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Abstract

Hepatitis B virus (HBV) infection is a major public health problem in the world today. A mathemat-
ical model is formulated to describe the spread of hepatitis B, which can be controlled by vaccination
as well as treatment. We study the dynamical behavior of the system with fixed control for both vac-
cination and treatment. The results shows that the dynamics of the model is completely determined
by the basic reproductive number R0. if R0 < 1, the disease-free equilibrium is globally asymptot-
ically stable by using approach that given by Kamgang and Sallet. Then the authors prove that if
R0 > 1, the disease-free equilibrium is unstable and the disease is uniformly persistent. Furthermore,
If R0 > 1, the unique endemic equilibrium is globally asymptotically stable by using a generalization
of the Poincar e-Bendixson criterion.

Keywords : Hepatitis B virus (HBV); Basic reproduction number (R0); Gompound matrices; Global
stability.
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1 Introduction

H
epatitis B is a potentially life-threatening
liver infection caused by the hepatitis B

virus. It is a major global health problem. It can
cause chronic liver disease, chronic infection and
death from cirrhosis and cancer [34]. Infections
of hepatitis B occur only if the virus is able to en-
ter the blood stream and reach the liver. Once in
the liver, the virus reproduces and releases large
numbers of new viruses into the blood stream [6].

In an study [31], the authers presented an
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epidemic model of S-E-I-C-R-S type that is de-
scribed by the following system of ordinary dif-
ferential equations. A flow chart of this compart-
mental model is shown in figure 1.

Ṡ(t) =ν − νp1C − νp2R− ρ(I + θC)S

− νS − u1S + λ4R

Ė(t) =ρ(I + θC)S − (ν + λ1)E

İ(t) =λ1E − (ν + λ2)I (1.1)

Ċ(t) =νp1C + p3λ2I − (ν + λ3)C − u2C

Ṙ(t) =νp2R+ (1− p3)λ2I + λ3C − νR

− λ4R+ u1S + u2C

A community affected by HBV infection is di-
vided into five compartments, namely: the sus-
ceptible individuals S(t); infected but not yet
infectious individuals (exposed) E(t); acute in-
fected individuals I(t); chronic HBV carriers C(t);
and recovered R(t) for hepatitis B virus (HBV)
infection that propagates through contact be-
tween infected and the susceptible individuals
and also through of infected parents.
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Figure 1: Diagram for the HBV dynamics with two
controls

In these equations, all the parameters are non-
negative. We assume stable population with
equal per capital birth and death ν ( as disease
induced death rate is not considered in system ).
The main parameter listed in table 1.[31]

Table 1. Definition of parameters used in model (2.1)
Parameter Description
ν Birth(and death) rate
ρ Transmission rate
θ Infectiousness of darriers

relative to acute infections
λ1 Rate moving from exposed to acute
λ2 Rate at which individuals

leave the acute infection class
λ3 Rate moving from carrier

to recovery
λ4 Loss of recovery rate
p1 Probability of infected newborns
p2 Probability of immune newborns
p3 Proportion of acute infection

individuals become carriers
u1 Proportion of the susceptible

that is vaccinated per unit time
u2 Proportion of the chronic HBV

carriers that is treated per unit time

For simplicity, we normalize the population size
to 1; i.e. now S,E,I,C and R are, respectively, the
fraction of the susceptible, the exposed, the acute
infective, the carriers and the recovered individu-
als in the population and S +E + I +C +R = 1
holds [28, 31]. Hence, the fifth equation may be
omitted, and the Eq. (1.1) becomes:

Ṡ(t) = ν − νp1C − ρ(I + θC)S − νS − u1S

+ (λ4 − νp2)(1− S − E − I − C)

Ė(t) = ρ(I + θC)S − (ν + λ1)E

İ(t) = λ1E − (ν + λ2)I (1.2)

Ċ(t) = νp1C + p3λ2I − (ν + λ3)C − u2C

Moreover, under the dynamics described by Eq
(1.2) , the region

Π =
{
(S,E, I, C) ∈ R4

+ | S ≤ ν + λ4 − νp2
ν + u1 + λ4 − νp2

,

S + E + I + C ≤ ν + λ4

ν + λ4 − νp2

}
is positively invariant [31]. Hence, the system
is mathematically well-posed. There, for initial

starting point x0 ∈ R4
+, the trajectory lies in Π.

