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Abstract

Multiquadric quasi-interpolation is a useful instrument in approximation theory and its
applications. In this paper, a numerical approach for solving Kawahara equation (KE)
is developed by using multiquadric quasi-interpolation method. Obtaining numerical so-
lution of KE by multiquadric quasi-interpolation is done by a recurrence relation. In
this recurrence relation, the approximation of derivative is evaluated directly without the
need to solve any linear system of equation. Also, by combining Hermite interpolation
and quasi-interpolation Lp, another way to solve KE is obtained. The KE occurs in the
theory of magneto-acoustic waves in a plasma and in the theory of shallow water waves
with surface tension. We test the method in two examples and compare the numerical
and exact results.

Keywords : Radial basis function; Quasi-interpolation; Preserving monotonicity; Linear reproduc-
ing, The Kawahara equation; Hermite interpolating polynomial.

1 Introduction

Nonlinear equations play an important role in various fileds of sciences. The actual world
is nonlinear, so these equations are a model to describe the physical phenomena. Un-
fortunately, solving the nonlinear equations is harder than the linear ones, so we have
always been looking for ways to solve them more easily. The KE is a nonlinear partial
differential equation. It was first proposed by Kawahara in 1972 as a model equation
describing solitary-wave propagation in media [1]. This equation occurs in the theory
of magneto-acoustic waves in a plasma and in the theory of shallow water waves with
surface tension [5]. The KE has been the subject of wide research work [1, 10, 11, 12].
Abbasbandy [1] solved the KE with homotopy analysis method (HAM) and proved that
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obtained solution of this equation by using (HAM) has a reasonable residual error. This
method is a powerful analytical tool for nonlinear problems. The approximate solution of
KE with this method is obtained as a series of exponentials. Moreover we can find the
exact and numerical solution of KE by the Variational Iteration Method (VIM) [5]. The
VIM is based on Lagrange multipliers. Using this method creates a sequence which tends
to the exact solution of the problem. Existence and uniqueness of solution of the KE is
considered in [9]. Recently, many authors have applied the direct algebraic method to find
the exact solution of nonlinear PDE such as KE [13, 14, 15]. The KE is as follows:

U + auuy + fusy + Yusy =0 (L.1)

where «, [, v are arbitrary constants. The numerical solution of Eq. (1) is obtained
subject to the initial condition:

u(z,0) = f(z), =z € R.

The rest of this paper is as follows: In Section 2, multiquadric quasi interpolation is
introduced. In Section 3, mathematical formulation of our method is explained. In Section
4, Hermite quasi-interpolation is mentioned and mathematical formulation for Hermite
quasi-interpolation is expressed. In Section 5, two examples for testing our methods are
shown and in the last section the conclusion is derived.

2 Multiquadric quasi-interpolation method

Hardy [6] proposed multiquadric (MQ) in 1968 as a kind of radial basis function (RBF).
For the first time, Kansa [8] successfully used modified MQ for solving partial differential
equation (PDE). In 1992, Betson and Powell [2] proposed three univariate multiquadric
quasi-interpolations. They named them L4, Lp, L to approximate a function{ f(z)|zg <
z < zp}. Afterwards, Schaback and Wu [3] proposed a multiquadric quasi-interpolation
Lp to improve Ly, Lp,Lc. Multiquadric quasi-interpolation Lp possesses preserving
monotonicity, convexity preserving and linear reproducing on [z, z,], but for example L 4
and Lp cannot preserve both linearity and convexity. Quasi-interpolation is an appro-
priate instrument in approximation theory and its applications. Multiquadric is used in
geodesy, geophysics, photogrammetry, hydrology and mining and so on [7] but the most
important advantage of quasi-interpolation is that one can evaluate the approximation di-
rectly without the need to solve any linear system of equations. In this section we introduce
the multi-quadric quasi-interpolation Lp to approximate a function {f(z)|zy < z < z,}.
Given the points {(a:j,fj)};-‘:o where zg < z1 < ... < z,, the form of univariate quasi-
interpolation is as follows:

Fre) = fii(x) (22)
j=0

where, 1;(z) (j = 0,1,...n) is a linear combination of radial basis functions. Buhmann [4]
considered 1 (z) as a second divided difference of ¢ as follows:

() = $jr1(2) — di(z) _ dilz) — dj1(2)) (2.3)

