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Abstract

In this paper, the fuzzy partial differential equation is investigated by using the strongly
generalized differentiability concept. The alternating direction implicit(ADI) method is
proposed for approximating the solution of the two-dimensional heat equation where the
initial and boundary conditions are fuzzy numbers. The algorithm is illustrated by solving
several examples.
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1 Introduction

Proper design for engineering applications requires detailed information of the system-
property distributions such as temperature, velocity, density, etc., in the space and time
domain. This information can be obtained by either experimental measurement or com-
putational simulation. Although experimental measurement is reliable, it needs a lot of
effort and time. Therefore, the computational simulation has become a more and more
popular method as a design tool since it needs only a fast computer with a large mem-
ory. Frequently, the engineering design problems deal with a set of partial differential
equations(PDEs), which are to be numerically solved, such as heat transfer and solid and
fluid mechanics. Numerical methods are widely applied to pre-assigned grid points to
solve partial differential equations [12]. When a physical problem is transformed into a
deterministic parabolic partial differential equation, we cannot usually be sure that this
modeling is perfect. Also, the initial and boundary value may not be known exactly. If
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the nature of errors is random, then instead of a deterministic problem, we get a ran-
dom partial differential equation with random initial and boundary values. But if the
underlying structure is not probabilistic, e.g., because of subjective choice, then it may
be appropriate to use fuzzy numbers instead of real random variables. The concept of
fuzzy derivative was first introduced by Chang and Zadeh [9], and it was followed up by
Dobois and Prade [13], who used the extension principle in their approach. Other meth-
ods have been discussed by Puri and Ralescu [23] and by Goetschel and Voxman [16].
Also, strongly generalized differentiability was introduced by Bede in [5, 7] and studied in
[6].The notion of fuzzy differential equation was initially introduced by Kandel and Byatt
and later applied in fuzzy processes and fuzzy dynamical systems. A thorough theoretical
research of fuzzy Cauchy problems was given by Kaleva [19], Seikkala [24], Ouyang and
Wu [17], and Kloeden and Wu [21]. A generalization of a fuzzy differential equation was
given by Aubin, Baidosov, Leland and Colombo and Krivan. The numerical methods for
solving fuzzy differential equations are introduced in [1, 2, 20]. Fuzzy partial differential
equations were formulated by Buckly [8]; and Allahviranloo [3] used a numerical method
to solve the fuzzy partial differential equation (FPDE).

In this paper, we are going to solve FPDEs by the ADI method. The rest of this paper is
organized as follows:

Section 2 contains the basic material to be used in the paper. In section 3, the fuzzy partial
differential equations is introduced by using the strongly generalized differentiability con-
cept [6] and we propose the ADI method for approximating the solution of two-dimensional
fuzzy partial differential equations. The proposed algorithm is illustrated by solving some
examples in section 4, and the conclusion is drawn in section 5.

2 Preliminaries

We now recall some definitions needed throughout the paper. The basic definition of fuzzy
numbers is given in [13, 15].

By R we denote the set of all real numbers. A fuzzy number is a mapping u : R — [0, 1]
with the following properties:

(a) u is upper semi-continuous,

(b) w is fuzzy convex, i.e., u(Az + (1 — AN)y) > min{u(z), u(y)} for all z,y € R, A € [0,1],
(c) w is normal, i.e.,3z¢ € R for which u(zg) =1,

(d) supp v = {z € R | u(x) > 0} is the support of the u, and its closure cl(supp u) is
compact.

Let E be the set of all fuzzy numbers on R. The r-level set of a fuzzy number u € F,
o <r <1, denoted by [u], , is defined as

[u]_{{xeR\u(aﬁ)zr} if 0<r<i1
" el(supp u) if r=0

It is clear that the r-level set of a fuzzy number is a closed and bounded interval [u(r), w(r)],
where u(7) denotes the left-hand endpoint of [u], and @(r) denotes the right-hand endpoint
of [u],. Since each y € R can be regarded as a fuzzy number y defined by
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R can be embedded in E.

