following iteration formula is obtained.

u0(x, t) = g(x),

un+1(x, t) = un(x, t)− L−1
t (un(x, t)− g(x)

−
∫ t
0 F1(un(x, t)) dt−

∫ t
0 F2(un(x, t)) dt− 3∫ t

0 F3(un(x, t)) dt+ 4
∫ t
0 F4(un(x, t)) dt), n ≥ 0.

(2.20)
To obtain the approximation solution of Eq.(1.1),
based on the MVIM [4, 5, 37], we can write the
following iteration formula:

u0(x, t) = g(x),

un+1(x, t) = un(x, t)−

L−1
t (−

∫ t
0 F1(un(x, t)− u(x, t)) dt−∫ t

0 F2(un(x, t)− u(x, t)) dt−

3
∫ t
0 F3(un(x, t)− u(x, t)) dt

+4
∫ t
0 F4(un(x, t)− u(x, t)) dt), n ≥ 0.

(2.21)

Eq.(2.20) and Eq.(2.21) will enable us to de-
termine the components un(x, t) recursively for
n ≥ 0.

2.3 Description of the HAM

Consider

N [u] = 0,

where N is a nonlinear operator, u(x, t) is an
unknown function and x is an independent vari-
able. let u0(x, t) denote an initial guess of the

exact solution u(x, t), h ̸= 0 an auxiliary param-
eter, H1(x, t) ̸= 0 an auxiliary function, and L
an auxiliary linear operator with the property
L[s(x, t)] = 0 when s(x, t) = 0. Then using
q ∈ [0, 1] as an embedding parameter, we con-
struct a homotopy as follows:

(1− q)L[ϕ(x, t; q)− u0(x, t)]

−qhH1(x, t)N [ϕ(x, t; q)] =

Ĥ[ϕ(x, t; q);u0(x, t),H1(x, t), h, q]. (2.22)

It should be emphasized that we have great free-
dom to choose the initial guess u0(x, t), the aux-
iliary linear operator L, the non-zero auxiliary
parameter h, and the auxiliary function H1(x, t).
Enforcing the homotopy Eq.(2.22) to be zero, i.e.,

Ĥ1[ϕ(x, t; q);u0(x, t),H1(x, t), h, q] = 0, (2.23)

we have the so-called zero-order deformation
equation

(1− q)L[ϕ(x, t; q)− u0(x, t)] =

qhH1(x, t)N [ϕ(x, t; q)]. (2.24)

When q = 0, the zero-order deformation
Eq.(2.24) becomes

ϕ(x; 0) = u0(x, t), (2.25)

and when q = 1, since h ̸= 0 andH1(x, t) ̸= 0, the
zero-order deformation Eq.(2.24) is equivalent to

ϕ(x, t; 1) = u(x, t). (2.26)

Thus, according to Eq.(2.25) and Eq.(2.26), as
the embedding parameter q increases from 0 to 1,
ϕ(x, t; q) varies continuously from the initial ap-
proximation u0(x, t) to the exact solution u(x, t).
Such a kind of continuous variation is called de-
formation in homotopy [8, 11, 16, 30, 31]. Due to
Taylor’s theorem, ϕ(x, t; q) can be expanded in a
power series of q as follows

ϕ(x, t; q) = u0(x, t) +
∞∑

m=1

um(x, t)qm, (2.27)

where,

um(x, t) =
1

m!

∂mϕ(x, t; q)

∂qm
|q=0 .

Let the initial guess u0(x, t), the auxiliary lin-
ear parameter L, the nonzero auxiliary parame-
ter h and the auxiliary function H1(x, t) be prop-
erly chosen so that the power series Eq.(2.27) of
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ϕ(x, t; q) converges at q = 1, then, we have under
these assumptions the solution series

u(x, t) = ϕ(x, t; 1) = u0(x, t) +

∞∑
m=1

um(x, t).