2(zj41 — ) 2(zj —wj-1)
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The operator Lp is introduced as follows [3, 4] :

(Lpf)(z) = foao(z) + fran(z +ny¢y ) + fac1om—1(z) + faom(z), (2.4)

where
1 $i(2) — (2 — z0)
i =g 2(z1 —m0)
(o) = 2B = 1) _ i(2) = (o = m0)
' 2(z2 — m1) 2(z1 — )
a (x) = (Tn — ) — ¢n1(2) . Pn—1(x) — Ppp_2(x)
n—1 2(zy — zp—1) 2Tp_1 — Tp_g)
— 1 qﬁn,l(x) - (xn - 117)
Ozn(x) ~ 9 + 2(In — $n71) )
¢i(x) = \/(z —2))2+¢2, j=1,..,n—1, cER,
() — $jr1(2) — ¢i(2)  bilz) —dja(z) . _ .
d)J( ) 2([17j+1 — xj) Q(x]. _ xj—l) , J=2,.., 2.
Let

p-1(z) =z —z1], do(z) =z — 20|, In(z) =z —2p|, Int1(2) =z —2np1

then (Lpf)(z) can be written as follows:

(Lpf)(z Z fij(x

Quasi-interpolation f*(z) has the following properties.

Theorem 2.1. [}/, If
p-1(z) = do(z) + T0 — 21,

bn(z) = ¢o(2) — 22 + 20 + T, (2.5)
¢n+l($) = ¢n($) +Tpi1 —xy

then the multiquadric quasi-interpolation f*(x) can be written as three equivalent forms
as follows:

j=1

Tjt1 — Ty Tj—Tj-1
sy(1y DOy By InlE) = ool
n—1 , e
proy= D3I S WO 0@ gy

Tj+1 = Tj
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Z fj+1 f] _fj_fjfl)qu(x)

Tj+1 — L5  Tj— Tj-1

] 1
fo+ fn fi—fo Jn— fn1
t— t 3y = xo)%(fﬂ) T am — 1) xn71)¢n($)'

In addition on [z, z,] , we have
n=1 (k) _ (k)

. 1 ¢ — b
(S @)® =3 LI - fy)

255 T T

where, z_1 < zy and z,, < zp,41. With the Eqgs. (2.5) and the definition of ¢;(z), (),
we can say that the quasi-interpolation f*(z) defined by Eq. (2.2) is just the multiquadric
quasi-interpolatin which we use in this paper.

Theorem 2.2. [/]. Let
h =max{z; —z;1}, 1<j<n.

For any real number ¢ > 0, x € [zg, z,] and function f(z) € C%(xg, ), the multiquadric
quasi-interpolation Lp satisfies:

I(Lp)(z) — f(2)lloc < k1h® + kach + ksc® log b,

where ki, ko, k3 are constants independent of h and c.

3 Mathematical formulation for MQ quasi-interpolation

As [16], we can present the numerical method for solving the KE . The KE is as follows:
ut + quug + Pusg + yusy =0,

where «, (8, v are arbitrary constants. u”

7 is the approximation of the value of u(z,t) at

. .. . Lol teu?
point (z;,t,), tn, = n7, T is time step. We approximate u; with -~-—— so we get:

w T —
% ~ —ozu?(uag)}1 — 5(U3x)? - ’Y(US:B)?-
Clearly we have:
u?“ = u? — CVT(U] )(ux) BT(UM) ’YT(USI)?

The above equation means that the value of u can be obtained in time step (n+1) according
to time step (n). So, it dose not need to solve a system of equations. According to Theorem
(2.1), the approximate values of u,,us, and us, can be obtained. The derivative of the
multiquadric quasi-interpolation to approximate u;,us; and us; is used. And also we
have:

(1)
() = S0t DB @) Y (1),

ITm+1—Tm

(3)
(use)? = 3 Sy PG @) (g (1), (3.6)

ITm+1—Tm

()x .
(use)? = 3 S0ty PRI @) (1),

Tm+1—Tm
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4 MAQ interpolating operator using Hermite interpolating
polynomial

