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Abstract
In this paper, we provide the collocation method for natural convection heat transfer
equations embedded in porous medium which are of great importance in the design of
canisters for nuclear waste disposal. This problem is a non-linear, three-point boundary
value problem on semi-infinite interval. We use two orthogonal functions namely rational
Gegenbauer and modified generalized Laguerre functions which are defined as basis func-
tions in this approach and compare them together. We also present the comparison of
these works with Runge-Kutta solution, moreover, in the graph of the ∥Res∥2, we show
that the present solutions are accurate and applicable.
Keywords : Rational Gegenbauer; Modified generalized Laguerre; Collocation method; Nonlinear
ODE; Indirect multiquadric; Porous media.
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1 Introduction

1.1 Introducing of the problem

Natural convective heat transfer in porous media has received considerable attention during
the past few decades. This interest can be attributed to its wide range of applications in ceramic
processing, nuclear reactor cooling system, crude oil drilling, chemical reactor design, ground water
pollution and filtration processes. External natural convection in a porous medium adjacent to
heated bodies was analyzed by Nield and Bejan [39], Merkin [33, 34], Minkowycz and Cheng
[35, 36, 37], Pop and Cheng [12, 47], Ingham and Pop [29]. All through these studies, it is assumed
that the boundary layer approximations are applicable and the coupled set of governing equations
are solved by numerical methods. Also, [1, 51] worked out this problem. Parand [40] Compared
two common collocation approaches based on radial basis functions for the case of heat transfer
equations arising in porous medium.
In present study, we consider the problem of natural convection about an inverted heated cone
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embedded in a porous medium of infinite extent. No similarity solution exists for the truncated
cone, but for the case of full cone similarity solutions exist if the prescribed wall temperature or
surface heat flux is a power function of distance from the vertex of the inverted cone [12, 39, 54, 55].
Bejan and Khair [3] used Darcy’s law to study the vertical natural convective flows driven by
temperature and concentration gradients. Nakayama and Hossain [38] applied the integral method
to obtain the heat and mass transfer by free convection from a vertical surface with constant
wall temperature and concentration. Yih [60] examined the coupled heat and mass transfer by
free convection over a truncated cone in porous media for variable wall temperature and variable
heat and mass fluxes, Also he [61] applied the uniform transpiration effect on coupled heat and
mass transfer in mixed convection about inclined surfaces in porous media for the entire regime.
Cheng [10] used an integral approach to study the heat and mass transfer by natural convection
from truncated cones in porous media with variable wall temperature and [11] studies the Soret
and Dufour effects on the boundary layer flow due to natural convection heat and mass transfer
over a vertical cone in a porous medium, saturated with Newtonian fluids with constant wall
temperature. Natural convective mass transfer from upward-pointing vertical cones, embedded
in saturated porous media, was studied using the limiting diffusion [50]. The natural convection
along with an isothermal wavy cone embedded in a fluid-saturated porous medium were presented
in [48, 49]. In [54, 55] fluid flow and heat transfer of vertical full cone embedded in porous media
were solved by Homotopy analysis method.
If we want to express the problem formulation of this model, we can consider an inverted cone with
semi-angle γ and take axes in the manner indicated in Fig. 1 (a). The boundary layer develops
over the heated frustum x = x0. In terms of the stream function ψ is defined by:

u =
1

r

∂ψ

∂y
, v = −1

r

∂ψ

∂x
. (1.1)

The boundary layer equations for natural convection of Darcian fluid about a cone are:

∂

∂x
(ru) +

∂

∂y
(rv) = 0 (1.2)

u =
ρ∞βKg cos γ(T − T∞)

µ
(1.3)

1

r
(
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
) = α

∂2T

∂y2
. (1.4)

For a thin boundary layer, r is obtained approximately xsin(γ). Suppose that a power law of heat
flux is prescribed on the frustum. Accordingly, the boundary conditions at infinity are:

u = 0, T = T∞, y → ∞, (1.5)

and at the wall are

v = 0, y = 0. (1.6)

The surface heat flux qw is prescribed by

qw = −k(∂T
∂y

)y=0 = A(x− x0)
λ x0 ≤ x ≤ ∞. (1.7)

For the case of a full cone (x0 = 0,Fig.1(b)) a similarity solution exists.
In the case of prescribed surface heat flux, we let:

ψ = αr(Rax)
1/3f(η), (1.8)

T − T∞ =
qwx

k
(Rax)

− 1
3 θ(η),

η =
y

x
(Rax)

1/3,
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where

Rax =
ρ∞βgK cos(γ)qwx

2

µαk
, (1.9)

is the local Rayleigh number for the case of prescribed surface heat flux. The governing equations
become

f ′ = θ (1.10)

θ′′ +
λ+ 5

2
fθ′ − 2λ+ 1

3
f ′θ = 0.