Therefore, in the rest of the paper we will study
the system (1.2) in the feasible region Π.

In this work, we present a complete mathemat-
ical analysis for the global stability problem at
the disease-free equilibrium and endemic equilib-
rium of an mathematical model for hepatitis B
virus infection with tow controls: vaccination and
treatment, we assume that the control parame-
ters u1(t) and u2(t) are constant functions. In
order to study the global stability of the disease-
free equilibrium and endemic equilibrium we ap-
ply the approach in Kamgang and Sallet [13, 28]
and geometrical approach of Li and Muldowney
in [3, 4, 10, 14, 16, 18, 21, 23, 30]. We obtain
simple sufficient conditions that the disease free
equilibrium and endemic equilibrium of Eq (1.2)
are globally asymptotically stable.

The rest of the paper is organized as follows:
In Section 2, the Kamgang and Sallet approach is
used to study the global stability of the disease-
free equilibrium. in Section 3, the Li-Muldowney
geometric approach is used to study the global
stability of the endemic equilibrium. Finally, the
conclusions are summarized in Section 4.

2 The disease-free equilibrium

In this section, we study the stability of the
disease-free equilibrium.

2.1 Existence and local stability of the
disease-free equilibrium

Firstly, we analyze the local stability of the
disease-free equilibrium. Model given by system
(1.2) has a unique disease-free equilibrium, ob-
tained by setting the right-hand sides of system
(1.2) to zero, given by [31]

P0 = (S0, E0, I0, C0) =

(
ν − νp2 + λ4

u1 + ν + λ4 − νp2
, 0, 0, 0

)
The basic reproduction number R0, gives the to-
tal number of secondary infections that an aver-
age infectious individual will induce given that
the rest of the populations susceptible. Using
the notationin Van den Driessche and Watmough
[32], we have

F =

 0 ρS0 ρθS0

0 0 0
0 0 0


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V =

 ν + λ1 0 0
−λ1 ν + λ2 0
0 −p3λ2 ν + λ3 + u2 − νp1


The basic reproduction number is given by [31]

R0 = ρ(FV −1)

=
ρλ1(ν + λ3 + u2 − p1ν + θp3λ2)

(ν + λ1)(ν + λ2)(ν + λ3 + u2 − p1ν)
S0 (2.3)

The disease free equilibrium P0 is locally asymp-
totically stable when R0 < 1, and unstable for
R0 > 1. Proof. see [31] pp 6.

2.2 Global stability of the disease-free
equilibrium

In this section, we study the global properties of
the disease-free equilibrium. The following theo-
rem provides the global property of the disease-
free equilibrium. In order to study the global sta-
bility of the disease-free equilibrium, we apply the
novel approach in Kamgang and Sallet .[13, 28]

Definition 2.1. We call any real square matrix
with nonnegative off-diagonal entries a Metzler
matrix.[13]

Lemma 2.1. Let M be a Metzler matrix, which
is block decomposed:

M =

[
A B
C D

]
where A and D are square matrices. Then M is
Metzler stable if and only if A and D − CA−1B
are Metzler stable.

Proof. see [13] pp 3.

Definition 2.2. (Regular splitting). For a real
Metzler matrix M, M = K + N is a regular split-
ting if K is a Metzler stable matrix and N ≥ 0 is
a nonnegative matrix.[13]

Lemma 2.2. Let M = K +N be a regular split-
ting of a real Metzler matrix M, then M is Metzler
stable if and only if ρ(−NA−1) < 1.[13]

Proof. see [13] pp 4.