In this section, first, the quasi-interpolation Ly, , is recalled [17] and the problem oper-
ators Ly, _, for solving KE is expressed. This defect is removed by combining operators
Lp and Ly, ,. The quasi-interpolation operator Lp is defined as follows [2]:

n—1
(Laf)(z) = f(zo)o(z) + > fzi)hi(x) + f(zn)¥n(z), = € [a,b], (4.7)
i=1
where
Yo() = § + E=tl),
Une) = 5 — 25y, (438)

() — Gir1(@)=di(x) _ $i(x)=di1(z)
Yi(r) = 2-?111417&:1-) o 2(171'*!1?1'711) ’
and2=1,2,...,n—1.
By combining L g and Hermite interpolating polynomials [17] the improved quasi-interpolation
operator is defined as follows:

(Lt 1 )@ sz )Hom11f;2i, i 1] (2), (4.9)

where Hop—1[f;zi, ziy1](z) is Hermite interpolating polynomial of degree 2m — 1 which
agrees with the function f at the points

fi,xi,---a$5,§i+1a$z’+1, - a«Tz'—l—l/-
' ~

m m

Also Hermite interpolating polynomial is defined as follows [18]:

Hont (F(@)) = - ri(@)f (@) + Y si(a)f'(z2) (4.10)
where

si(z) = (z — z;)(Li(z))?,

) _ (z—=zo)e(z—zim1)(z—2i41) ... (Z—Trm—1)
LZ(:I;) - (:Ei—:Eo)...(1‘,‘—xi_1)(1‘,‘—1‘,‘_4_1)...(1',‘—1'”171)'

If we want to use Eq. (4.9) for solving (KE), uy(z;,t), 7 = 0,1,..n, should be
calculated in Eq. (4.10). But, as it is seen the values of uy(z,t) at z = =z; are not
available. To remove this defect, the bellow steps are done.

The (KE) is as follows:

Uy + auty + fusy + yuse = 0,
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is the approximation of the value of u(z,t) at
w T qyn
point (z;,t,), tn, = n7, T is time step. We approximate u; with ~-——= so we get:

where «, 8, v are arbitrary constants. u}

utt —
% ~ —au (ug)j — Bluze) — v(use)j -
Clearly we have:
u?“ =y — ar(uj)(uz)j — B7(use); — 7 (use)j -

The above equation means that the value of u can be obtained in time step (n + 1)
according to time step (n). This time the values of u,, us, and us, are approximated by
Hermite quasi-interpolation as bellow:

Lu(z,t) = Z Vi (x) Hom—1 (u(z;, 1)),

—1 m—1
Hmel(’U,(fL',t)) = 'f'i xZa + Z SZ u:L‘ x, t )I:l‘ia
=0

3

3

Il
o

where uy(z,t) is the derivative of Lp(u(z,t)) as follows:

Ij+1 - Ij IEj - 517]',1

u(zo,t) + u(zy,t)  ulzy,t) —u(zo,t)

? e e
u(zp, t) — u(zy 1,t)
2($n - 27”,1) (In - x)]:z::;pl
So
(s, ) = (e, ) —aru(aj, tn) (Lu(e, )y, —B7(Lu(e, )2y, =77 (L, tn)) s,

Remark 4.1. [}/, The formula of (Lpf)(x) can be rewritten as:

(Lpf)(@) =355 (el — Llolyg () — fobhe

Tj+1-%5

it (o — w0) — gli=ts (00 — ).

2(z1—20) 2(Tn—Tn—1

5 Numerical examples

In this section we give two examples to test the methods. All through this section we
suppose « = =1, v = —1.
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Example 5.1. Consider the KE:
Up + Uty + U3y — Use = 0,

with initial condition

72 105
w(z,0) = ——— + ——sech’(

169 ' 169° 7)-

1
213
The authors of [5] obtain the exact solution of this equation as follows:

72 105 1 36

u(z,t) = —— + —sech4(m(x + @t))

169 169

u Tl _yn
According to uy ~ —L——"L we get:

~ —UlUy — U3y + Usg-
So we can write:
w(xj, tnt1) = uw(xj, ty) + 7(—u(zj, tn)ug(z), tn) — use (), tn) + use (25, tn))-