Subjected to boundary conditions as:

f(0) = 0, θ′(0) = −1, θ(∞) = 0. (1.11)

Finally from Equations (1.10) and (1.11) we have:{
ODE. f ′′′ +

(
λ+5
2

)
ff ′′ −

(
2λ+1

3

)
(f ′)2 = 0,

B.C. f(0) = 0, f ′′(0) = −1, f ′(∞) = 0.
(1.12)

It is of interest to obtain the value of the local Nusselt number which is defined as:

Nux =
qwx

k(Tw − T∞)
. (1.13)

From Eqs. (1.13), (1.8) and (1.9) it follows that the local Nusselt number which is of interest to
obtain given by:

Nux = Ra1/3x [−θ(0)]. (1.14)
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Fig. 1. (a) Coordinate system for the boundary layer on a heated frustum of a cone, (b) full
cone, x0 = 0.

1.2 Spectral method

Many of the current science and engineering problems are set in unbounded domains. In the
context of spectral methods such as collocation and Galerkin methods [31], a number of approaches
for treating unbounded domains have been proposed and investigated. The most common method
is the use of polynomials that are orthogonal over unbounded domains, such as the Hermite and
Laguerre spectral method [14, 15, 16, 19, 24, 32, 52, 53].
Guo [20, 21, 22, 23] proposed a method that proceeds by mapping the original problem in an
unbounded domain to a problem in a bounded domain, and then using suitable Jacobi polynomials
such as Gegenbauer polynomials to approximate the resulting problems. The Jacobi polynomials
are a class of classical orthogonal polynomials and the Gegenbauer polynomials, thus the Legendre
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and Chebyshev polynomials, are special cases of these polynomials also which have been used in
sevral literatures for solving some problems [2, 30].
One more approach is replacing infinite domain with [−L,L] and semi-infinite interval with [0, L]
by choosing L, sufficiently large. This method is named domain truncation [4].
There is another effective direct approach for solving such problems which is based on rational
approximations. Christov [13] and Boyd [5, 6] developed some spectral methods on unbounded
intervals by using mutually orthogonal systems of rational functions. Boyd [5] defined a new
spectral basis, named rational Chebyshev functions on the semi-infinite interval, by mapping to the
Chebyshev polynomials. Guo et al. [25] introduced a new set of rational Legendre functions which
are mutually orthogonal in L2(0,∞). They applied a spectral scheme using the rational Legendre
functions for solving the Korteweg-de Vries equation on the half-line. Boyd et al. [8] applied
pseudospectral methods on a semi-infinite interval and compared rational Chebyshev, Laguerre
and mapped Fourier sine methods.
Parand et al. [41, 42, 43, 44, 45, 46], applied spectral method to solve nonlinear ordinary differential
equations on semi-infinite intervals. Their approach was based on rational tau and collocation
methods.
In this paper, solve the model Eq. (1.12) numerically by using two orthogonal functions, namely
rational Gegenbauer functions and modified generalized Laguerre functions in collocation method
and compare our the obtained results. we also have a comparison with solutions of [55].
Sections 2 and 3 review the desirable properties of rational Gegenbauer functions and modified
generalized Laguerre functions with solution of the problem with collocation method by these
functions, respectively. In Section 4 we show our results via tables and figures. Finally, concluding
remarks are presented in Section 5.

2 Rational Gegenbauer functions

In this section, firstly, rational Gegenbauer functions are introduced and some basic properties
of them are presented. Then we approximate a function using Gauss integration with rational
Gegenbauer-Gauss points.
The Gegenbauer polynomials Gα

n(y) of order α and of degree n are defined as follows [56, 57]:

Gα
n(y) =

⌊n/2⌋∑
j=0

(−1)j
Γ(n+ α− j)

j!(n− 2j)!Γ(α)
(2y)n−2j , (2.15)

where n is an integer, α is a real number greater than −1
2 and Γ is the Gamma function.

