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Abstract
Many models in DEA have been proposed to estimate returns to scale. Determining the
nature of returns to scale has considerable of importance in the theory of production.
Knowing the fact that returns to scale is a constant, ascending or descending decision
making unit, proper actions can be performed to develop the decision making units. In
this study, the efficiency of parallel production systems with shared resources is evaluated
such that the data is inexact and interval, so the function of these systems is interval too.
Then a model is proposed to estimate returns to scale of interval data on these systems;
when the data is inexact, the nature of returns to scale of these units is inexact too, so
returns to scale is estimated as multiple in best and worst conditions.
Keywords : Returns to scale; Parallel systems; Interval data; Efficiency.

————————————————————————————————–

1 Introduction

Determining the nature of returns to scale of decision making units in the production
theory is of high importance; Knowing the fact that returns to scale is a constant, ascending
or descending decision making unit, proper actions can be carried out. One of the research
topics with functional value is to estimate the nature of returns to scale of decision making
units when the input and output data is inexact and interval. Kao (2006) believed that
when the input and output data is inexact and interval, the efficiency should be interval
too, so we should define an interval efficiency for decision-making units with inexact data.
In the real world there are systems which are composed of independent production units.
These systems use input data to produce output. Kao (2008) evaluated the performance of
the production systems which are composed of parallel production units. Kordrostami et
al (2010) considered production systems which are composed of parallel subunits such that
each subunit uses given inputs and part of shared resources to produce the final output.
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But when the input and output data is inexact, we can propose models to evaluate the
performance of these systems in the most optimistic and pessimistic cases. In this paper,
we evaluate the efficiency of parallel production systems with shared resources when the
data is inexact and interval. Also, we estimate returns to scale of these systems. Moreover,
we believe that when the input and output data is inexact, returns to scale are inexact too,
so returns to scale is estimated as multiple in best and worst conditions. The structure
of this paper is as follows: In the next section, we provide the related models. In the
third section, the models to evaluate the efficiency of the parallel production systems with
shared resources and the estimation of returns to scale in these systems are provided.
In order to analyze the proposed models, we provide a practical example in the fourth
Section, and finally in the last section the conclusion is drawn.

2 The related models

In this section we briefly explain the models used in this paper.

2.1 Parallel model with shared resources

Consider a parallel production system as shown in Figure 1. Assume that we have n
decision making units, and each unit has T parallel subunits where each subunit uses its
own input and the shared resources. In particular, t− th subunit of DMUP uses its own

inputX
(t)
p and part of the shared resource of X

(s)
p . Assume that X

(s,t)
p is part of the shared

input of X
(t)
p which is assigned to the t− th subunit.

The process is shown in Figure 1. Y
(t)
p is the produced output of the t − th subunit.

Clearly, we have:X
(s)
p =

∑T
t=1X

(s,t)
p .

Figure 1. The parallel production system, where a DMUp has k production units.

The production possibility set (PPS) of the t− th subunit under the assumption of vari-
able returns to scale is as follows:

T (t)
v = {(X(t), Y (t), X(s,t)) :

n∑
j=1

λjX
(t)
j ≤ X(t),

n∑
j=1

λjY
(t)
j ≥ Y (t),

n∑
j=1

λjX
(s,t)
j ≤ X(s,t)},

n∑
j=1

λj = 1, λj ≥ 0.
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To calculate the technical efficiency of DMUP, we are to solve the following programming
problem:

min
∑T

t=1wt
θt+θ́t

2

s.t.

∑n
j=1 λjX

(t)
j ≤ θtX

(t)
p , t = 1, ..., T

∑n
j=1 λjX

(s,t)
j ≤ θ́tX

(s,t)
p , t = 1, ..., T

∑n
j=1 λjY

(t)
j ≥ Y

(t)
p , t = 1, ..., T,∑n

j=1 λj = 1, λj ≥ 0, j = 1, ..., n,

θt ≤ 1, θ́t ≤ 1.

(2.1)

The objective function of the above model is a weighted set of E
(t)
p = θt+θ́t

2 , (t = 1, ..., T ).

wts are the assumed coefficients by a specific user and we have:
∑T

t=1wt = 1. In this

model,E
(t)
p is the bonus of the efficiency of t-th subunit which is equal to the average

ofθtandθ́torE
(t)
p = θt+θ́t

2 .Also Epis the bonus of the efficiency of the whole system i.e.Ep =∑T
t=1wt

θt+θ́t
2 =

∑T
t=1wtE

(t)
p . Moreover, we can show the feasibly and boundedness of the

linear programming problem (2.1).