Remark 2.1. (See [26]) Let X be the Cartesian product of universes X = Xj X ... x Xy,
and Ay, ..., A, ben fuzzy numbers in X1, ..., X,, respectively. f is a mapping from X to
a universe Y, y = f(x1,...,2n). Then the extension principle allows us to define a fuzzy
set B in'Y by

B = {(y,u(y)) | Y= f(xlv "'7xn)7 (xlv 7xn) € X}

where

0 otherwise.

up(y) = { SUP(ay,....en)€f 1 (y) min{ua, (x1), - ua, (T2)}, if  fHy) #0,

where f~1 is the inverse of f.
Forn =1, the extension principle reduces to

B ={(y,up(y)) |y = f(x),r € X}

where

0 otherwise.

up(y) = { SUpgepoiy) valz),  if fHy) #0,

According to Zadeh’s extension principle, the addition operation on E is defined by
(u v)(@) = supyermin{u(y), vz =)}, € R
and scalar multiplication of a fuzzy number is given by

(k ®u)(z) = { %7($/k)ak :/€O>’ 0,

where 0 € E.
It is well known that the following properties are true for all levels

[u @ v], = [ul, + [v],, [k ©ul, = Efu],

From this characteristic of fuzzy numbers, we see that a fuzzy number is determined by
the endpoints of the intervals [u],. This leads to the following characteristic representation
of a fuzzy number in terms of the two "endpoint” functions w(r) and w(r). An equivalent
parametric definition is also given in ([14, 20]) as:

Definition 2.1. A fuzzy number w in parametric form is a pair (u,@) of functions u(r),
u(r), 0 <r <1, which satisfy the following requirements:

1. u(r) is a bounded non-decreasing left continuous function in (0,1], and right contin-
wous at 0,

2. u(r) is a bounded non-increasing left continuous function in (0,1], and right contin-
uous at 0,

3. u(r)y <a(r), 0<r <1
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A crisp number « is simply represented by u(r) = u(r) = «, 0 <r < 1. We recall that
for a < b < ¢, where a,b,c € R, the triangular fuzzy number u = (a, b, ¢) determined by
a, b, c is given such that u(r) = a + (b — ¢)r and w(r) = ¢ — (¢ — b)r are the endpoints of
the r-level sets, for all r € [0, 1].

For arbitrary u = (u(r),u(r)), v = (v(r),v(r)) and k£ > 0 we define addition u & v , sub-
traction u © v and scalar multiplication by k as (See [14, 20])

(a) Addition:
u®v=(u(r)+u(r),u(r)+o(r))

(b) Subtraction:
u© v = (u(r) —v(r),u(r) — uv(r))

(c¢) Scalar multiplication:

k ®u= (k@a kﬂ)? k Z 07
“T (kukw), k<o

The Hausdorff distance between fuzzy numbers given by D : E x E — R[]0, is

D(u,v) = sup max{|u(r) —u(r)|, [u(r) — v(r)[},
rel0,1]

where u = (u(r),u(r)), v = (v(r),v(r)) C R are utilized (See [6]). Then, it is easy to see
that D is a metric in £ and has the following properties (See [22])

(1)) D(u ® w,v ®w) = D(u,v), Vu,v,w€ E,

(ti)D(k © u, k ©®v) = |k|D(u,v), Vk€ Ryu,v€E,

(i) D(u & v,w P e) < D(u,w)+ D(v,e), Vu,v,w,e€ E,

(iV)(D, E) is a complete metric space.

Theorem 2.1. (See [4]) (i) If we define 0 = xo. then 0 € E is a neutral element with
respect to addition, i.e., u + 0=0+4u= u, for allu € F.

(ii) With respect to 0, none ofu € E \ R has an opposite in E.

(iii) For any a,b € R with a,b > 0 or a,b < 0 and any u € E, we have (a+b).u = a.u+b.u;
for the general a,b € R, the above property does not necessarily hold.