In the above relation ugz,us, and usz, can be obtained in each time step with Eqs. (5.6).
For example if we put t = 0.1, the values of u(x;,0.1) can be obtained as follows:

u(,0.1) = u(z;,0) + 0.0001(—u(z;,0)us(x;,0) — uzz(2;,0) + use(24,0)),

where
13 ¢ (j,m) — W (wj,m + 1)
o030 =3 2. xmﬂ —— (w(m11,0) = u(@m, 0)),
1 n—1 (3) ) 1
wsalay,0) = - 30 O = IV N) (o) e, 0),
2 xm-i—l —Tm
m=0
n—1
1 ¢O) (z;,m) — p® (z;,m + 1
Usg(25,0)) = 2 - :1:) +1 —:IT( . )(u(merlvO) — u(zm, 0)).
m—=0 m m

Similarly the values of u(x;,0.2) can be obtained according to the following:
u(x,0.2) = u(z;,0.1) +0.0001(—u(x,0.1)uy(2;,0.1) — uzz(x;,0.1) + use(24,0.1)),

and so on. The comparison of the exact and numerical solution is shown in Table 1. We
show the results at t=0.1 in Fig. 1.

Table 1
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Comparison of results at t = 0.1 for MQ).

x  FEzact solution Numerical solution Absolute error
0.1 0.194915 0.195027 0.000112515
0.2 0.194097 0.194311 0.00022421}
0.3 0.192805 0.19312 0.000315175
0.4 0.191042 0.191457 0.000415287
0.5 0.188812 0.189326 0.000514287
0.6 0.186121 0.186733 0.00061191}
0.7 0.182977 0.183685 0.000707918
0.8 0.179389 0.180191 0.000802096
0.9 0.175364 0.176261 0.000897298

1 0.17091} 0.171898 0.000983632

0.195¢
0.190 |
0.185|

0.180 |

10

Fig. 1. Comparison of numerical solution (---), and exact solution (— — —) of example (5.1) for
t=0.1.

In Table 2, we compare the absolute error at different times for example (5.1).

Table 2
Absolute error of MQ at different times.
T t=0.1 t=0.2 t=0.3 t=0.4

—25  1.11516x107  2.2435/x10~7  3.38529x10~"  4.54058x10~7
30 6.912x10° 1.37429x10°8  2.04936x10°%  4.54058%x10°7
40 2.69876x10~"  5.36582x107M  8.00156x107'"  1.06063 x10~10

In Table 3, the values of u(x,t) is calculated at t = 0.1 by Hermite quasi-interpolation
as bellow:

u(z7,0.1) = u(z;,0) 4+ 0.0001(—u(zr;, 0)uy(;,0) — usze(z;,0) + use(z4,0)),

where

Ug x], = Z¢z H2m 1 (xiao))]l:mj’

sa(a,0) = %[Z () i (4, 0)) s
1=0
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Usy I]a = Z'@bz H2m 1 (xiao))]x::r]--
And
m—1 m—1
Hmel(u(an)) = Tz 3727 + Z Sz Uz x, 0 :1: Tis
i=0 1=0
where
9 1= w(zjt1,0) —u(z;,0)  wu(z;,0) —u(zj_1,0)
(uz(2,0))p=a; = 8_[5 o e e )bi(z)—
r = IJ+1 I] I] IJ,1
U(II}U,O) + U(In,O) + U(Il,O) - U(II}U,O) (IL' o «TO)—
2 2(z1 — zo)
u(zp,0) — u(z,_1,0)
2($n _ :I;nfl) ([I’.n x)]
Similarly

u(x,0.2) = u(z;,0.1) +0.0001(—u(x;,0.1)uy(2;,0.1) — uzz(x;,0.1) + use(24,0.1)),

where
517],01 sz H2m 1 (xiao-l))]x::rja
83
u3x($3701) = %[Z Q/)i(x)Hmel(u(xia0-1))]x:mj7
=0
>
U5m(xja0-1) = %[Z@bz( x)Hop 1 (u (wiao-l))]m:mj-
=0
And . .
Hom-1(u(2,0.1)) = ) _ri(z)u(zi,0.1) + ) si(z)(ua(z,0.1)) 2=,
=0 =0
where
0 1= u(xje1,0.1) — u(z;,0.1)  u(z;,0.1) — u(zj_1,0.1)
(s (,0.1)) s, = [ (M D) MO — 2 0

u(zo,0.1) + u(z,,0.1)  wu(z1,0.1) — u(xp,0.1)
+
2 2(371 - xo)

u(zp,0.1) — u(z,_1,0.1)
2(xn _ [I;n—l) (xn - x)]a

(z —20)—

and so on.