Lemma 2.3. . If the following hypothesis (i− v)
are satisfied, the disease-free equilibrium (DFE)
is globally asymptotically stable for system{

Ẋ1 = A1(X)(X1 −X∗
1 ) +A12(X)X2

Ẋ2 = A2(X)X2
(2.4)

on the positively invariant set Ω ∈ Rn1+n2
+ where

X1 ∈ Rn1
+ , X2 ∈ Rn2

+ , X = (X1, X2), and
X∗ = (X∗

1 , 0) denotes a disease-free equilibrium
(DFE) of the system (2.4). The variable X1 de-
notes the numbers (or densities) in the differ-
ent compartments of susceptibles, immunes, re-
covered individuals etc., in other words all the
individuals who are not infected and who are not
transmitting the disease (e.g, quarantined). The
variable X2 denotes the numbers (or densities) of
infected individuals; i.e., latent, infectious, carry-
ing individuals and so on.

(i) The system is defined on a positively invari-
ant set Ω of the nonnegative orthant. The
system is dissipative on Ω.

(ii) The sub-system Ẋ1 = A1(X1, 0)(X1−X∗
1 ) is

globally asymptotically stable at the equilib-
rium X∗

1 on the canonical projection of Ω on
Rn1

+ .

(iii) The matrix A2(X) is Metzler and irreducible
for any given X ∈ Ω.

(iv) There exists an upper-bound matrix A2 for
Λ = {A2(X) : X ∈ Ω} with the property
that either A2 /∈ Λ or if A2 ∈ Λ (i.e.,A2 =
maxΩ Λ) then for any X ∈ Ω, such that A2 =
A2(X), X ∈ Rn1

+ ×{0} (i.e. the points where
the maximum is realized are contained in the
disease-free sub-manifold).

(v) α(A2) ≤ 0, where α(A2) is spectral bound of
A2.

Proof. see [13] pp 5.
Now, we have the following theorem for the global
stability of the disease-free equilibrium of system
(1.2).

Theorem 2.1. For the model (1.2), the disease-
free equilibrium is globally asymptotically stable if
R0 ≤ 1.

Proof. In order to proof the Theorem and get
the global asymptotic stability when the R0 ≤ 1,
we apply the lemma (2.3) and we have:

(i) There X1 = S, X2 = (E, I, C) and
X = (S,E, I, C) = (X1, X2) according to
[31]. The invariant domain Π is obviously
positively compact set.
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(ii) We put P0 = X∗ = (X∗
1 , 0), then

A1(X) = −(ν + u1 + λ4 − νp2)

A12(X) =

 −λ4 + νp2
−ρS − λ4 + νp2

−ρθS − λ4 − νp1 + νp2

T

then

Ṡ(t) = A1(X)(S − ν + λ4 − νp2
ν + u1 + λ4 − νp2

)

hence
Ẋ1 = A1(X)(X1 −X∗

1 )

This is a linear system which is globally
asymptotically stable at

X∗
1 =

ν + λ4 − νp2
ν + u1 + λ4 − νp2

(iii) The matrix A2(X) is given by

A2(X) = −(ν + λ1) ρS ρθS
λ1 −(ν + λ2) 0
0 p3λ2 −(ν + λ3 − u2 − νp1)


for any X ∈ Π the matrix A2(X) is Metzler
and irreducible.

(iv) This maximum A2(X) is given by

A2(X) = −(ν + λ1) ρ ν+λ4−νp2
ν+u1+λ4−νp2

ρθ ν+λ4−νp2
ν+u1+λ4−νp2

λ1 −(ν + λ2) 0
0 p3λ2 −(ν + λ3 − u2 − νp1)



(v) The hypothesis (v) requires that α(A2) ≤ 0.
Writing A2 as a block matrix

A2 =

[
A B
C D

]
where

A = −(ν + λ1)

B =
[
ρ ν+λ4−νp2
ν+u1+λ4−νp2

ρθ ν+λ4−νp2
ν+u1+λ4−νp2

]
C =

[
λ1

0

]
D =

[
−(ν + λ2) 0

p3λ2 −(ν + λ3 − u2 − νp1)

]
according to lemmas 2.1 and 2.2

A2 = D − CA−1B

=

[
−(ν + λ2) +

ρλ1S0
ν+λ1

ρθλ1S0
ν+λ1

p3λ2 −(ν + λ3 − u2 − νp1)

]

The characteristic equation of A2 is given
by

det(λI − (D − CA−1B))