(2.28)
From Eq.(2.27), we can write Eq.(2.24) as follows

(1− q)L[ϕ(x, t, q)− u0(x, t)] =

(1− q)L[
∑∞

m=1 um(x, t) qm] =

q h H1(x, t)N [ϕ(x, t, q)]⇒

L[
∑∞

m=1 um(x, t) qm]− q L[
∑∞

m=1 um(x, t)qm]

= q h H1(x, t)N [ϕ(x, t, q)]
(2.29)

By differentiating Eq.(2.29) m times with respect
to q, we obtain

{L[
∑∞

m=1 um(x, t) qm]−

q L[
∑∞

m=1 um(x, t)qm]}(m) =

{q h H1(x, t)N [ϕ(x, t, q)]}(m) =

m! L[um(x, t)− um−1(x, t)] =

h H1(x, t) m
∂m−1N [ϕ(x,t;q)]

∂qm−1 |q=0 .

Therefore,

L[um(x, t)− χmum−1(x, t)] =

hH1(x, t)ℜm(um−1(x, t)),
(2.30)

where,

ℜm(um−1(x, t)) =

1

(m− 1)!

∂m−1N [ϕ(x, t; q)]

∂qm−1
|q=0, (2.31)

and

χm =

{
0, m ≤ 1
1, m > 1

Note that the high-order deformation Eq.(3.7)
is governing the linear operator L, and the
term ℜm(um−1(x, t)) can be expressed simply by
Eq.(2.31) for any nonlinear operator N . To ob-
tain the approximation solution of Eq.(1.1), ac-

cording to HAM, let

N [u(x, t)] = u(x, t)− g(x)−
∫ t
0 F1(u(x, t)) dt−∫ t

0 F2(u(x, t)) dt− 3
∫ t
0 u(x, t) dt

+4
∫ t
0 F4(u(x, t)) dt− 3

∫ t
0 u(x, t) dt,

so,

ℜm(um−1(x, t)) = um−1(x, t)− g(x)−∫ t
0 F1(um−1(x, t)) dt−

∫ t
0 F2(um−1(x, t)) dt−

3
∫ t
0 F3(um−1(x, t)) dt+ 4

∫ t
0 F4(um−1(x, t)) dt.

(2.32)
Substituting Eq.(2.32) into Eq.(3.7)

L[um(x, t)− χmum−1(x, t)] =

hH1(x, t)[um−1(x, t)− g(x)−∫ t
0 F1(um−1(x, t)) dt−

∫ t
0 F2(um−1(x, t)) dt−

3
∫ t
0 F3(um−1(x, t)) dt+ 4

∫ t
0 F4(um−1(x, t)) dt.

+(1− χm)g(x)(x)].
(2.33)

We take an initial guess u0(x, t) = g(x), an aux-
iliary linear operator Lu = u, a nonzero auxil-
iary parameter h = −1, and auxiliary function
H1(x, t) = 1. This is substituted into Eq.(2.33)
to give the recurrence relation

u0(x, t) = g(x),

un+1(x, t) =
∫ t
0 F1(un(x, t)) dt+∫ t

0 F2(un(x, t)) dt+ 3
∫ t
0 F3(un(x, t)) dt

−4
∫ t
0 F4(un(x, t)) dt, n ≥ 0.

(2.34)

Therefore, the solution u(x, t) becomes

u(x, t) =
∑∞

n=0 un(x, t) = g(x)

+
∑∞

n=1

( ∫ t
0 F1(un(x, t)) dt+

∫ t
0 F2(un(x, t))dt

+3
∫ t
0 un(x, t) dt− 4

∫ t
0 F4(un(x, t)) dt.

(2.35)
Which is the method of successive approxima-
tions. If

| un(x, t) |< 1,

then the series solution Eq.(2.35) convergence
uniformly.
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2.4 Description of the HPM and
MHPM

To explain HPM [9, 10, 18, 33, 39, 40, 41] , we
consider the following general nonlinear differen-
tial equation:

Lu+Nu = f(u), (2.36)

with initial conditions

u(x, 0) = f(x).

According to HPM, we construct a homotopy
which satisfies the following relation

H(u, p) = Lu−Lv0 + p Lv0 + p [Nu− f(u)] = 0,
(2.37)

where p ∈ [0, 1] is an embedding parameter and
v0 is an arbitrary initial approximation satisfying
the given initial conditions. In HPM, the solution
of Eq.(2.37) is expressed as

u(x, t) = u0(x, t) + p u1(x, t) + p2 u2(x, t) + ...
(2.38)

Hence the approximate solution of Eq.(2.36) can
be expressed as a series of the power of p, i.e.

u = lim
p→1

u = u0 + u1 + u2 + ...

where,

u0(x, t) = g(x),
...

um(x, t) =
∑m−1

k=0

∫ t
0 F1(um−k−1(x, t)) dt+∫ t

0 F2(um−k−1(x, t)) dt+ 3
∫ t
0 F3(um−k−1(x, t)) dt

−4
∫ t
0 F4(um−k−1(x, t)) dt, m ≥ 1.

