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Abstract

In this paper, we introduce a new concept in set-valued mappings which we have called condition
(UHS). Then, adding this condition to a new type of contractive set-valued mappings, recently
has been introduced by Amini-Harandi [Fixed and coupled fixed points of a new type contractive
set-valued mapping in complete metric spaces, Fixed point theory and applications, 215 (2012)], we
prove that this mapping have a unique end point. Then, we state and prove a result about existence
of coupled fixed point of this type of contractive set-valued mappings defined on M x M, where M is a
complete metric space (Recently, Amini-Harandi proved existence of coupled fixed point only for self
mappings). Finally, we introduce one another new concept, which we have called condition (UHS)*.
Then, adding this condition we state and prove existence of coupled endpoint for such contractive
set-valued mappings. Some examples are given to illustrate the results.

Keywords : Endpoint; Coupled fixed point; Coupled endpoint; #-F-Contractive; Set-valued mappings.

1 Introduction

Here are many extentions of the Banach
T contraction principle in literature. Let
(X,d) be a metric space and let CB(X) de-
note the set of all nonempty closed bounded
subsets of X. Let H be the Hausdorff met-
ric on C'B(X) with respect to metric d, that is,
H(A,B) = maa:{supxeA d(z, B), SUPyeB d(y, A)}
for all A,B € CB(X), where d(y,A)
infeead(y,x). Let T : X — 2% is a set-valued
mapping. It is called that x is a fixed point of T
if £ € Tx. In 1969, Nadler extended the Banach
contraction principle to set-valued mappings as
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follows: (Nadler [10]) Let (X, d) be a complete
metric space and let 7' : X — CB(X) be a set-
valued mapping such that

for all z,y € X.Then T has a fixed point. In
1989, Mizoguchi and takahashi extended Nadler’s
result as follows: (Mizoguchi and takahashi [8])
Let (X,d) be a complete metric space and let
T : X — CB(X) be a set-valued mapping such
that
H(Tz,Ty) < a(d(z,y))d(z,y),

for all z,y € X, where « : [0,+00) — [0,1) sat-
isfies limsup,_,,+ a(t) < 1, for all r € [0,400).
Then T has a fixed point.

Let FF : (0,400) — R and 6 : (0,400) —
(0,400) be two maps. Througout this paper let
A be the set of all pairs of (F,0) satisfying the
following conditions:
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(01) For each strictly decreasing sequence {t¢,} in
(0, +00), O(tn) # 0.

(62) F' is strictly increasing.

(03) For each sequence {an} in (0,400),
lim,, 00 Qi = 0 if and only if
lim,, 00 F'(aty) = —00.

(04) If t, | 0 and 6(t,) < F(tn) — F(tp41) for all
n € N, then X7° ¢, < oo.

For example , let 6(t) = 7, for some 7 > 0
and F(t) = In(t) +t. It is easy to see that
(F,0) € A (for details see [4]). Another exam-
ple is 6(t) = —In(«(t)), where a : [0,00) — [0,1)
and limsup,_,,+ a(t) < 1, for all » € (0,00) and
F(t) = In(t) ( see [4]). Recently, Amini-Harandi
introduced the following generalization of Theo-
rem 1 and the theorem of Wardowski (see War-
dowski’s [14]).  (Amini Harandi [4]) Let (X,d)
be a metric space and let T': X — CB(X) be a

set-valued mapping and (F, g) € A such that

0(d(z,y)) + F(H(Tz,Ty)) < F(d(z,y)),
(1.1)
for all z,y € X with Tz # Ty. If T be compact
valued or F' be continuous from the right, Then
T has a fixed point.

2 Main Results

Let (X,d) be a complete metric space and let
T: X — CB(X) be a set-valued mapping. It is
called that T" has the approximate endpoint prop-
erty if inf,e x supyep, d(z,y) = 0. In 2010, Amini
Harandi proved that if H(Tz, Ty < ¥(d(z,vy)),
for all z,y € X, where ¢ : [0,400) — [0,+400)
is a mapping with some properties, then 7" has a
unique endpoint x € X, that is, Tx = {z} if and
only if T" has the approximate endpoint property
([2]). We say that T satisfies condition (UHS)
if for any x € X there exists y € Tz such that
H(Tz,Ty) > supyep, d(y,b). Also, we say that
T is 6-F-contractive if (1.1) holds for all z,y € X
with Tx # Ty.