= λ2 + (ν + λ2 + ν + λ3 + u2 − νp1

− ρλ1S0

ν + λ1

)
λ+

(
(ν + λ2 −

ρλ1S0

ν + λ1
)

(ν + λ3 + u2 − νp1)−
p3λ1θρλ2S0

ν + λ1

)
= 0

It follows from the Routh Hurwitz criterion
that the two eigenvalues have negative real
parts if and only if R0 < 1. When R0 = 1,
one eigenvalues zero and another is negative
real root. Hence, A2 is a stable Metzler ma-
trix if and only if R0 ≤ 1, that is α(A2) ≤ 0
if and only if R0 ≤ 1.

Then hypotheses (i − v) of lemma 2.3 are satis-
fied. Then by lemma 2.3 we have shown that the
disease-free equilibrium is globally asymptotically
stable if R0 ≤ 1.

3 Endemic equilibrium

In this section, we study the stability of the en-
demic equilibrium.

3.1 Existence and uniqueness and lo-
cal stability of endemic equilib-
rium

Here, the condition for the existence and unique-
ness of the endemic equilibrium of the system
(1.2) is determined. Let P ∗ = (S∗, E∗, I∗, C∗)
be the endemic equilibrium. To find the endemic
equilibrium, we equate all equations in the system
(1.2) to zero and rewrite it as follows:[31]

S∗ =
(ν + λ1)(ν + λ2)(ν + λ3 − p1ν + u2)

ρλ1(ν + λ3 + θλ2p3 − p1ν + u2)

E∗ =
ρθ(ν + λ2)C

∗S∗

(ν + λ1)(ν + λ2)− ρλ1S∗

I∗ =
θρλ1C

∗S∗

(ν + λ1)(ν + λ2)− ρλ1S∗

C∗ =
[
λ1λ2p3(ν + λ4 − νp2 + u1)S

∗(R0 − 1)
]
/[

(ν + λ3 − p1ν + u2)[(ν + λ4 − νp2)(ν + λ2

+ λ1) + λ1λ2] + λ1λ2p3(νp1 − νp2 + λ4)
]
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Lemma 3.1. (i) If R0 < 1, then the system
(1.2) has only one equilibrium, which is dis-
ease free equilibrium.

(ii) If R0 > 1, then the system (1.2) has two
equilibria: one is disease free and the other
is endemic equilibrium.

(iii) If R0 = 1, then the endemic equilibrium re-
duces to the disease free equilibrium.

Proof. see [31] pp 5.

Theorem 3.1. If R0 > 1, then the endemic equi-
librium is locally asymptotically stable.

Proof. see [31] pp 6.

3.2 Global stability of the endemic
equilibrium

Here, we study the global behavior of the en-
demic equilibrium P ∗ = (S∗, E∗, I∗, C∗) for sys-
tem (1.2). In the following, using the geomet-
rical approach of Li and Muldowney in [21],
we obtain simple sufficient conditions that the
endemic equilibrium P ∗ = (S∗, E∗, I∗, C∗) is
globally asymptotically stable. A brief outline
of this geometrical approach can be found in
[3, 4, 10, 14, 16, 18, 21, 23, 30].
Consider the autonomous dynamical system:

ẋ = f(x) (3.5)

where f : D → Rn , D ⊂ Rn is open set. Let ∥.∥
denote a vector norm in Rn as well as the matrix
norm which it induces for n × n matrices. The
Lozinski measure µ(A) of n × n matrix A with
respect to the norm ∥.∥ is defined as:

µ(A) = lim
h→0+

∥I + hA∥−1

h

[4, 10, 21]. Lozinski measure have been used for
estimation of eigenvalues of matrices. Consider
a nonsingular P (x) be

(
n
2

)
×

(
n
2

)
matrix-valued

function that is C1 on D and a vector norm ∥.∥
on R(

n
2). Consider

B = PfP
−1 + PJ [2]P−1

Here the matrix Pf = (DP )(f) or, equivalently,
Pf is matrix obtained by replacing each entry pij
in P by its direction derivative in the direction of
f ,

(pij)f =

(
∂pij
∂x

)T

.f(x)

and J [2] is second additive compound matrix of
the jacobian matrix J .

