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Abstract
In this paper, we introduce a numerical method based on the Taylor polynomials for the
approximate solution of the pantograph equation with linear functional argument, with
the fuzzy initial conditions . This method is illustrated by solving two examples.
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1 Introduction

The topic of fuzzy differential equations (FDEs) has been rapidly growing in recent years.
The concept of the fuzzy derivative was first introduced by Chang and Zadeh [13]; it was
followed up by Dubois and Prade [19], who used the extension principle in their approach.
Other methods have been discussed by Puri and Ralescu [32] and Goetschel and Voxman
[22]. Kandel and Byatt [27, 28] applied the concept of fuzzy differential equation (FDE)
to the analysis of fuzzy dynamical problems. The FDE and the initial value problem
(Cauchy problem) were rigorously treated by Kaleva [25,26], Seikkala [33], He and Yi [23],
Kloeden [29] and Menda [30], and by other researchers (see [7, 9, 10, 11, 14, 18, 24]).
The numerical methods for solving fuzzy differential equations are introduced in [1]-[4].
Buckley and Feuring [8] introduced two analytical methods for solving nth-order linear
differential equations with fuzzy initial conditions. Their first method of solution was to
fuzzify the crisp solution and then check to see if it satisfies the differential equation with
fuzzy initial conditions; and the second method was the reverse of the first method, in
that they first solved the fuzzy initial value problem and the checked to see if it defined
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a fuzzy function ;also Allahviranloo et al. [5] introduced other numerical methods for
solving nth-order linear differential equations with fuzzy initial conditions.
Our purpose in this study is to develop and to apply Taylor method to the generalized
pantograph equation with linear functional argument, with fuzzy initial conditions. In
recent years, there has been a growing interest in the numerical treatment of pantograph
equations. A special feature of this type is the existence of compactly supported solutions
[16]. This phenomenon was studied in [15] and has direct applications to approximation
theory and to wavelets [17]. Pantograph equations are characterized by the presence of
a linear functional argument and play an important role in explaining many different
phenomena. In particular they turn out to be fundamental when ODEs-based model fails.
These equations arise in industrial applications [21, 31] and in studies based on biology,
economy, control and electrodynamics [6, 12]. The structure of the paper is organized as
follows:
In Section 2, some basic definitions which will be used later in the paper are provided.
In Section 3, one method for solving fuzzy generalized pantograph equations with linear
functional argument is introduced, then the proposed method is illustrated by solving two
examples in Section 4,and the conclusion is considered in Section 5.

2 Preliminaries

A tilde is placed over a symbol to denote a fuzzy set, as in λ̃, f̃(t) , ... .
An arbitrary fuzzy number is represented by an ordered pair of functions (u(r), u(r)), 0 ≤
r ≤ 1, which satisfy the following requirements.

• u(r) is a bounded left continuous nondecreasing function over [0, 1].

• u(r) is a bounded left continuous nonincreasing function over [0, 1].

• u(r) ≤ u(r), 0 ≤ r ≤ 1.

Let E be the set of all upper semicontinuous normal convex fuzzy numbers with
bounded r-level intervals. This means that if v ∈ E then the r-level set

[v]r = s|v(s) ≥ r, 0 < r ≤ 1

is a closed bounded interval which is denoted by

[v]r = [v(r), v(r)].

For arbitrary u = (u, u), v = (v, v) and k ≥ 0,addition and multiplication by k are
defined as follows:

• (u+ v) = u(r) + v(r),

• (u+ v) = u(r) + v(r),

• (ku)(r) = ku(r), (ku)(r) = ku(r).