(iv) For any A € R and any u,v € E, we have \.(u+v) = Au + Av;

(v) For any A, u € R and any v € E, we have A.(p.u) = (A.p).u;

Definition 2.2. Let E be a set of all fuzzy numbers, we say that f is a fuzzy- valued-
function if f : R — FE

Definition 2.3. (See [23]). Let x,y € E. If there exists = € E such that v =y + z, then
z 18 called the H-difference of x and y, and it is denoted by x © y.

In this paper, the sign ”&” always stands for H-difference, and also note that x &y #
z+(—y).
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Definition 2.4. (See [6, 7]) Let f : (a,b) — E and xy € (a,b). f is said to be a strongly
generalized differential ot xo (Bede differential) if there exists an element f (zg) € E, such
that

(i) for all h > 0 sufficiently small, 3f (xo+h)E f(xo), 3f(x0) & f(xo—h) and the limits(in

the metric D)

limyo M = limp,_

or

(i1) for all h > 0 sufficiently small, 3f(xo) © f(xo+h), If(xo — h) © f(xo) and the limits
(in the metric D)

St _ | Moo stn) _ )

Heo)oftwoh) — f'(20),

limh\o
or
(#ii) for all h > 0 sufficiently small, f(xo+ h) © f(xg), If(xo — h) S f(x¢) and the limits
(in the metric D)

Ly o LGS o) _ iy SeahSfen) _ gy,

or
(iv) for all h > 0 sufficiently small, 3f(x0) & f(xo+h), 3f(x0) © f(xo — h) and the limits
(in the metric D)

(z0)Of(x0)+R
—h

limh\o ! w = f’(xo);

== limh\o !
ana —n a € daenominators mean + an ;7 respectively ).
h and —h at the d nat  and 5 tivel

In the special case whenf is a fuzzy-valued function, we have the following result.

Theorem 2.2. (See [10]). Let f : R — E be a function and denote f(t) = (f(t,r), f(t,7)),
for each v € [0,1]. Then _
(1) if f is differentiable in the first form (i), then f(t,r) and f(t,r) are differentiable

functions and
p—

f@) = (8, f ().

(2) if f is differentiable in the second form (i), then f(t,r) and F(t,r) are differentiable
functions and

p—

fl(t> = (f (ta T)vfl(tv 71))'

Definition 2.5. We Define the n-th order differential of f as follows: Let f : (a,b) = FE
and xo € (a,b). We say that f is strongly generalized differentiable of the n-th order at xg
if there exists an element ) () € E, Vs =1...n, such that
(i) for all h > 0 sufficiently small, 3fC~(zq + h) & FE=D (1),
36D () © fE (g — h) and the limits(in the metric du)
f<s—1><ro+hf>bef<s—“( f“—”(ro)ei“‘”(xofh) = )

7o) — limy g

limy, o o)
or

(ii) for all h > 0 sufficiently small, If~D(x) & fED(xg + h),
36D (wo — h) © fFD () and the limits(in the metric ds)
f(s’l)(wo)Gf}ES’l)(loJrh) f(s’”(wrhh)@f(:ﬁo) = fG)(

limh\o = limh\o ZBQ)

or
(iii) for all h > 0 sufficiently small, 3fS=D(zg + h) & FED (xg),
36D (g — h) © fE(2g) and the limits(in the metric du)

limy o Lo otOrC (o) _ pypy o SO Dmo=h)Sf O Do) p(s)

or
(iv) for all h > 0 sufficiently small, 3G~ (x9) & fE=D (o + h),

)
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36D (o) © fED(w — h) and the limits(in the metric ds)
FE D (@)D (wo+h) eV (@yerCU(wo—h) _ f(S)(x )
—h h - 0

limh\o = lith\_‘O
1

(h and —h at denominators mean 3 and %1, respectively Vi =1...n)