Now, we state and prove the main result of
this paper. Let (X,d) be a complete metric

0
space and (F’i) € A, Let T: X — CB(X)

be a 0-F-contractive set-valued mapping satisfy-
ing condition (UHS). Then T has a unique end-
point.  Let xgp € X. Since T satisfies condition
(UHS), hence there exists 1 € Tz such that
H(Txo,Tx1) > suppery, d(z1,b). If Tzg = Ty,
then z1 € Tzg = Tx; and so H({z1},Tz1) =
SUPpery, d(21,0) < H(Txo,Tx1) = 0. Hence
Txy = {x1} and so z; is an endpoint of 7.
So, we may assume that Txzg # Tz;. Now
since T is 6-F-contractive, hence 6(d(xo,x1)) +
F(H(Txo,Tx1)) < F(d(zg,z1)). By contin-
uing this process, we obtain a sequence {z,}
such that z,41 € Ta,, H(Tzn,Trps1) >
SUPpers, y ATnt1,0), Ty # Txpy1 and

F(H(Txm T:Un—i-l))
F(d(xm xn-‘rl))?

for all n € N. Now we have

O(d(xn, Tne1)) +
( +1) - (2'2)

< SUPpera,,, ATnt1,b)
< H(Tzp,Txpi1),

d(Zni1, Tni2)

(2.3)
for alln € N. Since F is increasing and x,, # Zn41
(since Txy, # Txp41), SO

F(d(mn+1,xn+2)) < F(H(Txn7Txn+1>)

* 2

(2.4)
Now,

0(d(xn, Tni1)) + F(d(zpt1, Tnt2))

< F(H(Tzp,Trpe1)) +0(d(zn, ni1))
< F(d(:l:n,:cn+1)).

(2.5)
Put ¢, = d(zp,xn41). Then, from (2.4) we have
O(tn
(2 ) + F(th41) < F(t,) and so
0(tn)
5 < F(ty) — F(tp+1) forallneN. (2.6)

Since 6(t,) > 0, then we have F'(tp41) < F(tn).
Since F'is strictly increasing, hence t,11 < ¢, and
so {t,} is a strictly decreasing sequence of posi-
tive real numbers and so converges to some r > 0.
Now we show that = 0. By (d1) we have 6(t,,) /4
0 and hence X952 ,0(t,) = oo. Now, from (2.5),

1

we have 52?:16(@) < F(t1) — F(tp+1). There-
1

fore oo = 52;’219(151-) < F(t) — limp—yoo F(tn+1)-

Hence lim,, ;o F(t,) = —00 and so lim,, o0 t,, =
0. From (d4), we have X0 ¢, < oo. Hence
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Y00 1d(n, Tpt1) < oo. Therefore, from the tri-
angle inequality {z,} is a Cauchy sequence in X.
Since (X, d) is complete, there exists x € X such
that x,, — . Now we show that z is an endpoint
of T'. To show this, we get two cases:

(i) There exists N € N such that T'z,, # Tz for
alln > N.

(ii) There exists a subsequence {zy;} of {z,}
such that T'z,, = Tx for all 7 € N.