(2.39)
To explain MHPM [6, 17, 26], we consider
Eq.(1.1) as

L(u) = u(x, t)− g(x)−
∫ t
0 F1(um−k−1(x, t)) dt−∫ t

0 F2(um−k−1(x, t)) dt− 3
∫ t
0 F3(um−k−1(x, t)) dt

+4
∫ t
0 F4(um−k−1(x, t)) dt.

Where F1(u(x, t)) = g1(x)h1(t), F2(u(x, t)) =
g2(x)h2(t), F3(u(x, t)) = g3(x)h3(t) and
F4(u(x, t)) = g4(x)h4(t). We can define homo-
topy H(u, p,m) by

H(u, 0,m) = f(u), H(u, 1,m) = L(u),

where, m is an unknown real number and

f(u(x, t)) = u(x, t)− z(x, t).

Typically we may choose a convex homotopy by
H(u, p,m) = (1− p)f(u) + p L(u)

+p (1−p)[m(g1(x)+ g2(x)+ g3(x))+ g4(x)] = 0,
(2.40)

0 ≤ p ≤ 1.

Where m is called the accelerating parameters,
and for m = 0 we define H(u, p, 0) = H(u, p),
which is the standard HPM. The convex homo-
topy Eq.(2.40) continuously trace an implicity
defined curve from a starting point H(u(x, t) −
f(u), 0,m) to a solution function H(u(x, t), 1,m).
The embedding parameter p monotonically in-
crease from 0 to 1 as trivial problem f(u) =
0 is continuously deformed to original problem
L(u) = 0. The MHPM uses the homotopy pa-
rameter p as an expanding parameter to obtain

v =
∞∑
n=0

pnun, (2.41)

when p → 1, Eq.(2.37) corresponds to the origi-
nal one and Eq.(2.41) becomes the approximate
solution of Eq.(1.1), i.e.,

u = lim
p→1

v =

∞∑
m=0

um.

Where,

u0(x, t) = g(x),

u1(x, t) =
∫ t
0 F1(u0(x, t)) dt+

∫ t
0 F2(u0(x, t)) dt

+3
∫ t
0 F3(u0(x, t)) dt

−m(g1(x) + g2(x) + g3(x) + g4(x)),

u2(x, t) =
∫ t
0 F1(u1(x, t)) dt+

∫ t
0 F2(u1(x, t)) dt

+3
∫ t
0 F3(u1(x, t)) dt− 4

∫ t
0 F4(um−k−1(x, t)) dt

+m(g1(x) + g2(x) + g3(x) + g4(x)),
...

um(x, t) =
∑m−1

k=0

∫ t
0 F1(um−k−1(x, t))dt+∫ t

0 F2(um−k−1(x, t))dt+ 3
∫ t
0 F3(um−k−1(x, t))dt

−4
∫ t
0 F4(um−k−1(x, t))dt, m ≥ 3.

(2.42)
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3 Existence and convergency of
iterative methods

We set,

α1 := T (L1 + L2 + 3L3 + 4L4),

β1 := 1− T (1− α1), γ1 := 1− Tα1.

Theorem 3.1 Let 0 < α1 < 1, then Degasperis-
Procesi Eq.(1.1), has a unique solution.
Proof. Let u and u∗ be two different solutions
of Eq.(1.3) then

| u− u∗ |=|
∫ t
0 [F1(u(x, t))− F1(u

∗(x, t))] dt

+
∫ t
0 [F2(u(x, t))− F2(u

∗(x, t))] dt

+3
∫ t
0 [F3(u(x, t))− F3(u

∗(x, t))] dt−

4
∫ t
0 [F4(u(x, t))− F4(u

∗(x, t))] dt |
≤

∫ t
0 | F1(u(x, t))− F1(u

∗(x, t)) | dt+∫ t
0 | F2(u(x, t))− F2(u

∗(x, t)) | dt+∫ t
0 | F3(u(x, t))− F3(u

∗(x, t)) | dt+

4
∫ t
0 | F4(u(x, t))− F4(u

∗(x, t)) | dt ≤

T (L1 + L2 + 3L3 + 4L4) | u− u∗ |
= α1 | u− u∗ | .