Definition 2.1. For arbitrary fuzzy quantities u = (u, u) and v = (v, v),the quantity

D(u, v) = [

∫ 1

0
(u(r)− v(r))2dr +

∫ 1

0
(u(r)− v(r))2dr]

1
2

is the distance between u and v.
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3 New Method

In this section, we are going to solve the following problem (taken from [34], Eq. (3.1))

y(m)(t) =

J∑
j=0

m−1∑
k=0

Pjk(t)y
(k)(αjt+ βj) + f(t) (3.1)

which is a generalization of the pantograph equations ,with the fuzzy initial conditions

m−1∑
k=0

cikỹ
(k)(0) = λ̃i, i = 0, 1, 2, ...,m− 1, (3.2)

Here Pjk(t) are analytical functions on some interval I. The interval I can be [0,T] for
some T > 0. cik, αj and βj are real or complex constants and for i = 0, 1, 2, ...,m−1 ,λ̃i

are fuzzy constants also , let

∀j, k Pjk ≥ 0, ∀i, k cik ≥ 0

Buckly-Feuring method of solution is to fuzzify the crisp solution to obtain a fuzzy
function Ỹ (t) , and then check to see if it satisfies the differential equation with fuzzy
initial conditions. In this paper we proposed another method for solving m-order fuzzy
differential pantograph equations with linear functional argument. This method is to find
the solution in terms of the Taylor polynomial form, in the origin,

ỹN (t) =

N∑
n=0

ỹnt
n, ỹn =

ỹ(n)(0)

n!
, (3.3)

where {tn}∞n=0 are positive basic functions whose all differentiations are positive. Now,
the aim is to compute the fuzzy coefficients in (3.3) by setting the error to zero as follows,

Error = D(ỹ(m)(t)−
∑J

j=0

∑m−1
k=0 Pjk(t)ỹ

(k)(αjt+ βj), f̃(t))

+D(
∑m−1

k=0 c0kỹ
(k)(0), λ̃0) +D(

∑m−1
k=0 c1kỹ

(k)(0), λ̃1)

+...+D(
∑m−1

k=0 cm−1kỹ
(k)(0), λ̃m−1).

(3.4)

To illustrate this approach, let ỹN (t) be the fuzzy solution of (3.1) such that

yN (t, r) =

N∑
n=0

ynt
n =

N∑
n=0

ynt
n =

N∑
n=0

ynt
n, (3.5)

yN (t, r) =
N∑

n=0

yntn =
N∑

n=0

yntn =
N∑

n=0

ynt
n, 0 < r ≤ 1 (3.6)
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We substitute (3.5) and (3.6) in (3.4), then we have two initial value problems as following

y(m)(t, r)−
J∑

j=0

m−1∑
k=0

Pjk(t)y
(k)(αjt+ βj , r) = f(t, r)

m−1∑
k=o

ciky
(k)(0, r) = λi(r) i = 0, 1, 2, ...,m− 1

(3.7)



y(m)(t, r)−
J∑

j=0

m−1∑
k=0

Pjk(t)y(k)(αjt+ βj , r) = f(t, r)

m−1∑
k=o

ciky(k)(0, r) = λi(r) i = 0, 1, 2, ...,m− 1
(3.8)

now , since ∀j, k, Pjk ≥ 0 ,we have



y(m)(t, r)−
J∑

j=0

m−1∑
k=0

Pjk(t)y
(k)(αjt+ βj , r) = f(t, r)

m−1∑
k=o

ciky
(k)(0, r) = λi(r) i = 0, 1, 2, ...,m− 1

(3.9)



y(m)(t, r)−
J∑

j=0

m−1∑
k=0

Pjk(t)y
(k)(αjt+ βj , r) = f(t, r)

m−1∑
k=o

ciky
(k)(0, r) = λi(r) i = 0, 1, 2, ...,m− 1

(3.10)

we solve the initial value problem (3.9) as following :
let us convert expressions defined in (3.9), (3.5) to the matrix forms. Let us first

assume that the functions y(t, r) and its derivative y(k)(t, r) can be expanded to Taylor
series about t = 0 in the form

y(k)(t, r) =

∞∑
n=0

yn
(k)tn, (3.11)

where for k = 0, y(0)(t, r) = y(t, r) and yn
(0) = yn.

