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Abstract

In this paper, the Picard method is proposed to solve the Bernoulli equation with fuzzy initial condition
under generalized H-differentiability. The existence and uniqueness of the solution and convergence
of the proposed method are proved in details. Finally an example shows the accuracy of this method.
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1 Introduction

A
s we know the fuzzy differential equations
FDE are one of the important part of the

fuzzy analysis theory that play major role in nu-
merical analysis. For example, population mod-
els [5] , the golden mean [52], quantum optics
and gravity [54], control chaotic systems [50, 61],
medicine [11, 26]. Recently, some mathemati-
cians have studied FDE [1, 2, 3, 4, 15, 19, 20,
21, 22, 23, 29, 34, 35, 36, 37, 44, 45, 47, 48,
58, 59, 60, 64, 65, 66, 57, 42, 24, 43, 31, 46, 16,
56, 25, 67, 41, 51, 63, 9]. The fuzzy partial dif-
ferential equations FPDE are very important in
mathematical models of physical, chemical, bio-
logical, economics and other fields. Some mathe-
maticians have studied solution of FPDE by nu-
merical methods [62, 8, 27, 39, 53, 68, 12, 13, 28].
The Bernoulli differential equation is named after
the Switzerland nobleman Count Jakob Bernoulli
(1655-1705). The book of Hoffman [18] contains
the fundamental theories of Bernoulli equation,
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with applications to random processes, optimal
control, and diffusion problems. Besides impor-
tant engineering science applications that today
are considered classical, such as stochastic real-
ization theory, optimal control, robust stabiliza-
tion, and network synthesis, the newer applica-
tions include such areas as financial mathematics
[14, 55, 40, 6]. In this work, we present the Pi-
card method to solve the Bernoulli equation with
fuzzy condition as follows:

ũ
′
(t) = Q̃(t)ũ(t) + R̃(t)ũn(t), 0 ≤ t ≤ T, T ∈ R,

(1.1)
with fuzzy initial condition:

ũ(0) = ã0, (1.2)

where Q̃(t), R̃(t) and P̃ (t) are fuzzy functions and
ã0 is fuzzy constant value.
The structure of this paper is organized as fol-
lows: In Section 2, some basic notations and def-
initions in fuzzy calculus are brought. In Sec-
tion 3, Eq.(1.1) and Eq.(1.2) are solved by Picard
method. The existence and uniqueness of the so-
lution and convergence of the proposed method
are proved in Section 4 respectively. Finally, in
Section 5, the accuracy of method by solving a nu-
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merical examples are illustrated and a brief con-
clusion is given in Section 6.

2 Basic concepts

Here basic definitions of a fuzzy number are given
as follows, [32, 33, 49, 10, 17]

Definition 2.1 An arbitrary fuzzy number ũ
in the parametric form is represented by an
ordered pair of functions (u, u) which satisfy the
following requirements:

(i) u : r → u(r) ∈ R is a bounded left-
continuous non-decreasing function over [0, 1],
(ii) u : r → u(r) ∈ R is a bounded left-continuous
non-increasing function over [0, 1],
(iii) u(r) ≤ u(r), 0 ≤ r ≤ 1.

Definition 2.2 For arbitrary fuzzy numbers
ũ, ṽ ∈ E , we use the distance (Hausdorff metric)
[30]
D(u(r), v(r)) = max{supr∈[0,1]|u(r) −
v(r)|, sup |u(r)− v(r)|},
and it is shown [7] that (E , D) is a complete
metric space and the following properties are well
known:

D(ũ+ w̃, ṽ + w̃) = D(ũ, ṽ), ∀ ũ, ṽ ∈ E,
D(kũ, kṽ) =| k | D(ũ, ṽ),
∀ k ∈ R, ũ, ṽ ∈ E,
D(ũ+ ṽ, w̃ + ẽ) ≤ D(ũ, w̃) +D(ṽ, ẽ),
∀ ũ, ṽ, w̃, ẽ ∈ E.

Definition 2.3 Consider x, y ∈ E. If there ex-
ists z ∈ E such that x = y+ z then z is called the
H- difference of x and y, and is denoted by x⊖y.
[19]

Proposition 2.1 If f : (a, b) → E is a continu-
ous fuzzy-valued function then g(x) =

∫ x
a f(t) dt

is differentiable, with derivative g
′
(x) = f(x)

[19].