From which we get (1 − α1) | u − u∗ |≤ 0. Since
0 < α1 < 1, then | u − u∗ |= 0. Implies u = u∗

and completes the proof. 2

Theorem 3.2 The series solution u(x, t) =∑∞
i=0 ui(x, t) of Eq.(1.1) using MADM conver-

gence when 0 < α1 < 1, | u1(x, t) |< ∞.
Proof. Denote as (C[J ], ∥ . ∥) the Banach space
of all continuous functions on J with the norm
∥ g(t) ∥= max | g(t) |, for all t in J . Define
the sequence of partial sums sn, let sn and sm be
arbitrary partial sums with n ≥ m. We are go-
ing to prove that sn is a Cauchy sequence in this
Banach space:

∥ sn − sm ∥= max∀t∈J | sn − sm |=

max∀t∈J |
∑n

i=m+1 ui(x, t) |=

max∀t∈J |
∫ t
0 (
∑n−1

i=mAi) dt+
∫ t
0 (
∑n−1

i=mBi) dt+

3
∫ t
0 (
∑n−1

i=m Zi) dt− 4
∫ t
0 (
∑n−1

i=mKi) dt | .

From [13], we have∑n−1
i=mAi = F1(sn−1)− F1(sm−1),∑n−1
i=mBi = F2(sn−1)− F2(sm−1),∑n−1
i=m Zi = F3(sn−1)− F3(sm−1),∑n−1
i=mKi = F4(sn−1)− F4(sm−1).

So,

∥ sn − sm ∥=

max∀t∈J |
∫ t
0 [F1(sn−1)− F1(sm−1)] dt+∫ t

0 [F2(sn−1)− F2(sm−1)] dt+

3
∫ t
0 [F3(sn−1)− (F3(sm−1)] dt−

4
∫ t
0 [F4(sn−1)− (F4(sm−1)] dt |≤∫ t

0 | F1(sn−1)− F1(sm−1) | dt+∫ t
0 | F2(sn−1)− F2(sm−1) | dt

+3
∫ t
0 | F3(sn−1)− F3(sm−1) | dt+

4
∫ t
0 | F4(sn−1)− F4(sm−1) | dt ≤ α1 ∥ sn − sm ∥ .

Let n = m+ 1, then

∥ sn − sm ∥≤ α1 ∥ sm − sm−1 ∥≤

α2
1 ∥ sm−1 − sm−2 ∥≤ ... ≤ αm

1 ∥ s1 − s0 ∥ .

From the triangle inquality we have

∥ sn − sm ∥≤∥ sm+1 − sm ∥

+ ∥ sm+2 − sm+1 ∥ +...+ ∥ sn − sn−1 ∥

≤ [αm
1 + αm+1

1 + ...+ αn−m−1
1 ] ∥ s1 − s0 ∥

≤ αm
1 [1 + α1 + α2

1 + ...+ αn−m−1
1 ] ∥ s1 − s0 ∥≤

αm
1 [

1−αn−m
1

1−α1
] ∥ u1(x, t) ∥ .

Since 0 < α1 < 1, we have (1− αn−m
1 ) < 1, then

∥ sn−sm ∥≤
αm
1

1− α1
max∀t∈J | u1(x, t) | . (3.43)

But | u1(x, t) |< ∞ , so, as m → ∞, then
∥ sn−sm ∥→ 0. We conclude that sn is a Cauchy
sequence in C[J ], therefore the series is conver-
gence and the proof is complete. 2
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Theorem 3.3 The maximum absolute trunca-
tion error of the series solution u(x, t) =∑∞

i=0 ui(x, t) to Eq.(1.1) by using MADM is esti-
mated to be

max | u(x, t)−
m∑
i=0

ui(x, t) |≤
kαm

1

1− α1
. (3.44)

Proof. From inequality Eq.(3.43), when n →
∞, then sn → u and

max | u1(x, t) |≤ T (max∀t∈J | F1(u0(x, t)) | +

max∀t∈J | F2(u0(x, t)) | +

3max∀t∈J | F3(u0(x, t)) | +

4max∀t∈J | F4(u0(x, t)) |).