Theorem 3.2. Under the following assumptions:

(i) D is simply connected;

(ii) there is a compact absorbing set K ⊂ D;

(iii) x is only equilibrium of (3.5) in D.

x is globally asymptotically stable in D, if there
exist a δ > 0 and

µ(PfP
−1 + PJ [2]P−1) ≤ −δ < 0

for all x ∈ K.

Proof. see [21, 4, 10].

Definition 3.1. [16, 23, 30]. The system (1.2)
is said to be uniformly persistent in Π, if there
exists a constant ϵ > 0 such that any solution
(S(t), E(t), I(t), C(t)) of system (1.2) with initial

value (S0, E0, I0, C0) ∈ Π̇ satisfies

min
{
lim inf
t→∞

S(t), lim inf
t→∞

E(t),

lim inf
t→∞

I(t), lim inf
t→∞

C(t)
}
≥ ϵ

Lemma 3.2. If R0 > 1, then system (1.2) is
uniformly persistent.

The proof is similar to that given by [4, 21] so
we omit it.

Remark 3.1. The uniform persistence of system
(1.2) in the bounded set Π is equivalent to the
existence of a compact K ⊂ Π̇ that is absorbing
for (1.2).[4, 16, 30]

Lemma (3.1) shows the existence of a unique
endemic equilibrium if R0 > 1. We now claim
the following:

Theorem 3.3. For R0 > 1, the unique endemic
equilibrium of the system (1.2) is globally asymp-
totically stable if

max
{
− ν + λ1 + 2ρ(1 + θ)

+
1

ε0
(5λ4 + 3νp1 + 2νp2),

− ν + λ1 +
2

ε0
(ρ(1 + θ) + p3λ2)

}
< −k

for some positive constant k > 0 .
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Proof. The proof of theorem is based on the
method of Theorem (3.2). Hence in order to ap-
ply Theorem (3.2) and get the global asymptotic
stability when the R0 > 1, it is necessary to find a
norm ∥.∥ on R6 such that µ(B) < 0 for all x ∈ Π̇ .
The Jacobian matrix of system (1.2) at endemic
equilibrium:[31]

J = [aij ]4×4

where

a11 = −(ν + λ4 − νp2 + u1 + ρ(I + θC))
a12 = −(λ4 − νp2)
a13 = −(ρS + λ4 − νp2)
a14 = −(νp1 + λ4 − νp2 + ρθS)
a21 = ρ(I + θC)
a22 = −(ν + λ1)
a23 = ρS
a24 = ρθS

a31 = 0
a32 = λ1

a33 = −(ν + λ2)
a34 = 0
a41 = 0
a42 = 0
a43 = p3λ2

a44 = νp1 − ν − λ3 − u2

its second additive compound matrix J [2] is:

J [2] = [mij ]6×6

where

m11 = −(ρ(I + θC) + ν + u1 + λ4 − νp2)
−(ν + λ1)

m12 = ρS
m13 = ρθS
m14 = ρS + λ4 − νp2
m15 = ρθS + λ4 + νp1 − νp2
m16 = 0
m21 = λ1

m22 = −(ρ(I + θC) + ν + u1 + λ4 − νp2)
−(ν + λ1)

m23 = 0
m24 = −(λ4 − νp2)
m25 = 40
m26 = ρθS + λ4 + νp1 − νp2

m31 = 0
m32 = p3λ2

m33 = −(ρ(I + θC) + ν + u1 + λ4 − νp2)
−(ν + λ3 + u2 − νp1)

m34 = 0
m35 = −(λ4 − νp2)
m36 = −(ρS + λ4 − νp2)
m41 = 0
m42 = ρ(I + θC)
m43 = 0
m44 = −(ν + λ1)− (ν + λ2)
m45 = 0
m46 = −ρθS

m51 = 0
m52 = 0
m53 = ρ(I + θC)
m54 = p3λ2

m55 = −(ν + λ1)− (ν + λ3 + u2 − νp1)
m56 = ρS
m61 = 0
m62 = 0
m63 = 0
m64 = 0
m65 = 0
m66 = −(ν + λ2)− (ν + λ3 + u2 − νp1)