Definition 2.4 (see [19]) Let f : (a, b)→ E and
x0 ∈ (a, b). We say that f is generalized differen-
tiable at x0 ( Bede-Gal differentiability), if there
exists an element f

′
(x0) ∈ E, such that:

i) for all h > 0 sufficiently small, ∃f(x0+h)⊖
f(x0), ∃f(x0)⊖f(x0−h) and the following limits
hold:

lim
h→0

f(x0 + h)⊖ f(x0)

h
= lim

h→0

f(x0)⊖ f(x0 − h)

h

= f
′
(x0)

or

ii) for all h > 0 sufficiently small, ∃f(x0) ⊖
f(x0 + h), ∃f(x0 − h) ⊖ f(x0) and the following
limits hold:

lim
h→0

f(x0)⊖ f(x0 + h)

−h
= lim

h→0

f(x0 − h)⊖ f(x0)

−h

= f
′
(x0)

or

iii) for all h > 0 sufficiently small,
∃f(x0 + h) ⊖ f(x0), ∃f(x0 − h) ⊖ f(x0) and
the following limits hold:

lim
h→0

f(x0 + h)⊖ f(x0)

h
= lim

h→0

f(x0 − h)⊖ f(x0)

−h

= f
′
(x0)

or

iv) for all h > 0 sufficiently small,
∃f(x0) ⊖ f(x0 + h), ∃f(x0) ⊖ f(x0 − h) and
the following limits hold:

lim
h→0

f(x0)⊖ f(x0 + h)

−h
= lim

h→0

f(x0)⊖ f(x0 − h)

h

= f
′
(x0)

Definition 2.5 Let f : (a, b) → E. We say f is
(i)-differentiable on (a, b) if f is differentiable in
the sense (i) of Definition (2.4) and similarly for
(ii), (iii) and (iv) differentiability.

Definition 2.6 A triangular fuzzy number is de-
fined as a fuzzy set in E, that is specified by an or-
dered triple u = (a, b, c) ∈ R3 with a ≤ b ≤ c such
that u(r) = [u(r), u(r)] are the endpoints of r-
level sets for all r ∈ [0, 1], where u(r) = a+(b−a)r
and u(r) = c − (c − b)r. Here, u(0) = a, u(0) =
c, u(1) = u(1) = b, which is denoted by u(1). The
set of triangular fuzzy numbers will be denoted by
E.

Definition 2.7 (see [29]) The mapping f : T →
E for some interval T is called a fuzzy process.
Therefore, its r-level set can be written as follows:

f(t)(r) = [f(t, r), f(t, r)],

t ∈ T, r ∈ [0, 1].
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Definition 2.8 (see [29]) Let f : T → E be
Hukuhara differentiable and denote f(t)(r) =
[f(t, r), f(t, r)]. Then, the boundary function

f(t, r) and f(t, r) are differentiable ( or Seikkala
differentiable) and

(f
′
(t))(r) = [f

′
(t, r), f

′
(t, r)], t ∈ T,

r ∈ [0, 1].

If f is (ii)-differentiable then

f
′
(t)(r) = [f

′
(t, r), f

′
(t, r)], t ∈ T,

r ∈ [0, 1].

3 Description of the method

In this section we are going to solve the Bernoulli
equation with fuzzy initial condition under gen-
eralized H-differentiability.

To obtain the approximation solution of
Eq.(1.1) , based on Definition (2.4) we have two
cases as follows:
Case (1):
ũ

′
is (i)-differentiable, in this case we have,

ũ(t) = ã0 +
∫ t
0 Q̃(s)ũ(s) ds+∫ t

0 R̃(s)ũn(s) ds.
(3.3)

Case (2):
ũ

′
is (ii)-differentiable, in this case we have,

ũ(t) = ã0 ⊖ (−1)[
∫ t
0 Q̃(s)ũ(s) ds+∫ t

0 R̃(s)ũn(s) ds].
(3.4)

Now, we can write successive iterations ( by
using Picard method) as follows:

Case (1):

ũ0(t) = ã0,

ũn+1(t) = ã0 +
∫ t
0 Q̃(s)ũn(s) ds+∫ t

0 R̃(s)ũnn(s) ds, n ≥ 0.

(3.5)

Case (2):

ũ0(t) = ã0,

ũn+1(t) = ã0 ⊖ (−1)[
∫ t
0 Q̃(s)ũn(s) ds+∫ t

0 R̃(s)ũnn(s) ds], n ≥ 0.

(3.6)

4 Existence and convergence
analysis

In this Section we are going to prove the existence
and uniqueness of the solution and convergence of
the method by using the following assumptions.

D(ũn(t), ũ∗
n
(t)) ≤MD(ũ(t), ũ∗(t)).

D(Q̃(t), 0̃) ≤ L1,

D(R̃(t), 0̃) ≤ L2.

Let,

α = T (L1 +ML2).

Lemma 4.1 If ũ, ṽ, w̃ ∈ En and λ ∈ R, then,
(i) D(ũ⊖ ṽ, ũ⊖ w̃) = D(ṽ, w̃),

(ii) D(⊖λũ,⊖λṽ) =| λ | D(ũ, ṽ).