The Gegenbauer polynomials are orthogonal in the interval [−1, 1] with respect to the weight func-

tion ρ(y) = (1− y2)α−
1
2 where α > − 1

2 .
The new basis functions, is denoted by RGα

n(x) = Gα
n(y), where L is a constant parameter and

y = x−L
x+L , y ∈ [−1, 1], the constant parameter L sets the length scale of the mapping . Boyd [7]

offered guideline for optimizing the map parameter L.
RGα

n(x) is the nth eigenfunction of the singular Sturm-Liouville problem:

(x+ L)

√
x

L

d

dx

[
(x+ L)

√
x
d

dx
RGα

n(x)

]
+ α

(
x2 − L2

L

)
d

dx
RGα

n(x)

+n(n+ 2α)RGα
n(x) = 0,

(2.16)

and satisfies in the following recurrence relation:
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RGα
0 (x) = 1, RGα

1 (x) = 2α
x− L

x+ L
,

RGα
n+1(x) =

1

n+ 1

[
2

(
x− L

x+ L

)
(n+ α)RGα

n(x)− (n+ 2α− 1)RGα
n−1(x)

]
, n ≥ 1.

(2.17)

The special cases of rational Gegenbauer functions are rational Legendre functions and rational
Chebyshev functions, that were introduced by Guo [25, 26].

2.1 Function approximation with rational Gegenbauer functions

We determine w(x) = 2L
(x+L)2

[
1−

(
x−L
x+L

)2
]α− 1

2

as a non-negative, integrable and real-valued

weight function for rational Gegenbauer over the interval I = [0,∞).
Let us denote

ρ(y) = (1− y2)α−
1
2 , y =

x− L

x+ L
, (2.18)

hence we have

dy

dx
=

2L

(x+ L)2
,

dx

dy
=

2L

(y − 1)2
, w(x)

dx

dy
= ρ(y). (2.19)

Now we define

L2
w(I) = {v : I → R | v is measurable and ∥ v ∥w<∞}, (2.20)

where

∥ v∥w = (

∫ ∞

0

| v(x) |2 w(x)dx) 1
2 , (2.21)

is the norm induced by the scalar product

< u, v >w=

∫ ∞

0

u(x)v(x)w(x)dx. (2.22)

Thus {RGα
n(x)}n≥0 denotes a system which is mutually orthogonal under Eq.(2.22), i.e.,

< RGα
n, RG

α
m >w=

π21−2αΓ(n+ 2α)

n!(n+ α)[Γ(α)]2
δnm, (2.23)

where δnm is the Kronecker delta function. This system is complete in L2
w(I). For any function

u ∈ L2
w(I) the following expansion holds

u(x) =
∞∑
k=0

akRG
α
k (x), (2.24)

with

ak =
< u,RGα

k >w

∥ RGα
k∥

2
w

. (2.25)

The ak’s are the expansion coefficients associated with the family {RGα
k (x)}.
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2.2 Rational Gegenbauer interpolation approximation

Authors of [9, 18] introduced Gauss integration. Later, Guo introduced rational Legendre-Gauss
points [25] and rational Chebyshev-Gauss points [26]. Now we want to define rational Gegenbauer-
Gauss interpolation. Let

RGα
N = span

{
RGα

0 , RG
α
1 , ..., RG

α
N

}
, (2.26)

and yj , j = 0, 1, . . . , N , be the N + 1 roots of the polynomial Gα
N+1(y). These points are known

as Gegenbauer-Gauss points. The corresponding Christoffel numbers of them are [57]:

22−2απΓ(N + 1 + 2α)

(N + 1)!Γ2(α)
× 1

(1− yj2)[
d
dyG

α
N+1(yj)]

2
. (2.27)

We define

xj = L
1 + yj
1− yj

j = 0, 1, . . . , N, (2.28)

which are called as rational Gegenbauer-Gauss nodes. In fact, these points are zeros of the function
RGα

N+1(x). Using Gauss integration we have:∫ ∞

0

u(x)w(x)dx =

∫ 1

−1

u

(
L
1 + y

1− y

)
ρ(y)dy

=

N∑
j=0

u(xj)wj ∀u ∈ RGα
2N , (2.29)

where

wj =
22−2απΓ(N + 1 + 2α)

(N + 1)!Γ2(α)
× L

xj(xj + L)2[ d
dxRG

α
N+1(xj)]

2
, (2.30)

are the corresponding weights with the N + 1 rational Gegenbauer-Gauss nodes, that can be
obtained from Eqs. (2.27) and (2.28).
The interpolating function of a smooth function u on a semi-infinite interval is denoted by PNu.
It is an element of RGα