Now, let us differentiate expression (3.11) with respect to t and then put n → n+ 1

y(k+1)(t, r) =
∞∑
n=1

nyn
(k)tn−1 =

∞∑
n=0

(n+ 1)yn+1
(k)tn. (3.12)

118

118 N. Mikaeilvand, L. Hossieni / IJIM Vol. 2, No. 2 (2010) 115-127

IJIM Journal
Text Box



It is clear, from (3.11), that

y(k+1)(t, r) =
∞∑
n=0

yn
(k+1)tn. (3.13)

Using relations (3.12) and (3.13), we have the recurrence relation between Taylor coeffi-
cients of y(k)(t, r) and y(k+1)(t, r)

yn
(k+1) = (n+ 1)yn+1

(k), n, k = 0, 1, 2, .... (3.14)

If we take n = 0, 1, ... , N and assume yn
(k) = 0 for n > N , then we can transform system

(3.14) into the matrix form

Y(k+1) = MY(k), k = 0, 1, 2, .... (3.15)

where

Y(k) =


y0

(k)

y1
(k)

...

yN
(k)

 , M =


0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . N
0 0 0 . . . 0


For k = 0, 1, 2, . . ., it follows from relation (3.15) that

Y(k) = MkY, (3.16)

where clearly
Y(0) = Y = [y0(r) y1(r) ... yN (r)]T .

On the other hand, solution expressed by (3.5) and its derivatives can be written in the
matrix forms

y(t, r) = TY

and
y(k)(t, r) = TY(k)

or using relation (3.16)

y(t, r) = TMkY, (3.17)

where
T = [1 t t2 ... tN ].

To obtain the matrix form of the part

J∑
j=0

m−1∑
k=0

Pjk(t)y
(k)(αjt+ βj , r) (3.18)

which is defined in Eq. (3.9), we first write the function Pjk(t) in the form

Pjk(t) =

N∑
i=0

P
(i)
jk t

i, P
(i)
jk =

P
(i)
jk (0)

i!
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and then, substitute into (3.18). It is seen from relation (3.11) and binomial expansion
that

y(k)(αjt+ βj , r) =

N∑
n=0

yn
(k)(αjt+ βj)

n =

N∑
n=0

n∑
v=0

(nv )α
n−v
j βv

j t
n−vyn

(k).

Thus, the term tiy(k)(αjt+ βj , r) is obtained and its matrix representations become

tiy(k)(αjt+ βj , r) =
N∑

n=0

n∑
v=0

(nv )α
n−v
j βv

j t
n−v+iyn

(k) = TIiAjY
(k)

or from (3.16)

tiy(k)(αjt+ βj , r) = TIiAjM
kY, i = 0, 1, ..., N, (3.19)

where

I0 =


1 0 . . . 0 0
0 1 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1

 , I1 =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 ,

IN =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

1 0 . . . 0 0


For βj ̸= 0,

Aj =



(00)(αj)
0(βj)

0 (11)(αj)
0(βj)

1 . . . (NN )(αj)
0(βj)

N

0 (10)(αj)
1(βj)

0 . . . (NN−1)(αj)
1(βj)

N−1

...
...

. . .
...

0 0 . . . (N0 )(αj)
N (βj)

0


and for βj = 0,

Aj =



(αj)
0 0 . . . 0

0 (αj)
1 . . . 0

...
...

. . .
...

0 0 . . . (αj)
N


Utilizing expression (3.19), we obtain the matrix form of the part (3.18) as

J∑
j=0

m−1∑
k=0

N∑
i=0

P
(i)
jk TIiAjM

kY. (3.20)
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We now assume that the function f(t) can be expanded as

f(t) =
N∑

n=0

fnt
n, fn =

f (n)(0)

n!

or written in the matrix form

f(t) = TF. (3.21)

where
F = [ f0 f1 . . . fN ]T .

Next, by means of relation (3.17), we can obtain the corresponding matrix form for the
initial conditions (3.9) as

m−1∑
k=0

cikT(0)MkY = λi(r) i = 0, 1, ...,m− 1, (3.22)

where
T(0) = [ 1 0 0 . . . 0 ].