Set the function

P (S,E,C) =



1
S 0 0 0 0 0
0 1

S 0 0 0 0
0 0 1

S 0 0 0
0 0 0 1

E 0 0
0 0 0 0 1

C 0
0 0 0 0 0 1

C



then

PfP
−1 =



− Ṡ
S 0 0 0 0 0

0 − Ṡ
S 0 0 0 0

0 0 − Ṡ
S 0 0 0

0 0 0 − Ė
E 0 0

0 0 0 0 − Ċ
C 0

0 0 0 0 0 − Ċ
C



therefor

B = PfP
−1 + PJ [2]P−1 = [bij ]6×6
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where

b11 = − Ṡ
S − (ρ(I + θC) + ν + u1 + λ4 − νp2)

−(ν + λ1)
b12 = ρS
b13 = ρθS
b14 = (ρS + λ4 − νp2)

E
S

b15 = (ρθS + λ4 + νp1 − νp2)
C
S

b16 = 0
b21 = λ1

b22 = − Ṡ
S − (ρ(I + θC) + ν + u1 + λ4 − νp2)

−(ν + λ2)
b23 = 0
b24 = −(λ4 − νp2)

E
S

b25 = 0
b26 = (ρθS + λ4 + νp1 − νp2)

C
S

b31 = 0
b32 = p3λ2

b33 = − Ṡ
S − (ρ(I + θC) + ν + u1 + λ4 − νp2)

−(ν + λ3 + u2 − νp1)
b34 = 0
b35 = −(λ4 − νp2)

C
S

b36 = (ρS + λ4 − νp2)
C
S

b41 = 0
b42 = ρ(I + θC)ES
b43 = 0

b44 = − Ė
E − (ν + λ1)− (ν + λ2)

b45 = 0
b46 = −ρθS C

E

b51 = 0
b52 = 0
b53 = ρ(I + θC) SC
b54 = p3λ2

E
C

b55 = − Ċ
C − (ν + λ1)− (ν + λ3 + u2 − νp1)

b56 = ρS
b61 = 0
b62 = 0
b63 = 0
b64 = 0
b65 = λ1

b66 = − Ċ
C − (ν + λ2)− (ν + λ3 + u2 − νp1)

From the system (1.2), we have

Ṡ

S
=

1

S
ν − (ρ(I + θC) + ν + u1 + λ4 − νp2)− (λ4 − νp2)

E

S

− (λ4 − νp2)
I

S
− (λ4 + νp1 − νp2)

C

S

Ė

E
= ρ(I + θC)

E

S
− (ν + λ1)

Ċ

C
= p3λ2

I

C
− (ν + λ3 + u2 − νp1)

According to [4, 10], for a norm ∥.∥ on Rn, the
Lozinskii measure µ associated with ∥.∥ can be

evaluated for a n× n matrix B as follow:

µ(B) = inf
{
k : D+ ∥z∥ ≤ k ∥z∥ ,

for all solutions of ż = Bz
}

(3.6)

Where D+ is the right-hand derivative [24]. As
in [4, 10], we consider the following norm on R6:

∥z∥ = max{U1, U2}

Where z ∈ R6 , with components zi, i = 1, . . . , 6
and

U1(z1, z2, z3)

=

{
max{|z1| , |z2| + |z3|} sgn(z1) = sgn(z2) = sgn(z3)
max{|z1| , |z1| + |z3|} sgn(z1) = sgn(z2) = −sgn(z3)
max{|z1| , |z2| , |z3|} sgn(z1) = −sgn(z2) = sgn(z3)
max{|z1| + |z3| , |z2| + |z3|} −sgn(z1) = sgn(z2) = sgn(z3)

U2(z4, z5, z6)

=

{ |z4| + |z5| + |z6| sgn(z4) = sgn(z5) = sgn(z6)
max{|z4| + |z5| , |z4| + |z6|} sgn(z4) = sgn(z5) = −sgn(z6)
max{|z5| , |z4| + |z6|} sgn(z4) = −sgn(z5) = sgn(z6)
max{|z4| + |z6| , |z5| + |z6|} −sgn(z4) = sgn(z5) = sgn(z6)