Therefore,

∥ u(x, t)− sm ∥≤
αm
1

1−α1
T (max∀t∈J | F1(u0(x, t)) |

+max∀t∈J | F2(u0(x, t)) | +

3max∀t∈J | F3(u0(x, t)) | +

4max∀t∈J | F4(u0(x, t)) |).

Finally the maximum absolute truncation error
in the interval J is obtained by Eq.(3.44).

Theorem 3.4 The solution un(x, t) obtained
from the relation Eq.(2.20) using VIM converges
to the exact solution of the Eq.(1.1) when 0 <
α1 < 1 and 0 < β1 < 1.
Proof.

un+1(x, t) = un(x, t)− L−1
t ([un(x, t)− g(x)−∫ t

0 F1(un(x, t)) dt−
∫ t
0 F2(un(x, t)) dt

−3
∫ t
0 F3(un(x, t)) dt+ 4

∫ t
0 F4(un(x, t)) dt.])

(3.45)

u(x, t) = u(x, t)− L−1
t ([u(x, t)− g(x)−∫ t

0 F1(u(x, t)) dt−
∫ t
0 F2(u(x, t)) dt

−3
∫ t
0 F3(u(x, t)) dt+ 4

∫ t
0 F4(u(x, t)) dt.])

(3.46)

By subtracting relation Eq.(3.45) from Eq.(3.46),

un+1(x, t)− u(x, t) = un(x, t)− u(x, t)−

L−1
t (un(x, t)− u(x, t)

∫ t
0 [F1(un(x, t))−

F1(u(x, t))] dt−∫ t
0 [F2(un(x, t))− F2(u(x, t))] dt−

3
∫ t
0 [F3(un(x, t))− F3(u(x, t))] dt+

4
∫ t
0 [F4(un(x, t))− F4(u(x, t))] dt),

if we set, en+1(x, t) = un+1(x, t) − un(x, t),
en(x, t) = un(x, t) − u(x, t),| en(x, t∗) |= maxt |
en(x, t) | then since en is a decreasing function
with respect to t from the mean value theorem
we can write,

en+1(x, t) = en(x, t) + L−1
t (−en(x, t)−∫ t

0 [F1(un(x, t))− F1(u(x, t))] dt

−
∫ t
0 [F2(un(x, t))− F2(u(x, t))] dt−

3
∫ t
0 [F3(un(x, t))− F3(u(x, t))] dt+

4
∫ t
0 [F4(un(x, t))− F4(u(x, t))] dt)

≤ en(x, t) + L−1
t [−en(x, t)+

L−1
t | en(x, t) | (T (L1 + L2 + 3L3 + 4L4)]

≤ en(x, t)− Ten(x, η)+

T (L1 + L2 + 3L3 + 4L4)L
−1
t L−1

t | en(x, t) |

≤ (1− T (1− α1) | en(x, t∗) |,

where 0 ≤ η ≤ t. Hence, en+1(x, t) ≤ β1 |
en(x, t

∗) | . Therefore,

∥en+1∥= max∀t∈J | en+1 |≤

β1 max∀t∈J | en |≤ β1∥en∥.

Since 0 < β1 < 1, then ∥en∥→ 0. So, the series
converges and the proof is complete. 2

Theorem 3.5 The solution un(x, t) obtained
from the Eq.(2.22) using MVIM for the Eq.(1.1)
converges when 0 < α1 < 1 , 0 < γ1 < 1. Proof.
The Proof is similar to the previous theorem.
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Theorem 3.6 The maximum absolute trunca-
tion error of the series solution u(x, t) =∑∞

i=0 ui(x, t)to Eq.(1.1) by using VIM is esti-
mated to be

∥en∥≤
βn
1 k

′

1− β1
, k

′
= max | u1(x, t) | .