We are now ready to construct the fundamental matrix equation corresponding to Eq.
(3.9). For this purpose, substituting matrix relations (3.17), (3.20) and (3.21) into Eq.
(3.9) and then simplifying, we obtain the fundamental matrix equation

{Mm −
J∑

j=0

m−1∑
k=0

N∑
i=0

P
(i)
jk IiAjM

k}Y = F (3.23)

which corresponds to a system of (N + 1) algebraic equations for the (N + 1) unknown
coefficients y0(r), y1(r), ..., yN (r). Briefly, we can write Eq. (3.23) in the form

WY = F or [W;F],

where
W = [wnh], n, h = 0, 1, ..., N.

Also, the matrix form (3.22) for conditions (3.22) can be written as

UiY = λi(r) or [Ui;λi(r)], i = 0, 1, ...,m− 1,

where

Ui =
m−1∑
k=0

cikT(0)Mk = [ ui0 ui1 . . . uiN ].

To obtain the solution of Eq. (3.9), by replacing the m rows matrices [Ui;λi(r)] by the
last m rows of the matrix [W;F] , we have the augmented matrix

[Ŵ, F̂] =



w00 w01 . . . w0N ; f0
w10 w11 . . . w1N ; f1
...

...
...

...
...

wN−m,0 wN−m,1 . . . wN−m,N ; fN−m

u00 u01 . . . u0N ; λ0(r)
u10 u11 . . . u1N ; λ1(r)
...

...
...

...
...

um−1,0 um−1,1 . . . um−1,N ; λm−1(r)


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If det Ŵ ̸= 0 , then we can write

Y = (Ŵ)−1F̂.

Thus the coefficients yn(r), n = 0, 1, ..., N are uniquely determined by this equation.
In a similar way, we can solve the initial value problem (3.10). we determin the

coefficients yn(r), n = 0, 1, ..., N .

4 Illustrative examples

In this section, two numerical examples are given to illustrate the properties of the method.

Example 4.1. (Evans and Raslan, [20]). Consider the fuzzy pantograph equation of
second order

y′′(t) =
3

4
y(t) + y(

t

2
)− t2 + 2, ỹ(0) = (r,−r + 2), ỹ′(0) = (r, 3− 2r), 0 ≤ r ≤ 1

we have two initial value problems as following :
y′′(t) =

3

4
y(t) + y(

t

2
)− t2 + 2, r ∈ [0, 1]

y(0) = r, y′(0) = r.
(4.24)

and 
y′′(t) =

3

4
y(t) + y(

t

2
)− t2 + 2, r ∈ [0, 1]

y(0) = 2− r, y′(0) = 3− 2r.
(4.25)

we solve the initial value problem (4.24) as following : The fundamental matrix equation
of this problem is

(M2 − 3

4
I0 −A1)Y = F.

Here I0 is unit matrix and for N = 4 others

M =


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0

 , A1 =


1 0 0 0 0
0 1

2 0 0 0
0 0 1

4 0 0
0 0 0 1

8 0
0 0 0 0 1

16



F =


2
0
−1
r
r


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After the ordinary operations and following the method in Section 3, the augmented matrix
for the problem is gained as

[Ŵ, F̂] =


−7

4 0 2 0 0 ; 2
0 −5

4 0 6 0 ; 0
0 0 −1 0 12 ; −1
1 0 0 0 0 ; r
0 1 0 0 0 ; r


where the last two rows indicate the augmented matrix of the conditions [Ui;λi(r)].Solving
this system, we get

y0(r) = r, y1(r) = r, y2(r) = 1 +
7

8
r, y3(r) =

5

24
r, y4(r) =

7

96
r

if r = 0.8, then

y0 =
4

5
, y1 =

4

5
, y2 =

17

10
, y3 =

1

6
, y4 =

7

120

In a similar way, we can solve the initial value problem (4.25) then , we have

y0(r) = 2− r, y1(r) = 3− 2r, y2(r) =
11

4
− 7

8
r, y3(r) =

5

8
− 5

12
r, y4(r) =

7

48
− 7

96
r

if r = 0.8, then

y0 =
6

5
, y1 =

7

5
, y2 =

41

20
, y3 =

7

24
, y4 =

7

80

we have

y0(r) = [r, 2− r], y1(r) = [r, 3− 2r], y2(r) = [1 +
7

8
r,
11

4
− 7

8
r],

y3(r) = [
5

24
r,
5

8
− 5

12
r], y4(r) = [

7

96
r,

7

48
− 7

96
r],

also, ∀r ∈ [0, 1] :