We now study solutions to

ż(t) = B(t)z(t).

case A. U1 > U2

case A1. z1, z2, z3 > 0 and |z1|> |z2|+|z3|. Then:

∥z∥= |z1|

so

D+∥z∥= ż1 =⇒ D+∥z∥≤(−(ν + λ1) + 2ρ(1 + θ)

+
2

ϵ
(λ4 + νp1))∥z∥ (3.7)

case A2. z1, z2, z3 > 0 and |z1|< |z2|+|z3|. Then:

∥z∥= |z2|+|z3|

so

D+∥z∥ = ż2 + ż3 =⇒ D+∥z∥≤ (−ν + λ1+

ρ(1 + θ) +
3

ϵ
(λ4 + νp1))∥z∥ (3.8)

case A3. z1 < 0 , z2, z3 > 0 and |z1|> |z2|. Then:

∥z∥= |z1|+|z3|

so

D+∥z∥= −ż1 + ż3 =⇒ D+∥z∥≤ (−ν+

2ρ(1 + θ) +
1

ϵ
(5λ4 + 3νp1 + 2νp2))∥z∥ (3.9)

case A4. z1 < 0 , z2, z3 > 0 and |z1|< |z2|. Then:

∥z∥= |z2|+|z3|
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so

D+∥z∥= ż2 + ż3 =⇒ D+∥z∥≤

(−ν + ρ(1 + θ) +
1

ϵ
(2λ4 + 3νp1))∥z∥ (3.10)

case A5. z3 < 0 , z1, z2 > 0 and
|z1|+|z3|< |z2|.

Then:
∥z∥= |z2|

so

D+∥z∥ = ż2 =⇒ D+∥z∥≤ (−ν − λ2+

λ1 + ρθ +
2

ϵ
(λ4 + νp1))∥z∥ (3.11)

case A6. z3 < 0 , z1, z2 > 0 and |z1|+|z3|> |z2|.

Then:
∥z∥= |z1|+|z3|

so

D+∥z∥= ż1 + ż3 =⇒ D+∥z∥≤ (−ν+

ρ(1 + θ) +
1

ϵ
(4λ4 + 3νp1 + 2νp2))∥z∥

(3.12)

case A7. z2 < 0 , z1, z3 > 0 and |z1|> max{|z2|, |z3|}.

Then:
∥z∥= |z1|

so

D+∥z∥= ż1 =⇒ D+∥z∥≤ (−ν − λ1 + ρθ+

2

ϵ
(λ4 + νp1))∥z∥ (3.13)

case A8. z2 < 0 , z1, z3 > 0 and |z2|> max{|z1|, |z3|}.

Then:
∥z∥= |z2|

so

D+∥z∥= −ż2 =⇒ D+∥z∥≤ (−ν − λ2 + ρθ+

2

ϵ
(λ4 + νp1))∥z∥ (3.14)

case A9. z2 < 0 , z1, z3 > 0 and |z3|> max{|z1|, |z2|}.

Then:
∥z∥= |z3|

so

D+∥z∥= ż3 =⇒ D+∥z∥≤ (−ν − λ3 − u2+

1

ϵ
(3λ4 + νp1 + νp2))∥z∥ (3.15)

case B. U1 > U2

case B1. z4, z5, z6 > 0.

Then:

∥z∥= |z4|+|z5|+|z6|

so

D+∥z∥= ż4 + ż5 + ż6 =⇒ D+∥z∥≤

(−ν +
1

ϵ
(p3λ2 + 2ρ(1 + θ)))∥z∥ (3.16)

case B2. z4, z5 > 0,z6 < 0 .

Then:

∥z∥= |z4|+|z5|

so

D+∥z∥= ż4 + ż5 =⇒ D+∥z∥≤

(−ν +
1

ϵ
(p3λ2 + 2ρ(1 + θ)))∥z∥ (3.17)

case B3. z4, z5 > 0,z6 < 0 ,|z5|< |z6| .