3 Two-dimensional fuzzy partial differential equation

The purpose of this section is to present the following 2D fuzzy partial differential equation

by using the Bede derivative :

du_ v d*u

o MGt )

with the fuzzy initial condition

(k is constant)

w0,2,y) =0, € E
and the fuzzy boundary conditions
w(t,0,y) =l € E

u(t,h,y) =13 € E
u(t,z,0) =y € E
u(t,x,b) =ls€E

For solving a 2D fuzzy partial differential equation by using the Bede derivative, we have

four different cases:

du  d%u

. : d’u du  d%u
Case(1): If we consider %¢ ,9—% and 53

2 Dy using (i)-differentiability, or ¢ 9
by using (ii)-differentiability, then we have:

du d>u d*u
dt (th?y?r) =/€(dx2(t,x,y,7”)+ dy2 (t,il?,y,?”))
and - . .
m i i
— (1 =k(——(t — (¢
dt(vl'a:%r) k(dxg(’x’:%r)_'_dyg(7xayar))

with the initial condition

@(O,x,y,r) :ﬁl(r) and ﬂ(O,x,y,r) 221(7’>

and the boundary conditions

u(t,0,y,7) = L(r) and w(t,0,y,7) = laf
u(t,hyy,r) = La(r) and a(t,h,y,r) = l3(r)
u(t,z,0,r) = L,(r) and u(t,x,0,r) = {4

w(t,z,b,r) = L(r) and u(t,z,b,7) = ls5(r).

2
and ¢4

dy?
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By using the ADI numerical method, we have:

¢

—d ™05 (r) + g?jw( )+ 21703 () — dyuOS (r) = dou? ;1 (1) + (1 = 2d2)uf ;(r)

Li—1,5 i+1,5 =i+l
+daug 1(r)
— @I (r) + T () + 200 () — @ () = dat g () + (1= 2da)ul(r)
+douy 1(r)
(3.2)
and
(—dauf 2 (r) + (uf () + 2doT7 () — daw 1 () = da ) () + (1 = 2d0)a; [ (r)
+d1u"+05(r)
—do T} 2y (r) + (@ () + 20w () = dot L () = @ () + (1= 2da)u 00 (r)
L +d17?+10g5(7")

(3.3)
where dy = 1 ((Aw) ) and dy = 3 ((&t)z). Alsot=1,..,n;,i=1,...,npand j =1,...,n,.
3.

From (3.2) and (3.3) we have two crisp linear systems for all 7 and j which can be displayed
as follows:

{ A B ] {u}‘*“ ] _ [ dowltyy (1) + (1 = 2d)uy

B A4 ﬂ?+0'5

uy(r) + douf_(r)
dyuf o (r) + (1 = 2dy)uf(r) + douij () } o)

{ Ay By ] {U?H ] _ { dyul 20 () + (1= 2d)ul 00 () + dyu 00 (r)

3.5
By Ay || art! D, (1) + (1 — 2d) ) ”+°5<>+d1u?f1°~5<r>] (3:5)

where By = 2d11n, xn,, Ba = 2da1p, xn,,

1 —dq 0 0 1 —d> 0 0
—dq 1 —di .. 0 —ds 1 —dy ... 0
Ay = : : : : and Ay = : : : :
0 e —dq 1 —dq 0 e —dy 1 —ds
0 0 ... —d 1 0 0 ..  —ds 1
L d4 ngXng L 4 nyXny

We solve system (3.4), then the solution of system (3.4) is set in system (3.5) to ob-
tain its solutions.

du  d%u
Case(2): If we consider ¢ ,9-%
du d’u

or G .95 by using (ii)-differentiability and d % by using (i)- dlfferentlablhty, then we solve
the PDE system:

by using (i)-differentiability and d 2 by using (ii)-differentiability,

du d*u d*u
dt(t L, Y, T )_k(d Q(t LY, T )—’_diyg(tuxayvr))
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and - o 2
u U u
E(taxayﬂq) = k(@(t,l‘,yﬂ“) + Tyg(taxayar)) (36)

with the initial condition

ﬂ(oaxayaT) :ﬁl(r) and E(O,x,y,r) :ZI(T)

and the boundary conditions

u(t,0.y,m) = Ly(r) and u(t,0,y,r) = lr(r)
w(t,z,0,7) =L,(r) and Tu(t,z,0,7) = {4(r)

(t,x,b,r) =Ls(r) and u(t,xz,b,r)= U5(r).