y(t, r) = [r, 2− r] + [r, 3− 2r]t+ [1+
7

8
r,
11

4
− 7

8
r]t2 + [

5

24
r,
5

8
− 5

12
r]t3 + [

7

96
r,

7

48
− 7

96
r]t4

If r = 0.8, then

y(t) = [
4

5
,
6

5
] + [

4

5
,
7

5
]t+ [

17

10
,
41

20
]t2 + [

1

6
,
7

24
]t3 + [

7

120
,
7

80
]t4

Example 4.2. Considering the fuzzy pantograph equation of third order

y′′′(t) = ty′′(t)− y′(t)− y(
t

2
) + t cos(2t) + cos(

t

2
),

ỹ(0) = (r, 2− r), ỹ′ = (r, 3− 2r), ỹ′′ = (r, 5− 4r), 0 ≤ r ≤ 1
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we have two initial value problems as following:
y′′′(t) = ty′′(t) + y′(t) + y(

t

2
) + t cos(2t) + cos(

t

2
), r ∈ [0, 1]

y(0) = r, y′(0) = r, y′′(0) = r.
(4.26)

and


y′′′(t) = ty′′(t) + y′(t) + y(

t

2
) + t cos(2t) + cos(

t

2
), r ∈ [0, 1]

y(0) = 2− r, y′(0) = 3− 2r, y′′(0) = 5− 4r.
(4.27)

we solve the initial value problem (4.26) as following : The fundamental matrix equation
of this problem is

(M3 − I1A0M
2 −A2 −M)Y = F.

where A0 and A2 are defined in relation (3.19) for α0 = 2, β0 = 0 and α2 = 1/2, β2 = 0,
respectively.

If we take N = 6 and follow the Taylor series method in Section 3, the augmented
matrix becomes

[Ŵ, F̂] =



−1 −1 0 6 0 0 0 ; 1
0 −1

2 −4 0 24 0 0 ; 1
0 0 −1

4 −15 0 60 0 ; −1
8

0 0 0 −1
8 −52 0 120 ; −2

1 0 0 0 0 0 0 ; r
0 1 0 0 0 0 0 ; r
0 0 2 0 0 0 0 ; r


we obtain the Taylor coefficient vector

Y = [ r r 0.5r 0.1667+0.3334r 0.0416+0.1042r 0.0395+0.0854r 0.0016+0.0455r ].

we have

y(t, r) = r + rt+ 0.5rt2 + (0.1667 + 0.3334r)t3

+(0.0416 + 0.1042r)t4 + (0.0395 + 0.0854r)t5 + (0.0016 + 0.0455r)t6

In a similar way, we can solve the initial value problem (4.27) then , we have

Y = [ 2−r 3−2r 2.5−2r 1−0.5r 0.5208−0.375r 0.2584−0.1334r 0.2101−0.1630r ]

also

y(t, r) = (2− r) + (3− 2r)t+ (2.55− 2r)t2 + (1− 0.5r)t3

+(0.5208− 0.375r)t4 + (0.2584− 0.1334r)t5 + (0.2101− 0.1630r)t6
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The following remark shows when above-mentioned case has a fuzzy approximated
solution.

Remark 4.1. The sufficient conditions for (y(t, r), y(t, r)) to define the parametric form
of a fuzzy number are as follows:

•
∑N

n=0 ynt
n is a bounded left continuous nondecreasing function over t ∈ T .

•
∑N

n=0 ynt
n is a bounded left continuous nonincreasing function over t ∈ T .

•
∑N

n=0 ynt
n ≤

∑N
n=0 ynt

n, 0 ≤ r ≤ 1.

5 Conclusions

In this paper a numerical method similar to the collocation method, based on a Tay-
lor series ,with a positive basis {tn}∞n=0 for solving the fuzzy pantograph equations was
discussed.fuzzy approximate solutions were obtained by solving an extended system of
generalized pantograph equations with linear functional argument.
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