2.2 The estimation of the returns to scale in DEA

In this section, we examine a model proposed by Khodabakhshi, et al (2010). They devel-
oped a model to estimate returns to scale in data envelopment analysis as follows. They
tried to use the proposed model to make a non-efficient(ξxo, ξyo)to determine returns
to scale (xo, yo).There, if the non-efficiency (ξxo, ξyo) increases, ξin one level, returns to
scale will increase, and if it decreases, ξin one level, returns to scale will decrease as well.
If(ξxo, ξyo) is never non-efficient, returns to scale are constant. The presented model is as
follows:

max 1s− + 1s+

s.t.∑n
j=1 λjxj + s− = ξxo,∑n
j=1 λjyj − s+ = ξyo,∑n
j=1 λj = 1

λj ≥ 0, j = 1, ..., n, s−, s+ ≥ 0

(2.2)
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The following theorem provides returns to scale with model (2.2).

Theorem 2.1. The assumption DMUo with the input output mix (xo, yo) are efficient.
The following conditions provide returns to scale of DMUo with model (2.2).
A-The optimal amount of objective function is greater than zero and ξ∗ > 1 if and only if
DMUo has increasing returns to scale.
B - The optimal amount of objective function is greater than zero and ξ∗ < 1 if and only
if DMUo has decreasing returns to scale.
C - The optimal amount of objective function is zero and this is possible if and only if
DMUo has a constant returns to scale.

3 Proposed Models

3.1 The Parallel Model with Shared Resources on Interval Data

Consider a parallel production system as shown in Figure 1. Suppose we have nDMUs,
and each DMU has T parallel subunits, so that each subunit has its own inputs and
all subunits use a shared resource. In particular, the t − th subunit of DMUP uses its

own inputs X
(t)
p and a part of the shared inputs X

(s)
p . Suppose X

(s,t)
p is a part of the

shared inputs X
(s)
p dedicated to subunit t. The output produced by subunit t is Y

(t)
p

clearly, we have X
(s)
p =

∑T
t=1X

(s,t)
p .Also assume that the input and outputs are known

to lie within bounded intervals, i.e. X
(t)
p ∈ [LX

(t)
p ,U X

(t)
p ] , X

(s,t)
p ∈ [LX

(s,t)
p ,U X

(s,t)
p ]

andY
(t)
p ∈ [LY

(t)
p ,U Y

(t)
p ] .

Also, the provided parallel model with shared sources in section 2-2, i.e. model (1) is
considered as the basis of the work.

Definition 3.1. Suppose [LX
(t)
j ,U X

(t)
j ], [LX

(s,t)
j ,U X

(s,t)
j ] and [LY

(t)
j ,U Y

(t)
j ] are the own

input, shared input and output of DMUj, respectively. The best situation of DMUp is
defined as follows:

X(t)
p =L X(t)

p , X(s,t)
p =L X(s,t)

p , Y (t)
p =U Y (t)

p

X
(t)
j =U X

(t)
j , X

(s,t)
j =U X

(s,t)
j , Y

(t)
j =L Y

(t)
j , j ̸= p, j = 1, ..., n

Definition 3.2. Suppose [LX
(t)
j ,U X

(t)
j ], [LX

(s,t)
j ,U X

(s,t)
j ] and [LY

(t)
j ,U Y

(t)
j ] are the own

input, shared input and output of DMUj , respectively. The best situation of DMUp is
defined as follows:

X(t)
p =U X(t)

p , X(s,t)
p =U X(s,t)

p , Y (t)
p =L Y (t)

p

X
(t)
j =L X

(t)
j , X

(s,t)
j =L X

(s,t)
j , Y

(t)
j =U Y

(t)
j , j ̸= p, j = 1, ..., n

Definition 3.3. Consider DMUp. The lower bound of efficiency score of DMUp is cal-
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culated by using the following model:

θL = min
∑T

t=1wt
θt+θ́t

2

s.t.

∑n
j=1,j ̸=p λ

L
j X

(t)
j + λU

p X
(t)
p + s−(t) = θUt X

t
p, t = 1, ..., T

∑n
j=1,j ̸=p λ

L
j X

(s,t)
j + λU

p X
(s,t)
p + ´s−(t) = θ́t

U
X

(s,t)
p , t = 1, . . . , T

∑n
j=1,j ̸=p λ

U
j Y

(t)
j + λL

p Y
(t)
p − s+(t) =L Y

(t)
p , t = 1, . . . , T∑n

j=1 λj = 1,

θt ≤ 1, t = 1, ..., T

θ́t ≤ 1, t = 1, ..., T

λj ≥ 0, s−(t), ´s−(t), s+(t) ≥ 0 j = 1, ..., n

(3.3)

Also, the upper bound of the efficiency score can be calculated by using the following model:

θU = min
∑T

t=1wt
θt+θ́t

2

s.t.