I

By using the ADI numerical method, we have:
—diuf 27 (r) + w0 () + 20w S0 (r) — daw T () = dofy g () ()

,

—dlﬂ?jﬁf(?“) + ﬂZjOB(T) + 2d122;r0'5(7") - dlﬂ?jlo,f (r)  =douf; 1 (r) +uj(r)
3.7)
and
—dyui it 14 2d2)uf T (r) — dou T = dyu? 1 —2dy )uyos
2ty [y (r) + (1 + 2da)w’T (1) — dowt 7 (1) 17y (r) + ( V()
+d ﬂ?jlo,f(?")
—dggz;’fl(r) +(1+ 2d2)ﬂ?j1(r) - dg@%ﬂl(r) = dlﬂ;‘fﬁf(r) +(1- 2d1)gz;"0'5(7”)
+d “?jlo,f(?")
(3.8)
where dy = %a((ﬁgf)z) and dy = %a((AAyt)Z). Alsot=1,...,n,i=1,..,ngand j =1,...,ny.

From (3.7) and (3.8) we have two crisp linear systems for all ¢ and j which can be displayed
as follows:

{ A, B ] {u;ﬁo.s}(r) }

By A ﬂn+0'5(7“)

[ @y Or + T (r) = 2doult;(r) + dotf; o (1) ] (3.9)
J

a [ dau? ;4 () +uf (1) — 2dou} ;(r) + dau?; (1)

= ][50 AP (r) (1= 20T O ) 4 )

By Ay || @) T ) + (1= 2d0)ul O () + ()

] (3.10)

17‘7

where B; = QdIInanwa Ay = (1 + 2d2)Iny><ny7
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1 —-dy 0 0 0 —dy O 0
—dy 1 —=dy .. 0 —dy 0 —dy .. 0
A = f : : : and By = : : : :
0 . —dy 1 —d 0 e —d2 0 —ds
0 0 .. —d 1 0 0 e —do 0
Mg XMNg Ny XNy

We solve system (3.9), then the solution of system (3.9) is set in system (3.10) to ob-
tain its solutions.
Case(3): If we consider % ,3273 by using (i)-differentiability and ‘(%;

or % ,% by using (ii)-differentiability and ‘(%2‘ by using (i)-differentiability, then we solve

the PDE system:

by using (ii)-differentiability,

du d*w du

?;(t?xfyvr) = k(@(taxﬂy??ﬁ) + Tgﬁ(taxayar>>
wnd du d? d*u
m u U
E(tawayvr) :k(@(tvxayar)—i_diyg(tvxvyar)) (311)

with the initial condition

w(0,z,y,7) =L, (r) and w(0,z,y,7)={1(r)

and the boundary conditions

w(t,0,y,7) = Ly(r) and u(t,0,y,7) = l>(r)
w(t,h,y,r) = L3(r) and u(t,h,y,r) = l3(r)
w(t,x,0,7) =L,(r) and w(t,x,0,7) = Lls(r)
u(t,z,b,r) = L(r) and u(t,z,b,7) = ls5(r).

By using the ADI numerical method, we have:

—dﬁ?fﬂf(r) +(1+ Zdl)ﬂ?jw(?") - dlﬂ?jﬁf(’") = daug ;i (1) + (1 = 2d2)ui 5 (r)

+doui ;4 ()

)

—diuf 27 () + (L4 2d0)a 07 () — w7 () = dotif g (r) + (1 = 2da)ul (r)

+d2ﬂz]_1(7’1)
(3.12)
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and
ol ()4 I 0 + 20 ) — el () = ) + T )
+2d1@2j0'5(r) + dlﬂ?fff (r)
—dgﬂZﬁl(T) + ﬂ?jl(r) + 2d2@?j1(7“) - d262j+4}1(7”> = dlg?jl()"j‘f’ (r)+ QZ;FO'5(T)
+2d152j0'5(7“) + dl@?jﬁf (1)
(3.13)
where d; = %O‘((AATt)?) and dy = %a((fyt)g). Alsot=1,...n,i=1,...,ngand j =1,...,ny.