N and is defined as

PNu(x) =
N∑

k=0

akRG
α
k (x). (2.31)

PNu is the orthogonal projection of u upon RGα
N with respect to the inner product Eq.(2.22) and

the norm Eq.(2.21). Thus by the orthogonality of rational Gegenbauer functions, we have [20]

< PNu− u,RGα
i >w= 0 ∀RGα

i ∈ RGα
N . (2.32)

To apply a collocation method, we consider the residual Res(x), when the expansion is substituted
into the governing equation. The ak’s have to be selected so that the boundary conditions are
satisfied, but the residual zero is made at as many (suitable chosen) spatial points as possible.

2.3 Solving the problem with rational Gegenbauer functions

In this part, we use rational Gegenbauer collocation (RGC) method by applying PN operator on
the function f(η) under Eq. (2.31). Then, we construct the residual function by substituting f(η)



K. Parand, et al / IJIM Vol. 4, No. 2 (2012) 107-122 113

by PNf(η) in the model Eq. (1.12). By equalizing Res(η) to zero at rational Gegenbauer-Gauss
points (ηj , j = 1, 2, ..., N − 1) plus two boundary conditions, we can find the coefficients ak:

Res(η) =
d3

dη3
PNf(η) +

(
λ+ 5

2

)
PNf(η)

(
d2

dη2
PNf(η)

)
−

(
2λ+ 1

3

)(
d

dη
INf(η)

)2

,

PNf(0) = 0,

d2

d2η
PNf(0) = −1. (2.33)

We note that the third boundary condition is already satisfied. These N + 1 equations generate a
set of N +1 nonlinear equations which can be solved by a well-known method such as the Newton
method.

3 Modified generalized Laguerre functions

This section is devoted to the introduction of the basic notions and working tools concerning
orthogonal modified generalized Laguerre. It has been widely used for numerical solutions of
differential equations on infinite intervals. Lα

n(x) (generalized Laguerre polynomial) is the nth
eigenfunction of the Sturm-Liouville problem [14, 27, 46]:

x
d2

dx2
Lα
n(x) + (α+ 1− x)

d

dx
Lα
n(x) + nLα

n(x) = 0,

x ∈ I = [0,∞), n = 0, 1, 2, .... (3.34)

The generalized Laguerre in polynomial manner is defined applying the following recurrence for-
mula:

Lα
0 (x) = 1, (3.35)

Lα
1 (x) = 1 + α− x,

nLα
n(x) = (2n− 1 + α− x)Lα

n−1(x)− (n+ α− 1)Lα
n−2(x).

These are orthogonal polynomials for the weight function wα = xαe−x. We define Modified gener-
alized Laguerre functions (which we denote MGLF) ϕj as follows [46]:

ϕj(x) = exp(
−x
2L

)L1
j (
x

L
), L > 0. (3.36)

This system is an orthogonal basis [17, 58] with weight function w(x) = x
L and orthogonality

property [46]:

< ϕm, ϕn >wL= (
Γ(n+ 2)

L2n!
)δnm, (3.37)

where δnm is the Kronecker function.

3.1 Function approximation with Laguerre functions

A function f(x) defined over the interval I = [0,∞) can be expanded as

f(x) =

∞∑
i=0

aiϕi(x), (3.38)
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where

ai =
< f, ϕi >w

< ϕi, ϕi >w
. (3.39)

If the infinite series in Eq. (3.38) is truncated with N terms, then it can be written as [46]

f(x) ≃
N−1∑
i=0

aiϕi(x) = ATϕ(x), (3.40)

with

A = [a0, a1, a2, ..., aN−1]
T , (3.41)

ϕ(x) = [ϕ0(x), ϕ1(x), ..., ϕN−1(x)]
T . (3.42)

3.2 Modified generalized Laguerre functions collocation method

Laguerre-Gauss-Radau points and generalized Laguerre-Gauss-type interpolation were intro-
duced by [28, 46, 59, 62].
Let

RN = span
{
1, x, ..., x2N−1

}
, (3.43)

we choose the collocation points relative to the zeroes of the functions [46]

pj(x) = ϕj(x)− (
j + 1

j
)ϕj−1(x). (3.44)

Let w(x) = x
L and xj , j = 0, 1, ..., N − 1, be the N MGLF-Radau points. The relation between

MGLF orthogonal systems and MGLF integrations is as follows [46, 57]:∫ ∞

0

f(x)w(x)dx =

N−1∑
j=0

fj(x)wj + (
Γ(N + 2)