∑n
j=1,j ̸=p λ

U
j X

(t)
j + λL

pX
(t)
p + s−(t) = θLt X

t
p, t = 1, ..., T

∑n
j=1,j ̸=p λ

U
j X

(s,t)
j + λL

pX
(s,t)
p + ´s−(t) = θ́t

L
X

(s,t)
p , t = 1, . . . , T

∑n
j=1,j ̸=p λ

L
j Y

(t)
j + λU

p Y
(t)
p − s+(t) =U Y

(t)
p , t = 1, . . . , T∑n

j=1 λj = 1,

θt ≤ 1, t = 1, ..., T

θ́t ≤ 1, t = 1, ..., T

λj ≥ 0, s−(t), ´s−(t), s+(t) ≥ 0 j = 1, ..., n

(3.4)

θL together with θU constitute the efficiency interval as [θL, θU ] that covers all possible

efficiency scores for the whole system. Also, in model(3.3) UEt
p =

Uθt+U θ́t
2 is the upper

efficiency score of the subunit t, and in model (3.4) LEt
p =

Lθt+Lθ́t
2 is the lower efficiency

score of the subunit t.



128 S. Kordrostami, et al / IJIM Vol. 4, No. 2 (2012) 123-133

3.2 The Estimation of Returns to Scale with Interval Data

In parallel production systems with shared resources as shown in the previous section,
when the data in the parallel production systems with shared resources is interval, the
efficiency is interval too. So when the data is interval, a return to scale is estimated as
multiple in best and worst conditions. The models to estimate returns to scale in best and
worst conditions are defined as follows:

max 1s−(t) + 1 ´s−(t) + 1s+(t)

s.t.

∑n
j=1,j ̸=p λ

L
j X

(t)
j + λU

p X
(t)
p + s−(t) = ξUXt

p, t = 1, ..., T

∑n
j=1,j ̸=p λ

L
j X

(s,t)
j + λU

p X
(s,t)
p + ´s−(t) = ξUX

(s,t)
p , t = 1, . . . , T

∑n
j=1,j ̸=p λ

U
j Y

(t)
j + λL

p Y
(t)
p − s+(t) = ξLY

(t)
p , t = 1, . . . , T∑n

j=1 λj = 1,

λj ≥ 0, s−(t), ´s−(t), s+(t) ≥ 0 j = 1, ..., n

(3.5)

max 1s−(t) + 1 ´s−(t) + 1s+(t)

s.t.

∑n
j=1,j ̸=p λ

U
j X

(t)
j + λL

pX
(t)
p + s−(t) = ξLXt

p, t = 1, ..., T

∑n
j=1,j ̸=p λ

U
j X

(s,t)
j + λL

pX
(s,t)
p + ´s−(t) = ξLX

(s,t)
p , t = 1, . . . , T

∑n
j=1,j ̸=p λ

L
j Y

(t)
j + λU

p Y
(t)
p − s+(t) = ξUY

(t)
p , t = 1, . . . , T

∑n
j=1 λj = 1, λj ≥ 0, s−(t), ´s−(t), s+(t) ≥ 0 j = 1, ..., n.

(3.6)

Definition 3.4. Suppose DMUP with input-output (Xp, X
(s)
p , Yp) is efficient. Therefore,

we have:
(i) The optimal value of the objective functions of models (3.5) and (3.6) are greater than
zero and ξ∗ > 1 if and only if DMUP has increasing returns to scale (IRS).
(ii) The optimal value of the objective functions of models (3.5) and (3.6) are greater than
zero and ξ∗ < 1 if and only if DMUP has decreasing returns to scale (DRS).
(iii) The optimal value of the objective functions of models (3.5) and (3.6) are zero if and
only if DMUP has constant returns to scale (CRS).

4 The Applied Study on Iran’s Bank

In this section, we chose 20 areas of one of Iran’s Banks to describe returns to scale
and the efficiency of parallel production units with shared resources using interval data.
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Here each area is composed of three branches and each branch uses the network expenses
as shared input and branch resources as the owned input to produce payment facilities
(loans) as output. In Table (1),(2) we see the input and output data.
Table 1. The input-output data of 20 areas of Iran’s Bank.