From (3.12) and (3.13) we have two crisp linear systems for all i and j which can be
displayed as follows:

| B1 A || ﬂ?+0'5(r) ] dauf 1 (r) + (1 = 2d2)u] ;(r) + douf’ ;4 () ‘

[ Ay By | [ uf™ ] _ [ dim i ) + a0 () + 2did O () + di Y (r) ]
| By Ao [ L@ T T + w0 () 4+ 2000 () + du T ()
’ ’ (3.15)
where By = ngfnany, A= (1 + 2d1)Inm><nm7
0 —d, 0 .. 0 ] 1 =dy 0 .. 0 ]
~dy, 0 —d .. 0 —dy 1 —dy .. 0
B, = : : : : and Ap = E : : E
0 .. —d 0 —d 0 ... —dy 1 —dy
0 0 .. —d 0 0 0 .. —dy 1
L g Xng L 4 nyxny

We solve system (3.14), then the solution of system (3.14) is set in system (3.15)to obtain
its solutions.

2y d’u
7dy2 ? de
by using (i)-differentiability, then we solve

Case(4): If we consider fli—’t‘ by using (i)-differentiability and

Py d’u
dx? ’dy2

by using (ii)-differentiability,
or ‘é—? by using (ii)-differentiability and
the PDE system:

du d*w d*w
—(t = k(—=(t —(t
dt( 7‘/'E7y7r) (dx2( 7:'U7y7r)+ dy2( 7x’y7r))
and . » »
U U U
— (¢ = k(—=(t —(t 3.16
dt( ’x’y’r) (de( ,I,y,T>+ dyQ( 7:1:7/!/77‘)) ( )

with the initial condition

E(vaayvr) :ﬁl(r) and ﬂ(07$7y7r> :Zl(r)
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and the boundary conditions

w(t,0,y,7) = Ly(r) and u(t,0,y,7) = l>(r)
w(t,h,y,v) = Ll3(r) and u(t,h,y,v)=l3(r)
w(t,z,0,7) =L,(r) and u(t,z,0,7) = {4(r)
u(t,z,b,7) = L:(r) and u(t,z,b,r) = l5(r).

By using the ADI numerical method, we have:

_dlun+0 5( ) + (1 + le) n+0. 5( ) d U?IIOJE')(T) = dQEZj—l—l(T) + (1 - QdQ)EZj(T)

t—1,7 —Zj
+d2u2] 1( )
—diuf 277 () + (L4 2d0)a; 07 () — dyw 7 () = doulyy (r) + (1 = 2da)a (r)
+d2u i 1( )
(3.17)
and
~ds Y () (L= 2ol ) — il () = )+ )
2y FO ) + W ()
(3.18)
—dau {2 (r) + (1= 2077 (1) = donf 1, () = i () + w0 ()
—2dya 00 (r) + wf AP (r)
where dy = 104((A )2) and dy = 3 ((AA;) ).

Alsot=1,...,ns i =1,...,n, and J=1,.,ny.
From (3.17) and (3.18) we have two crisp linear systems for all ¢ and j which can be
displayed as follows:

[AlBy[ %”m}:[@wﬁmwwbﬂbm(M+@m]mﬁ] (3.19)

By Ay | | @) doui! ;1 (1) + (1 = 2d2)ul ;(r) + daug ;1 (r)

J

zl]

dluner 5(7“) + un+0 5(7“) 2d ﬂn+0 5(7“) + un+(5 (7") :| (3'2())

By Ay i+1,5

|: Ay By :| [ uTH'l - [ dlu;:l-lof(r) _|_un+0 5(7“) 2d un;l—O 5(7”) +un+0 5(7“)

1,7 1,7 =i—1j

where Al (1 + 2d1) T XTg AQ (1 - 2d2) Ty XNy )