In the case (i), we have

0(d(zp,x)) + F(H(Txyn, Tx)) < F(d(zp,)),
(2.7)
for all n € N. Now  since
lim, o0 d(zn,z) = 0, hence from (d3), we
get lim,, oo F(d(zp,x)) = —oo. From (2.6) we
result lim,, oo F(H(Tx,,Tx)) = —oo and so
lim,, 0o H(Txy,Tx) = 0. On the other hand,

H({zn}, Tan)
= max{d(xn’ T'Tn)v SUPpeTz, d(.’En, b)}

< H(Tzp—1,Txy).
(2.8)
Now since F' is increasing, from (2.7) we obtain

O(d(zn—1,2n)) + F(H{zn}, Txy))

< O(d(zp—1,2n)) + F(H(Tzp-1,Tzy))
< F(d(zp-1,%n)).
(2.9)
Since d(xp—1,%n)) — 0, hence F(d(zp—1,2y))) —
—o00. Hence, from (2.8), F(H({zn},Tzy,)) —
—oo and so H({z,},Tz,) — 0. Now

H({z},Tz) < d(z,x,) + H{{xp}, Txy)

+H(Tx,, Tx) — 0.

Hence, H({z},Tx) = 0 and so {2} = T'z. There-
fore, x is an endpoint of T
In the case (ii),

H({z},Tx) d(z,zp;) + H({zn, }, Tn,)
d(x,xn,) + H(Txn,—1,TTni).
(2.10)
But since d(xy,zn+1) — 0, from (2.2) we can
conclude that H(Tzp,Tzp,+1) — 0. Hence
H(Tzp,—1,Tx,,) — 0. Now the right side

of inequality (2.10) tends to zero and hence

<
<

H({x},Tx)=0. So, we have shown that x is an
endpoint of T

For the uniquness of endpoint let x,y are two
endpoints of T such that x # y. Then Tx =
{z} # {y} = Ty. Now we have 0(d(z,y)) +
F(H(Tz,Ty)) < F(d(z,y)) and H(Tz,Ty) =
d(x,y). Hence 6(d(x,y)) < 0. Which is a con-
tradiction.

Example 2.1 Let X = {0,1,2,..} and define
the metric d on X by

den={ 0, 25"

r+y xT#y.
Let T : X — CB(X) is defined by
_J {0} z=0
Tw{{QLwa—H z #0.

If Tx # Ty, then x # y. In the case where x,y €
{1,2,...}, then HTx,Ty) =x+y—2. Ifxt =0
and y € {1,2,...}, then H(Tz,Ty) =y —1. In
any case H(Tx,Ty) — d(x,y) < —1. Hence

H(T‘T? Ty) eH(Tx,Ty)fd(:p,y) <e L

d(z,y) -
Therefore

1+ In(H(Tz,Ty)) + H(Tx,Ty)

< In(d(z,y)) +d(z,y)).
Now put 0(t) = 1 and F(t) = Int +t. Then

0
(F, 5) € A and F is 0-F-contractive set-valued

mapping. Now we show that T satisfies condition
(UHS). For thisletx € X. Ifx =0 orz =1,
then Tx = {0}. Now put y = 0. Then y € Tx
and H(Tz,Ty) = 0 = supyep, d(y,b). In the case
where x € {2, ...}, we have Tx = {0,1,2,...,2—1}
and since x > 2, hence x—1 > 1. Now puty = 1.
Theny € Tx and Ty = {0}. Hence H(Tx,Ty) =
x—12>1=supyer, d(y,b). Therefore T satisfies
condition (UHS). Then by Theorem 2, T has a
unique endpoint. Here 0 is the only endpoint of

T.

In 2012, Amini-Harandi proved the following re-
sult about coupled fixed point of 8-F-contractive

mappings.
Theorem 2.1  (Amini Harandi [}]) Let (M, p)

be a complete metric space and let (F, 5) e A.
let f: M x M — M be a mapping such that

0(p(z,u) + p(y,v)) + F(p(f(z,y), f(u,v))
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+o(f(y, ), f(v,u))) < Fp(x,u) + p(y,v)),

for all z,y,u,v € M, with f(x,y) # f(u,v) or
fly,z) # f(v,u). Then f has a coupled fized
point (z,y) € M x M. That is f(z,y) = x and
f(y,z) =y. In the following theorem we extend
Theorem 2.1 to set-valued mappings. Let (M, p)

0
F’i) € A.

) be a set-valued map-

be a complete metric space and let (

Let h: M x M — CB(M
ping such that

O(p(z,u) + p(y,v)) + F(H (h(z,y), h(u,v))