Owned Input Shared Input
Branch Resource Network Expenses

Area Branch1 Branch2 Branch3 Branch1 Branch2 Branch3

1 [5007, [175768, [87243, [10378, [19021, [9745,
9613] 179671] 87243] 11440] 20463] 10021]

2 [2926, [119532, [9945, [16065, [21547, [10464,
5961] 121117] 2120] 16463] 22590] 11440]

3 [8732, [123521, [47575, [14641, [15980, [8322,
17752] 129375] 50013] 15442] 16442] 8427]

4 [945, [114678, [19292, [15231, [9846, [10497,
1966] 118050] 19753] 15440] 10738] 11816]

5 [8487, [44647, [3428, [8652, [10105, [12026,
17521] 45212] 3911] 8745] 10365] 12426]

6 [13759, [76514, [13929, [13976, [14298, [9798,
27359] 77698] 15657] 14746] 14652] 9907]

7 [587, [78987, [27827, [12440, [9725, [10162,
1205] 80378] 29005] 13943] 9907] 10365]

8 [4646, [42456, [9070, [5462, [9147, [5190,
9559] 44396] 9983] 5647] 9295] 5283]

9 [1554, [34972, [412036, [4922, [4361, [5731,
3427] 35112] 413902] 5087] 4491] 5856]

10 [17528, [25034, [8638, [3327, [1902, [8437,
36297] 25548] 10229] 3497] 1934] 8745]

11 [2444, [15326, [500, [1864, [3521, [7026,
4955] 16060] 937] 1932] 3604] 7326]

12 [7303, [23374, [16148, [3763, [5542, [8304,
14178] 24286] 21353] 3963] 5647] 8326]

13 [9852, [45130, [17163, [10427, [11012, [6176,
19742] 45221] 17290] 11684] 11135] 6525]

14 [4540, [45190, [17918, [8214, [8217, [8028,
9312] 45577] 17964] 8326] 8316] 8158]

15 [3039, [27643, [51582, [2572, [4280, [6860,
6304] 28122] 55136] 2672] 4491] 6920]

16 [6585, [61741, [20975, [2847, [4601, [5627,
13453] 62179] 23992] 3006] 4652] 5864]

17 [4209, [25637, [41960, [3523, [5428, [8098,
8603] 26453] 43103] 3641] 5647] 8378]

18 [1015, [22193, [18641, [5142, [4637, [6254,
2037] 22465] 19354] 5283] 4795] 6307]

19 [5800, [17310, [19500, [2795, [3410, [8023,
11875] 17834] 19569] 2932] 3497] 8100]

20 [1445, [159937, [31700, [10456, [9412, [9450,
2922] 163443] 32061] 11816] 10020] 9640]
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Table 2. The interval output data for the 20 area of Iran’s Bank.
output

payment facilities(loans)
Area Branch1 Branch2 Branch3
1 [2696995, [116798, [109053,

3126798] 129817] 109053]
2 [430377, [71324, [70976,

440355] 72003] 71860]
3 [1027546, [141728, [141735,

1061260] 146599] 147744]
4 [1145235, [68819, [70345,

1213541] 70610] 71194]
5 [390902, [54523, [55179,

395241] 55579] 56027]
6 [988115, [39538, [3850,

1087392] 40518] 40456]
7 [144906, [38976, [39773,

165818] 40176] 40796]
8 [408163, [10379, [13112,

416416] 11637] 13515]
9 [335070, [47964, [48423,

410427] 48393] 48998]
10 [700842, [17862, [16647,

768593] 18173] 18086]
11 [641680, [9576, [9834,

696338] 9640] 9989]
12 [453170, [6689, [7056,

481943] 6777] 7241]
13 [553167, [14826, [14310,

574989] 15640] 15404]
14 [309670, [46361, [45782,

342598] 47301] 46939]
15 [286149, [11773, [12085,

317186] 12008] 12208]
16 [321435, [39474, [41970,

347848] 40974] 42429]
17 [618105, [13213, [14311,

835839] 14494] 14544]
18 [248125, [12170, [15642,

320974] 12871] 16969]
19 [640890, [6092, [6631,

679916] 6193] 6710]
20 [119948, [38978, [37927,

120208] 39877] 38791]

We applied the parallel models (3.3) and (3.4) for these data, and we calculated the lower
and upper bounds of efficiency for these 20 areas and their subordinated branches. With
the use of models (3.5) and (3.6) and definition 4 we estimate returns to scale of the areas
in both best and worst conditions. We assume weights as: w1 = 0.5, w2 = 0.3, w3 = 0.2.
The results of the efficiency measurement and returns to scale estimation are presented in
Table 3.
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Table 3. The results of the returns to scale estimation and the efficiency interval for 20 ar-

eas of Iran’s Bank.
Area E1 E2 E3 Efficiency in Efficiency in RTS in the RTS in the

the worst the best worst best
situation situation situation situation

1 [1.0000, [1.0000, [1.0000, 1.0000 1.0000 CRS CRS
1.0000] 1.0000] 1.0000]