Proof.

un+1 − un = (un+1 − u) + (u− un) = en − en+1

→ en = en+1 − (un+1 − un)
∥en∥= ∥en+1 − (un+1 − un)∥≤

∥en+1∥+∥un+1 − un∥≤ β1∥en∥+∥un+1 − un∥

→ ∥en∥≤ ∥un+1−un∥
1−β1

≤ βn
1 k

′

1−β1
. 2

Theorem 3.7 If the series solution Eq.(2.34) of
Eq.(1.1) using HAM convergent then it converges
to the exact solution of the Eq.(1.1). Proof. We
assume:

u(x, t) =
∑∞

m=0 um(x, t),

F̂1(u(x, t)) =
∑∞

m=0 F1(um(x, t)),

F̂2(u(x, t)) =
∑∞

m=0 F2(um(x, t)),

F̂3(u(x, t)) =
∑∞

m=0 F3(um(x, t)),

F̂4(u(x, t)) =
∑∞

m=0 F4(um(x, t)).

Where,
lim

m→∞
um(x, t) = 0.

We can write,∑n
m=1[um(x, t)− χmum−1(x, t)] =

u1 + (u2 − u1) + ...+ (un − un−1) (3.47)

= un(x, t).

Hence, from Eq.(3.47),

lim
n→∞

un(x, t) = 0. (3.48)

So, using and the definition of the linear operator
L, we have

∞∑
m=1

L[um(x, t)− χmum−1(x, t)] =

L[

∞∑
m=1

[um(x, t)− χmum−1(x, t)]] = 0.

therefore from , we can obtain that,

∞∑
m=1

L[um(x, t)− χmum−1(x, t)] = h

H1(x, t)

∞∑
m=1

ℜm−1(um−1(x, t)) = 0.

Since h ̸= 0 and H1(x, t) ̸= 0 , we have

∞∑
m=1

ℜm−1(um−1(x, t)) = 0. (3.49)

By substituting ℜm−1(um−1(x, t)) into the rela-
tion Eq.(3.49) and simplifying it , we have∑∞

m=1ℜm−1(um−1(x, t)) =∑∞
m=1[

∫ t
0 F1(um−1(x, t)) dt

+
∫ t
0 F2(um−1(x, t)) dt+

3
∫ t
0 F3(um−1(x, t)) dt−

4
∫ t
0 F4(um−1(x, t)) dt+ (1− χm)g(x)]

= u(x, t)− g(x)−
∫ t
0 F̂1(u(x, t)) dt−∫ t

0 F̂2(u(x, t)) dt− 3
∫ t
0 F̂3(u(x, t)) dt+

4
∫ t
0 F̂4(u(x, t)) dt.

(3.50)

From Eq.(3.49) and Eq.(3.50), we have

u(x, t) = g(x)−
∫ t
0 F̂1(u(x, t)) dt−∫ t

0 F̂2(u(x, t)) dt− 3
∫ t
0 F̂3(u(x, t)) dt+

4
∫ t
0 F̂4(u(x, t)) dt.

Therefore, u(x, t) must be the exact solution.
2

Theorem 3.8 The maximum absolute trunca-
tion error of the series solution u(x, t) =∑∞

i=0 ui(x, t) to Eq.(1.1) by using HAM is esti-
mated to be

∥en∥≤
αn
1k

′

1− α1
, k

′
= max | u1(x, t) | .

Proof.The Proof is similar to the 3.6 theorem

Theorem 3.9 If | um(x, t) |≤ 1, then the se-
ries solution u(x, t) =

∑∞
i=0 ui(x, t) of Eq.(1.1)

converges to the exact solution by using HPM.
Proof. We set,

ϕn(x, t) =
n∑

i=1

ui(x, t),
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ϕn+1(x, t) =

n+1∑
i=1

ui(x, t).

| ϕn+1(x, t)− ϕn(x, t) |=

D(ϕn+1(x, t), ϕn(x, t)) =

D(ϕn + un, ϕn) = D(un, 0) ≤∑m−1
k=0

∫ t
0 | F1(um−k−1(x, t)) | dt+∫ t

0 | F2(um−k−1(x, t)) | dt

+3
∫ t
0

∫ t
0 | F3(um−k−1(x, t)) | dt−

4
∫ t
0 | F4(um−k−1(x, t)) | dt.

→
∞∑
n=0

∥ ϕn+1(x, t)− ϕn(x, t) ∥≤

mα1 | g(x) |
∞∑
n=0

(mα1)
n.