(N)!(2N)!
)f2N (ξ)eξ, (3.45)

where 0 < ξ < ∞ and wj = xj
Γ(N+2)

(L(N+1)![(N+1)ϕN+1(xj)]2)
, j = 0, 1, 2, ..., N − 1. In particular, the

second term on the right-hand side vanishes when f(x) is a polynomial of degree at most 2N − 1
[46]. We define

INu(x) =

N−1∑
j=0

ajϕj(x), (3.46)

it as: INu(xj) = u(xj) , j = 0, 1, 2, ..., N − 1. INu is the orthogonal projection of u upon RN with
respect to the discrete inner product and discrete norm as [46]:

< u, v >w,N=
N−1∑
j=0

u(xj)v(xj)wj , (3.47)

∥ u∥w,N =< u, v >
1
2

w,N , (3.48)

thus for the MGLF Gauss-Radau interpolation we have

< INu, v >w,N=< u, v >w,N , ∀u.v ∈ RN . (3.49)
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3.3 Solving the problem with modified generalized Laguerre functions

To apply modified generalized Laguerre collocation method to Eq. (1.12), first we expand f(η)
as follows:

INf(η) =

N−1∑
j=0

ajϕj(η), (3.50)

to find the unknown coefficients aj ’s, we substitute the truncated series f(η) into Eq. (1.12) and
boundary conditions in it. Also, we define Residual function of the form

Res(η) =
∑N−1

j=0 ajϕ
′′′
j (η) + (λ+5

2 )
∑N−1

j=0 ajϕj(η)
∑N−1

j=0 ajϕ
′′
j (η)

−( 2λ+2
3 )(

∑N−1
j=0 ajϕ

′
j(η))

2,
(3.51)

N−1∑
j=0

ajϕj(0) = 0,
N−1∑
j=0

ajϕ
′′
j (0) = −1, (3.52)

N−1∑
j=0

ajϕ
′
j(∞) = 0. (3.53)

By applying η in Eq. (3.51) with the N collocation points which are roots of functions LN
α , we have

N equations that generates a set of N nonlinear equations; also, we have two boundary equations
in Eq. (3.52). Now, all of these equations can be solved by Newton method for the unknown
coefficients. We must mention Eq. (3.53) is always true; therefore, we do not need to apply this
boundary condition.

4 Result and discussion

In the following tables and figures we make a comparison between Runge-Kutta solution ob-
tained by the MATLAB software command ODE45 [55] and the obtained results of two presented
methods in this paper.
Table 1 shows a good agreement between rational Gegenbauer collocation method by N = 13 and
Runge-Kutta method for f ′(0) with various λ. The results for f ′(0) with modified generalized
Laguerre collocation method by the same N have been shown in Table 2 and comparison has
been made between the Runge-Kutta solution. Absolute errors in these two tables show that the
presented methods give us an approximate solution with a high degree of accuracy with the small
Ns.
Some of the computed results for the variations with η of the functions f ′ for λ = 1/4 and λ = 3/4
are listed in Tables 3 and 4, respectively. In these Tables we compare the result of two methods
together and with results presented by [55].

Table 1. Comparison of f ′(0) for various λ between rational Gegenbauer collocation (RGC)
method and Runge-Kutta solution.
λ Runge-Kutta solution [55] α L RGC Absolute Error
0 0.94760 0.1 1.965 0.94761 0.00001
1/4 0.91130 0.1 1.984 0.91129 0.00001
1/3 0.90030 0.1 1.986 0.90031 0.00001
1/2 0.87980 0.1 1.997 0.87980 0.00000
3/4 0.85220 0.1 2.015 0.85215 0.00005
1 0.82760 0.1 2.025 0.82760 0.00000

Table 2. Comparison of f ′(0) for various λ between modified generalized Laguerre functions
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collocation method and Runge-Kutta solution.
λ Runge-Kutta solution [55] α L MGLF Absolute Error
0 0.94760 1 1.2985 0.94770 0.0001
1/4 0.91130 0.94869 1.2493 0.91129 0.00001
1/3 0.90030 1 1.15 0.90031 0.00001
1/2 0.87980 1 1.09 0.87933 0.00047
3/4 0.85220 0.04 1.0394 0.85229 0.00009
1 0.82760 0.655 1.115 0.82760 0.00000