Table 3

Comparison of results at t = 0.1 for Hermite quasi-interpolation.
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z  FEzact solution Numerical solution Absolute error
0.1 0.194915 0.1945 0.00041431}4
0.2 0.194097 0.194765 0.000667334
0.3 0.192805 0.193127 0.000321756
0.4 0.191042 0.191459 0.000417559
0.5 0.188812 0.189326 0.000514435

In Table 4, the values of u(xz,t) are calculated at t = 0.2 by Hermite quasi-interpolation.

In other time steps the same thing is done.

Table 4
Comparison of results at t = 0.2 for Hermite quasi-interpolation.
x  FExact solution Numerical solution Absolute error
0.1 0.194781 0.19392) 0.000856121
0.2 0.193862 0.195259 0.00139732
0.3 0.192469 0.193135 0.000666496
0.4 0.195606 0.191462 0.000856056
0.5 0.188277 0.189327 0.00104978

Example 5.2. Consider the KE:

Up + Ul + U3g — Usg = 0,

with initial condition

2 1
(e, 0) = 2 . 420sech (mx)
’ 169 169(1 + sech2(2—\}ﬁx))'

The authors of [5] obtained the exact solution of this equation as follows:

79 420360h2(ﬁ($ +235))

) =—7e5 7t '
u(,?) 169 169(1+sech2(ﬁ($+%)))

The comparison of the exact and numerical solution is shown in Table 5. We show the

results at t=0.1 in Fig. 2.

Table 5
Comparison of results at t = 0.1 of MQ.
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x  FExact solution Numerical solution Absolute error

0.1 0.816392 0.816449 0.000056432
0.2 0.815983 0.816091 0.000107586
0.3 0.815335 0.81549/ 0.000158618
0.4 0.814449 0.814658 0.000209586
0.5 0.81332) 0.81358/ 0.000260473
0.6 0.811962 0.812273 0.000311259
0.7 0.810362 0.81072} 0.000361924
0.8 0.808526 0.808939 0.000412469
0.9 0.806454 0.806919 0.000464483
1 0.804147 0.804659 0.000512132

0.816 |

0.814

0812}

0,810

0.808

0.806 -

o2 o4 o5 o8 10
Fig. 2. Comparison of numerical solution (---), and exact solution (— — —) of example (5.2) for
t=0.1.

In Table 6 we compare the absolute error in different times for example (5.2).

Table 6
Absolute error of MQ in different times.
x t=0.1 t=0.2 t=0.3 t=0.4
=25 0.0000567258  0.000113784 0.000171176 0.00022890/,
30 0.0000142158  0.0000283481  0.0000423974  0.0000563642
40 8.90104x10°7  1.77497x10°6  2.65462x10°6  32.52909 x10~°
In Table 7. the values of u(xz,t) is calculated at t = 0.1 and different x by Hermite

quasi-interpolation.

Table 7

Comparison of results at t = 0.1 for Hermite quasi-interpolation.

T

FEzact solution

Numerical solution

Absolute error

0.1
0.2
0.3
0.4
0.5

0.816392
0.8159853
0.815335

0.814449
0.81332

0.816078
0.816318
0.815/97
0.814659
0.81358

0.00031}623
0.000335155
0.000161923
0.00021073
0.00026014/

In Table 8. the wvalues of
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u(z,t) is calculated at t = 0.2 by Hermite quasi-interpolation. In other times steps the
same thing is done.

Table 8
Comparison of results at t = 0.2 for Hermite quasi-interpolation.
x  FEzact solution Numerical solution Absolute error

0.1 0.815681 0.816325 0.000643864
0.2 0.816561 0.815865 0.000695903
0.3 0.815502 0.815166 0.000335528
0.4 0.814661 0.814229 0.000452152
0.5 0.813585 0.813054 0.000531075

6 Conclusion

In this paper multiquadric quasi-interpolation was used to solve the KE. The numerical
solutions are compared with exact solutions in two examples. The results show that the
MQ quasi-interpolation is a reasonable method to solve the KE. In this method calculations
is convenient because we don’t have to solve a system of equations. Then the defect of
Hermit quasi-interpolation for solving KE is removed by using Lp. The results showed

that

this methods is reasonable too. In our work we use the Mathematica software to our

calculates.
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