Proof. (i): By the definition of D, we have,

D(ũ⊖ ṽ, ũ⊖ w̃) =
max{supr∈[0,1] | u(r)− v(r)− u(r)− w(r) |,
supr∈[0,1] | u(r)− v(r)− u(r)− w(r) |} =

max{supr∈[0,1] | (u(r)− v(r))− (u(r)− w(r) |,

supr∈[0,1] | (u(r)− v(r))− (u(r)− w(r)) |} =

max{supr∈[0,1] | w(r)− v(r) |,

supr∈[0,1] | w(r)− v(r) |} =

max{supr∈[0,1] | v(r)− w(r) |,

supr∈[0,1] | v(r)− w(r) |} = D(ṽ, w̃). 2

Proof. (ii):

D(⊖λũ,⊖λṽ)

= max{supr∈[0,1] | λu(r)− λv(r) |,
supr∈[0,1] | λu(r)− λv(r) |} =

max{supr∈[0,1] | λu(r)− λv(r) |,

supr∈[0,1] | λu(r)− λv(r) |} = D(λũ, λṽ) =

| λ | D(ũ, ṽ). 2
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Table 1: Numerical results for Example 5.1.

t (u, n = 15, r = 0.4) (u, n = 15, r = 0.4)

0.1 0.3439415 0.3724523
0.2 0.4047319 0.4432258
0.3 0.5164142 0.5572326
0.4 0.6324056 0.6671443
0.5 0.7228925 0.7551642
0.6 0.8337827 0.8534658

Table 2: Numerical results for Example 5.1.

x (u, n = 13, r = 0.4) (u, n = 13, r = 0.4)

0.1 0.4214517 0.4545184
0.2 0.5332087 0.5568476
0.3 0.6427321 0.6777483
0.4 0.7659784 0.7856309
0.5 0.8208448 0.8427544
0.6 0.8736665 0.8974806

Theorem 4.1 Let 0 < α < 1, then Eq.(1.1),
hase an unique solution and the solution ũn(t)
obtained from the Eq.(3.4) using Picard method
converges to the exact solution of the Eq.(1.1)
when ũ

′
is (ii)-differentiable.

Proof. Let ũ and ũ∗ be two different solu-
tions of Eq.(1.1) then

D(ũ(t), ũ∗(t)) = D(ã0 ⊖ (−1)[
∫ t
0 Q̃(s)ũ(s) ds+∫ t

0 R̃(s)ũn(s) ds], ã0

⊖(−1)[
∫ t
0 Q̃(s)ũ∗(s) ds+∫ t

0 R̃(s)ũ∗
n
(s) ds]) =

D(⊖(−1)[
∫ t
0 Q̃(s)ũ(s) ds+

∫ t
0 R̃(s)ũn(s) ds],

⊖(−1)[
∫ t
0 Q̃(s)ũ∗(s) ds+∫ t

0 R̃(s)ũ∗
n
(s) ds])

≤ TL1(D(ũ(t), ũ∗(t)))+

TL2M(D(ũ(x, t), ũ∗(x, t)))

= αD(ũ(t), ũ∗(t)).

From which we get (1 − α)D(ũ(t), ũ∗(t)) ≤ 0.
Since 0 < α < 1, then D(ũ(t), ũ∗(t)) = 0. Im-
plies ũ(t) = ũ∗(t).

Also, we have

D(ũn+1(t), ũ(t)) ≤ αD(ũn, ũ).

Since, 0 < α < 1, then D(ũn(t), ũ(t)) → 0 as
n→∞. Therefore, ũn(t)→ ũ(t). 2

Remark 4.1 The proof of other case is similar
to the previous theorem.

5 Numerical examples

In this section, we solve the fuzzy Bernoulli equa-
tion by using the Picard method. The program
has been provided with Mathematica 6 accord-
ing to the following algorithm where ε is a given
positive value.

Algorithm :

Step 1. Set n← 0.

Step 2. Calculate the recursive relations (5)
and (6).

Step 3. If D(ũn+1(t), ũn(t)) < ε then go to
step 4,

else n← n+ 1 and go to step 2.

Step 4. Print ũn(t) as the approximate of the
exact solution.

Example 5.1 Consider the Riccati equation as
follows:

ũ
′
= ũ(t) + ũ3(t). (5.7)
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With fuzzy initial condition:

ũ(0) = (0.15, 0.23, 0.36). (5.8)

ε = 10−4,

α = 0.568792.

Table 1 shows that the approximation solution of
the fuzzy Bernoulli equation is convergent with 15
iterations by using the Picard method when u

′
is

(i)-differentiable.

α = 0.625643.

Table 2 shows that the approximation solution of
the fuzzy Bernoulli equation is convergent with 13
iterations by using the Picard method when u

′
is

(ii)-differentiable.
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6 Conclusion

The fuzzy Bernoulli Equation is the most impor-
tant and applicable equation in financial mathe-
matics. Since solution of this equation under gen-
eralized H-differentiability has not been reviewed
before. In this paper we are going to achieve the
approximated solutions of this equation by us-
ing iterative method with the new and important
definition in the fuzzy field, so proving the ex-
istence, solution singularity and method conver-
gence on this equation is one of the new jobs that
has been done on this paper. Up to now there was
only reviewed of first definition of generalized H-
differentiability on fuzzy Bernoulli equation and
not in general case.
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