0 —dq 0 0 0 —ds O 0
—-dy 0 —=dy .. 0 —dy, 0 —=dy .. 0
By = : : : : and By = : E :
0 .. —=dy 0 —dy 0 e —do 0 —do
0 0 . —dp 0 0 0 .. —dy 0
Ny XNy Ny XMy

First, we solve system (3.19), then the solution of the system (3.19) is set in system
(3.20) to obtain its solutions.
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4 Numerical example

Example 4.1. Consider the one-dimensional heat equation

W= k(G5
uw(0,z,y) = at t=0 and 0<x <l
u(t,O,y)2566:(1984-27",204—47") at =0 and t>0
w(t,hyy) =10 = (9 +r,11 — 1) at h=35ft; and t>0
u(t,az,O):éﬁﬁ:(198+2r,204—47”) at y=0 and t>0
w(t,z,b) =10 = (947,11 — r) at b=3.5ft and t>0
Distributions of temperature are compared for r = 0,0.1,...,1 in the following Tables 1,
2,..7.
Table 1
I
yr=0 | x2=0|2=05|2z=1|z=15|x=2|z=25|x2=3 | x=3.5
0 198 198 198 198 198 198 198 198
0.5 198 | 136.36 | 108.69 | 90.1 87.87 | 85.02 | 70.92 9
1 198 102.75 | 49.65 32.78 29.9 27.22 22.28 9
1.5 198 90.22 30.49 11.92 8.99 6.75 6.9 9
2 198 86.42 25.11 6.16 3.24 3.05 3.1 9
2.5 198 83.64 | 23.86 5.6 2.72 291 3.17 9
3 198 70.85 21.32 7.19 4.95 5.2 5.41 9
3.5 198 9 9 9 9 9 9 9
Table 2
T
vy r=0|2x=0|x=05|2=1|x=15|x=2|z=25|x=3 | x=35
0 204 204 204 204 204 204 204 204
0.5 204 146.23 | 108.06 | 93.62 89 87.04 75.2 11
1 204 117.78 | 61.75 37.64 | 30.69 31.22 28.02 11
1.5 204 107.59 | 44.84 17.54 9.77 11.6 13.24 11
2 204 103.56 | 39.36 11.74 3.96 6.12 9.21 11
2.5 204 98.08 35.74 10.28 3.35 5.21 8.32 11
3 204 79.78 28.11 10.15 5.93 6.44 8.75 11
3.5 204 11 11 11 11 11 11 11