Then:

∥z∥= |z4|+|z6|

so

D+∥z∥= ż4 + ż6 =⇒ D+∥z∥≤

(−ν + λ2 +
2

ϵ
ρ(1 + θ))∥z∥ (3.18)

case B4. z4, z6 > 0,z5 < 0 ,|z5|> |z4|+|z6| .

Then:

∥z∥= |z5|

so

D+∥z∥= −ż5 =⇒ D+∥z∥≤ (−ν − λ1

− 1

ϵ
(p3λ2 − ρ(1 + θ)))∥z∥ (3.19)

case B5. z4, z6 > 0,z5 < 0 ,|z5|< |z4|+|z6| .

Then:

∥z∥= |z4|+|z6|

so

D+∥z∥= ż4 + ż6 =⇒ D+∥z∥≤ (−ν − λ2

+ λ1 +
1

ϵ
(ρ(1 + θ)))∥z∥ (3.20)

case B6. z5, z6 > 0,z4 < 0 ,|z5|< |z4| .

Then:

∥z∥= |z4|+|z6|
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so

D+∥z∥= −ż4 + ż6 =⇒ D+∥z∥≤ (−ν − λ2

+ λ1 +
2

ϵ
(ρ(1 + θ)))∥z∥ (3.21)

case B7. z5, z6 > 0,z4 < 0 ,|z5|> |z4| .

Then:
∥z∥= |z5|+|z6|

so

D+∥z∥= ż5 + ż6 =⇒ D+∥z∥≤ (−ν+

2

ϵ
(ρ(1 + θ)))∥z∥ (3.22)

Combining the results of the sixteen cases pre-
sented here in Equations (3.7)-(3.22), we obtain
the result

D+∥z∥ ≤ max
{
− ν + λ1 + 2ρ(1 + θ)

+
1

ϵ
(5λ4 + 3νp1 + 2νp2),−ν + λ1

+
2

ϵ
(ρ(1 + θ) + p3λ2)

}
∥z∥

then, by Equation (3.6)

µ(B) ≤ max
{
− ν + λ1 + 2ρ(1 + θ)

+
1

ϵ
(5λ4 + 3νp1 + 2νp2),−ν + λ1

+
2

ϵ
(ρ(1 + θ) + p3λ2)

}
Therefore, if there is a positive number k > 0
such that

max
{
− ν + λ1 + 2ρ(1 + θ)

+
1

ϵ
(5λ4 + 3νp1 + 2νp2),−ν + λ1

+
2

ϵ
(ρ(1 + θ) + p3λ2)

}
≤ −k

then µ(B) < 0 on Π̇. Thus, the endemic equilib-
rium is globally asymptotically stable amongst all
solutions which intersect the interior of Π, com-
pleting the proof of Theorem (3.3).

Theorem (3.3) gives a sufficient condition for
the endemic equilibrium to be globally asymp-
totically stable.

4 Conclusion

Approximately 350 to 400 million people world-
wide have chronic hepatitis B virus (HBV) infec-
tion, and HBV control is a major public health

concern. Mathematical models can be a useful
tools in this approach which help us to optimize
the use of finite sources or simply to goal con-
trol measures more impressively. In the present
paper we examine the dynamic behavior of a S-E-
I-C-R-S model of hepatitis B virus infection with
two controls: vaccination and treatment. This
paper has proved to be very useful: determining
the conditions for both the disease free equilib-
rium and endemic equilibrium and their stability.
It is rigorously established in Theorems (2.1) and
(3.3) that the basic reproduction number R0 is a
sharp threshold parameter and completely deter-
mines the global dynamics of (1.2) in the feasible
region Π. If R0 < 1, the disease-free equilibrium
is globally asymptotically stable in Π, and the dis-
ease always dies out. If R0 > 1, a unique endemic
equilibrium is globally asymptotically stable in Π
and the disease persist. The proof of the globally
asymptotically stability of P0 (disease-free equi-
librium) when R0 < 1, utilizes a new approach
of [Kamgang and Sallet ] to global stability prob-
lems in Rn and the proof of the global stability of
P ∗ (endemic equilibrium) when R0 > 1 , utilizes
a new approach of [Li and Muldowney] to global
stability problems in Rn.
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