Table 3. The comparison of f ′(η) for λ = 1/4 for present methods and RungeKutta solution.
η Runge-Kutta solution [55] RGC Error (RGC) MGLF Error (MGLF)
0 0.911295 0.911288 0.000007 0.911292 0.000003
0.1 0.813604 0.813597 0.000007 0.813604 0.000000
0.2 0.721351 0.721339 0.000012 0.721433 0.000082
0.3 0.635531 0.635467 0.000064 0.635728 0.000197
0.4 0.556661 0.556579 0.000082 0.557013 0.000352
0.5 0.484997 0.484953 0.000044 0.485487 0.000490
0.6 0.420587 0.420591 0.000004 0.421104 0.000517
0.7 0.363276 0.363284 0.000008 0.363641 0.000365
0.8 0.312677 0.312664 0.000013 0.312746 0.000069
0.9 0.268264 0.268258 0.000006 0.267986 0.000278
1 0.229508 0.229537 0.000029 0.228879 0.000629
1.1 0.195878 0.195947 0.000069 0.194918 0.000900
1.2 0.166847 0.166936 0.000089 0.165591 0.001256
1.3 0.141837 0.141976 0.000139 0.140399 0.001438
1.4 0.120362 0.120571 0.000209 0.118863 0.001499
1.5 0.102025 0.102266 0.000241 0.100533 0.001492

Table 4.The comparison of f ′(η) for λ = 3/4 for present methods and RungeKutta solution.
η Runge-Kutta solution [55] RGC Error (RGC) MGLF Error (MGLF)
0 0.852193 0.852153 0.000040 0.852287 0.000094
0.1 0.755377 0.755336 0.000041 0.755347 0.000030
0.2 0.665448 0.665405 0.000043 0.665243 0.000205
0.3 0.582985 0.582891 0.000094 0.582644 0.000341
0.4 0.508141 0.508021 0.000120 0.507787 0.000354
0.5 0.440849 0.440760 0.000089 0.440604 0.000245
0.6 0.380907 0.380868 0.000039 0.380812 0.000095
0.7 0.327973 0.327951 0.000022 0.327984 0.000011
0.8 0.281536 0.281513 0.000023 0.281607 0.000071
0.9 0.241013 0.241001 0.000012 0.241122 0.000109
1 0.205832 0.205838 0.000006 0.205957 0.000125
1.1 0.175434 0.175452 0.000018 0.175549 0.000115
1.2 0.149275 0.149293 0.000018 0.149354 0.000079
1.3 0.126821 0.126846 0.000025 0.126867 0.000046
1.4 0.107596 0.107639 0.000043 0.107619 0.000023
1.5 0.091196 0.091241 0.000045 0.091186 0.000010

Graphs of the approximations of f ′(η) for different values of λ by rational Gegenbauer collo-
cation method and modified generalized Laguerre collocation method are shown in Figs. 2 and 3,
respectively. In this case we avoided comparing our solutions with the numerical solution because
of having a good agreement.
The logarithmic graphs of the ∥Res∥2 at λ = 1/2 for rational Gegenbauer and modified generalized
Laguerre collocation methods are shown in Fig. 4. This graph illustrates the convergence rate of
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the methods. Furthermore, it shows that the accuracy level of the RGC method is higher in this
problem.

Fig. 2. RGC approximation of f ′(η) for different values λ = 0, 1/4, 1/3, 1/2, 3/4 and 1.

Fig. 3. MGLF approximation of f ′(η) for different values λ = 0, 1/4, 1/3, 1/2, 3/4 and 1.



118 K. Parand, et al / IJIM Vol. 4, No. 2 (2012) 107-122

Fig. 4. Graph of ∥Res∥2 by RGCs solution and MGLFs solution.

5 Conclusions

In the above discussion, we applied the collocation method to solve three order nonlinear differ-
ential equations arising from the similarity solution of inverted cone, embedded in porous medium.
This method is easy to implement and yields the desired accuracy. An important concern of col-
location the approach is the choice of basis functions. The basis functions have three different
properties: easy computation, rapid convergence and completeness, which means that any solution
can be presented to arbitrarily high accuracy by taking the truncation N to be sufficiently large.
We used two set of orthogonal functions as the basis function in this method and compared the
results. Through the comparisons between the Runge-Kutta solutions [55] and the current works,
it was shown that the present works provided acceptable approach for this type of equations. Al-
though both functions lead to more accurate results, it seems that the accuracy and rapidity of
RGC method is higher than those of MGLF method in this problem.
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