2),h(v,)) < F(p(a,u) + ply, v))),
(2.11)
for all z,y,u,v € M, with h(z,y) # h(u,v) or
h(y,x) # h(v,u). If h be compact valued or F' be
continuous from the right, then A has a coupled
fixed point (x,y) in M x M. That is z € h(z,y)
and y € h(y, z).
Let X = M x M and define the metric d on
X by d((z,y), (u,v)) = p(z,u) + p(y,v), for all
(z,y), (u,v) € X. It is easy to show that (X,d)
is a complete metric space. Define T : X — X
by T(x,y) = h(z,y) x h(y,x). Using (2.11), we
shall show that

0(d((x,y), (u,v)))

+ H (h(y,

+ F(Hd(T(J}: y)? T(”? U)))

< P(d((x), (1,v))
(2.12)
for all (z,y), (u,v) € X with T'(z,y) # T(u,v),
where Hy is the Hausdorff metric on C'B(X) with
respect to the metric d on X. At first, note that

Hy(T(x,y), T(u,v))

= Hd(h($7y> X h(yax)vh(uv 1)) X h(vvu))

= max{SuP(, e)eh(ay) ki)

d((€1,82), h(u, v) x A(v,u))

» SUP(ym2)eh(uw) xA(v,u)
d((m,m2), ”(z, y) % h(y, z))}
= max{Sup¢, ep(ay) L(&1, (U, v))
+ SUD¢, eh(y,x) p( 2 ( ))a
SUDPy; ehi(u,v) P(Ul ( ))
+ SUPy, eh(v,u) PATI2, h(y,x))}
< H(MW(z,y),h(u,v)) + H(h(y,z), (v,u)).
(2.13)
Now since F is strictly increasing, from (2.11) and

(2.13) we have (2.12) holds. Now if 7 be compact

valued then T is compact valued. Now all of the
conditions of Theorem 1 holds. Hence by the the-
orem T has a fixed point (z,y) in X = M x M,
that is, (z,vy) € T(z,y) = h(z,y) x h(y, x). Hence
x € h(z,y) and y € h(y,z). So (x,y) is a coupled
fixed point of h.

Definition 2.1 Let (M, p) be a metric space and
leth: MxM — CB(M) be a set-valued mapping.
We say that h satisfies condition (UHS)*, if for
any x,y € M, there ezist u € h(x,y) and v €
h(y,x) such that

sup p(£2, h(ua U))7

&2 Gh(y,m)

sup  p(n2, My, x))}

sup  p(&1, h(u, v))+
31 Eh(xvy)

max{

sup  p(n1, Mz, y)) +

n1€h(u,v) n2€h(v,u)
> sup p(u,a)+ sup p(v,b). (2.14)
a€h(u,v) beh(v,u)

In following theorem we introduce and prove a re-
sult about coupled endpoints of set-valued map-
pings that satisfies condition (UHS)*. Let
(M,p) be a complete metric space and let

0
(F’i) € A. Let h: M x M — CB(M) be a

set-valued mapping satisfying condition (UHS)*
such that

0(p(z,u) + p(y,v))

£ F(H,y), b, ) + H(R(y, 2), h(o,u)))
< F(p(z,u) + p(y,v)),

(2.15)
for all z,y,u,v € M with h(xz,y) # h(u,v) or
I(y,x) # h(v,u). Then h has a unique coupled
endpoint (x,y) in M x M, that is, {z} = h(z,y)
and {y} = h(y,x). Let (X,d) and T : X —
X be as in the proof of Theorem 2. We want
to show that 7" has the condition (UHS). Let
(x,y) € X. Then, z,y € M. Since h has the
condition (UHS)*, then there exist u € h(z,y)
and v € h(y,z) such that (2.13) holds. From
(2.13) and (2.14), we have

Ha(T(,y), T(u, v))