Therefore,

lim
n→∞

un(x, t) = u(x, t).

Theorem 3.10 If | um(x, t) |≤ 1, then the se-
ries solution u(x, t) =

∑∞
i=0 ui(x, t) of Eq.(1.1)

converges to the exact solution by using MHPM.
Proof.The Proof is similar to the previous theo-
rem.

Theorem 3.11 The maximum absolute trun-
cation error of the series solution u(x, t) =∑∞

i=0 ui(x, t) to Eq.(1.1) by using HPM is esti-
mated to be

∥en∥≤
(nα1)

nnk
′

1− α1
, k

′
= max | u1(x, t) | .

Proof.The Proof is similar to the 3.6 theorem

4 Numerical example

In this section, we compute a numerical exam-
ple which is solved by the ADM, MADM, VIM,
MVIM, HPM, MHPM and HAM. The program
has been provided with Mathematica 6 according
to the following algorithm where ε is a given pos-
itive value.
Algorithm 1:
Step 1. Set n← 0.

Step 2. Calculate the recursive relations
Eq.(2.10) for ADM , Eq.(2.13) for MADM,
Eq.(2.34) for HAM, Eq.(2.39) for HPM and
Eq.(2.42) for MHPM.

Step 3. If | un+1 − un |< ε then go to
step 4, else n← n+ 1 and go to step 2.

Step 4. Print u(x, t) =
∑n

i=0 ui(x, t) as
the approximate of the exact solution.

Algorithm 2:

Step 1. Set n← 0.

Step 2. Calculate the recursive relations
Eq.(2.20) for VIM and Eq.(2.21) for MVIM.

Step 3. If | un+1 − un |< ε then go to
step 4, else n← n+ 1 and go to step 2.

Step 4. Print un(x, t) as the approximate
of the exact solution.

Example 4.1 Consider the Degasperis-Procesi
equation as follows:

ut(x, t)− uxx(x, t) = u(x, t)uxxx(x, t)+

3ux(x, t)uxx(x, t)− 4u(x, t)ux(x, t).

With initial condition:

g(x) = x2 + 5.

ϵ = 10−4.

Table 1, shows that, approximate solution of the
Degasperis-Procesi equation is convergence with
15 iterations by using the MHPM . By comparing
the results of Table 1, we can observe that the
HAM is more rapid convergence than the ADM,
MADM, VIM, MVIM, HPM and HAM.

5 Conclusion

The modified homotopy perturbation method
has been shown to solve effectively, easily and
accurately a large class of nonlinear problems
with the approximations which are convergent
are rapidly to exact solutions. In this work, the
MHPM has been successfully employed to ob-
tain the approximate solution to analytical so-
lution of the Degasperis-Procesi equation. For



Sh. S. Behzadi /IJIM Vol. 5, No. 2 (2013) 129-141 139

Table 1: Numerical results for Example 4.1

(x,t) Errors

ADM(n=29) MADM(n=27) VIM(n=22) MVIM(n=19)

(0.1, 0.12) 0.00083646 0.00072454 0.00054954 0.00041257
(0.2, 0.15) 0.00084357 0.00073423 0.00055225 0.00042089
(0.3, 0.29) 0.00085219 0.00074308 0.00056675 0.00043465
(0.4, 0.35) 0.00086964 0.00075607 0.00057112 0.00044812
(0.5, 0.40) 0.00087342 0.00076178 0.00058556 0.00045779
(0.7, 0.47) 0.00088255 0.00077609 0.00059348 0.00046347

(Continue Table 1).

(x,t) Errors

HPM(n=20) HAM(n=17) MHPM(n=15)

(0.1, 0.12) 0.00064322 0.00433885 0.00356428
(0.2, 0.15) 0.00652491 0.00044475 0.00036695
(0.3, 0.29) 0.00066624 0.00045513 0.00037517
(0.4, 0.35) 0.00067715 0.00046729 0.00037851
(0.5, 0.40) 0.00068433 0.00047146 0.00038853
(0.7, 0.47) 0.00069677 0.00048572 0.00039608

this purpose, we showed that the MHPM is more
rapid convergence than the ADM, MADM, VIM,
MVIM, HPM and HAM.
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