2 [1.0000, [1.0000, [1.0000, 1.0000 1.0000 CRS CRS
1.0000] 1.0000] 1.0000]

3 [1.0000, [1.0000, [1.0000, 1.0000 1.0000 CRS CRS
1.0000] 1.0000] 1.0000]

4 [1.0000, [1.0000, [1.0000, 1.0000 1.0000 CRS CRS
1.0000] 1.0000] 1.0000]

5 [1.0000, [1.0000, [1.0000, 1.0000 1.0000 CRS CRS
1.0000] 1.0000] 1.0000]

6 [0.2129, [0.5216, [0.8669, 0.4363 1.0000 DRS CRS
1.0000] 1.0000] 1.0000]

7 [0.7560, [0.7510, [0.7206, 0.7474 1.0000 IRS CRS
1.0000] 1.0000] 1.0000]

8 [1.0000, [1.0000, [1.0000, 1.0000 1.0000 IRS IRS
1.0000] 1.0000] 1.0000]

9 [1.0000, [1.0000, [1.0000, 1.0000 1.0000 CRS CRS
1.0000] 1.0000] 1.0000]

10 [1.0000, [1.0000, [1.0000, 1.0000 1.0000 CRS CRS
1.0000] 1.0000] 1.0000]

11 [1.0000, [1.0000, [1.0000, 1.0000 1.0000 CRS CRS
1.0000] 1.0000] 1.0000]

12 [0.3214, [0.6273, [0.4336, 0.4356 0.5926 DRS DRS
0.5959] 0.6687] 0.4701]

13 [0.1969, [0.5002, [0.6448, 0.3775 0.7210 IRS IRS
0.6339] 0.8054] 0.8119]

14 [0.5394, [0.8989, [0.8171, 0.7028 1.0000 IRS CRS
1.0000] 1.0000] 1.0000]

15 [0.5815, [0.7361, [0.5186, 0.6153 1.0000 IRS IRS
1.0000] 1.0000] 1.0000]

16 [1.0000, [1.0000, [1.0000, 1.0000 1.0000 CRS CRS
1.0000] 1.0000] 1.0000]

17 [0.4645, [0.7002, [0.4447, 0.5315 1.0000 DRS CRS
1.0000] 1.0000] 1.0000]

18 [1.0000, [1.0000, [1.0000, 1.0000 1.0000 IRS CRS
1.0000] 1.0000] 1.0000]

19 [0.4338, [0.9337, [0.4508, 0.5872 1.0000 DRS CRS
1.0000] 1.0000] 1.0000]

20 [0.5788, [0.6064, [0.7192, 0.5967 1.0000 IRS IRS
1.0000] 1.0000] 1.0000]

Because the efficiency of the whole system is equal to the weighted sum of efficiencies
of the subunits of the system, then the efficiency of each area is the weighted sum of
the efficiencies of the subordinated branches. Columns 1, 2 and 3 in Table 2 show the
efficiency of the branches 1, 2 and 3 in each area, respectively. In fact, in these 3 columns,
the efficiencies of branches are reported in the best and worst situations. But, in columns
4 and 5, the efficiency of each area is presented in the best and worst situations, also in



132 S. Kordrostami, et al / IJIM Vol. 4, No. 2 (2012) 123-133

the last two columns of Table 2, returns to scale of areas are given in the best and worst
conditions. According to the table of results, it can be seen that areas 1, 2, 3, 4, 5, 8, 9,
10, 11, 16 and 18 are efficient; namely, the efficiencies of these areas are equal to 1 in each
two situations. But it can be seen that areas 6, 7, 14, 15, 19 and 20 are efficient in the
upper bound and inefficient in the lower bound. Also, it can be observed that the returns
to scale are not precise, and they are estimated as multiple. In areas 6, 7, 14, 17, 18 and
19 it is shown that the returns to scale are not estimated precisely. For example, area 6
has decreasing returns to scale in the worst situation and it has constant returns to scale
in the best situation.

5 Conclusion

In this paper, models for calculating efficiency and estimating returns to scale in parallel
production systems with shared resources were presented on imprecise data where the
inputs and outputs were interval. With the use of these models, the efficiency of subunits
and the whole system was obtained as interval and inexact. Then, the data was applied on
20 areas of Iran’s Banks. In this paper, returns to scale were not exact and were estimated
as multiple.
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