SUPgeh(u,v) p(u a) + SUPbeh(v,u) p(U, b)
SUP (q,b)ehi(u,v) xh(v,u) d((u ’U), (a7 b))
SUP (a,b)eT (u,v) d(( ) ( ))

v

(2.16)
Now since (u,v) € T(z,y) and (2.16) holds,
hence T has condition (UHS). From (2.15)
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and as in the proof of Theorem (2), we have
0d((2,y), (w,0)) + F(HAT(z,), T(u,0))

< Fd((z,y), (u,0))),
for all (z,y), (u,v) € X with T'(z,y) # T(u,v).
Hence by Theorem 2, we can say that T
has a unique end point (x,y) in X. That is
{(z,y)} = T(x,y). Hence {x} = h(z,y) and
{y} =Ny, ).

Example 2.2 Let M = [0,00) and define the
metric p on X by p(x,y) = |x —y|. Let h: M X
M — CB(M) is defined by h(z,y) = [0, i ; y|}
Then we have

H(h(x,y), 7(u,v)) + H(h(y, ), h(v, u))

[z —yl _ Ju—v]

4 4 )

=9

< 5z~ ulHly — vl) = 3 (ol u) + ply, v)).

for all x,y,u,v € M. Then we will have
In2+In(H (h(x,y), h(u,v)) + H(h(y, x), h(v,u)))

< In(p(z,u) + pl(y,v)),

for all z,y,u,v € M with h(z,y) # h(u,v) or
Wy, z) # h(v,u). If we put (t) = In2 and
F(t) = Int, then (2.15) holds. Also we show
that I satisfies condition (UHS)*. To see this,
let x,y € M. Putu=v =0, then obviously u €
h(z,y), v € h(y,z) and h(u,v) = h(v,u) = {0}.
Hence Sup ,epy(u,0) P(U, @) + SUDpep (v £(v,0) = 0.
So the inequality (2.14) holds. Now we have
shown that h has the condition (UHS)*. Now by
Theorem 2 we can say that h has a unique cou-
pled endpoint (x,y) in M x M. Here (0,0) is the
only endpoint of h.

Example 2.3 Let M = [0,00) and define the
metric p on X by p(x,y) = |r — y|. Define
h: M x M — CB(M) by h(z,y) = 0, g(x + )],
where r < 1. Then we have

H(h(z,y), h(u,v)) + H(R(y, ), h(v,u))

=205 (w+y) — S(u+v)|

< r(lz — ul+ly —vl) = r(p(z, u) + oy, v)),
for all x,y,u,v € M. Then we will have

—Inr+In(H (h(x,y), h(u,v))+H(h(y, z), h(v,u)))

<In(p(z,u) + p(y,v)),

for all z,y,u,v € M with h(z,y) # h(u,v) or
Wy,z) # h(v,u). If we put O(t) = —Inr and
F(t) =Int, then (2.15) holds. It is easy to show
that h satisfies condition (UHS)*. Now by The-
orem 2 we can say that b has a unique coupled
endpoint (z,y) in M x M. Here (0,0) is the only
endpoint of h.

3 Conclusion

In this research, existence of endpoint, coupled
fixed point and coupled endpoint are proved for
0-F-contractive set-valued mappings. For fur-
ther research, existence of endpoint, coupled fixed
point and coupled endpoint are recommended for
0- F-quasicontractive set-valued mappings.
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4 Conclusion

In this paper, we have presented a new approach
for ranking of fuzzy numbers. First, we present a
new method for ranking fuzzy numbers based on
the y-cuts, the belief features and the signal /noise
ratios of fuzzy numbers. The proposed method
calculates the signal /noise ratio of each y-cut of
a fuzzy number to evaluate the quantity and the
quality of a fuzzy number, where the signal and
the noise are defined as the middle-point and the
spread of each ~-cut of a fuzzy number, respec-
tively. We use the value of a as the weight of the
signal /noise ratio of each ~y-cut of a fuzzy num-
ber to calculate the ranking index of each fuzzy
number. The proposed fuzzy ranking method can
rank any kinds of fuzzy numbers with different
kinds of membership functions.
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