IJIM JOURNAL
Text Box


117

M. Barkhordari Ahmadi, N. A. Kiani / IJIM Vol. 1, No. 2 (2009) 105-120
Table 3
T
yor=07|2=0|2=05| =1 |z=15|x=2|x=25|xz=3|x=35
0 199.4 | 199.4 199.4 199.4 | 199.4 | 1994 | 1994 | 199.4
0.5 199.4 | 139.32 | 104.01 | 91.01 | 87.95 | 85.43 | 72.18 9.7
1 199.4 | 107.63 | 53.69 34.35 | 30.07 | 28.42 | 24.22 9.7
1.5 199.4 | 95.96 35.39 13.83 9.23 8.42 9.11 9.7
2 199.4 | 92.09 29.99 8.08 3.48 3.02 5.24 9.7
2.5 199.4 | 88.38 27.91 7.22 2.93 2.63 4.98 9.7
3 199.4 | 73.72 23.63 8.21 5.12 5.04 6.58 9.7
3.5 199.4 9.7 9.7 9.7 9.7 9.7 9.7 9.7
Table 4
T
yr=0.7 | x = x=05| o= r=15|x= r=25|x= =35
0 201 201 201 201 201 201 201 201
0.5 201 142.28 | 106.01 | 92.07 88.3 86.03 | 73.46 10.3
1 201 112.14 | 57.33 35.82 | 30.31 | 29.67 | 25.94 10.3
1.5 201 101.17 | 39.69 15.52 9.47 9.88 11.01 10.3
2 201 97.23 34.27 9.76 3.7 4.45 7.07 10.3
2.5 201 92.72 31.5 8.6 3.12 3.82 6.52 10.3
3 201 76.4 25.66 9.1 5.33 5.69 7.58 10.3
3.5 201 10.3 10.3 10.3 10.3 10.3 10.3 10.3
Table 5
T
yr=0.8 | = r=05| = r=15|x= r=25|x= r=3.5
0,r=0.81]199.6 | 199.6 199.6 199.6 | 199.6 | 199.6 | 199.6 | 199.6
0.5 199.6 | 139.75 | 104.29 | 91.14 | 87.97 | 85.49 | 72.36 9.8
1 199.6 | 108.32 | 54.28 34.58 30.1 28.61 24.5 9.8
1.5 199.6 | 96.78 36.09 14.11 9.27 8.66 9.42 9.8
2 199.6 92.9 30.69 8.36 3.52 3.26 5.55 9.8
2.5 199.6 | 89.06 28.5 7.45 2.97 2.83 5.23 9.8
3 199.6 | 74.13 23.96 8.36 5.18 5.15 6.75 9.8
3.5 199.6 9.8 9.8 9.8 9.8 9.8 9.8 9.8
0,r=0.9 | 199.8 | 199.8 199.8 199.8 | 199.8 | 199.8 | 199.8 | 199.8
0.5 199.8 | 140.17 | 104.58 | 91.28 | 87.98 | 83.55 | 72.54 9.9
1 199.8 | 109.02 | 54.85 34.81 | 30.12 | 28.81 | 24.77 9.9
1.5 199.8 97.6 36.79 14.38 9.3 8.89 9.73 9.9
2 199.8 | 93.71 31.38 8.63 3.55 3.49 5.85 9.9
2.5 199.8 | 89.74 29.08 7.68 3 3.03 5.49 9.9
3 199.8 | 74.54 24.29 8.5 5.2 5.26 6.91 9.9
3.5 199.8 9.9 9.9 9.9 9.9 9.9 9.9 9.9
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Table 6
7
yr=0.8 | = r=05| = z=15|x= r=25|x= r=3.5
0,7 =0.8 | 200.8 | 200.8 200.8 200.8 | 200.8 | 200.8 | 200.8 | 200.8
0.5 200.8 | 141.72 | 105.62 | 91.85 88.2 85.89 | 73.21 10.2
1 200.8 | 111.33 | 56.69 35.55 | 30.26 | 29.44 | 25.64 10.2
1.5 200.8 | 100.25 | 38.96 15.23 9.42 9.63 10.69 10.2
2 200.8 | 96.33 33.54 9.47 3.66 4.21 6.77 10.2
2.5 200.8 | 91.95 30.87 8.39 3.09 3.63 6.26 10.2
3 200.8 | 75.92 25.31 8.95 5.3 5.58 7.41 10.2
3.5 200.8 10.2 10.2 10.2 10.2 10.2 10.2 10.2
0,r=0.9 | 204.4 | 204.4 204.4 204.4 | 204.4 | 204.4 | 204.4 | 2044
0.5 204 141.16 | 105.24 | 91.62 | 88.09 | 85.75 | 72.97 10.1
1 204.4 | 110.52 | 56.06 35.29 30.2 29.22 | 25.35 10.1
1.5 204.4 | 99.33 38.22 14.94 9.4 9.4 10.37 10.1
2 204.4 | 95.42 32.81 9.19 3.62 3.42 6.46 10.1
2.5 204.4 | 91.18 30.27 8.15 3.06 3.43 6.01 10.1
3 204.4 | 75.44 24.96 8.8 5.27 5.48 7.25 10.1
3.5 204.4 10.1 10.1 10.1 10.1 10.1 10.1 10.1
Table 7
r=T
yr=08 |z2=0|2=05| =1 |z=15|z=2|x=25|x=3|x=3.5
0,r=11] 200 200 200 200 200 200 200 200
0.5 200 140.59 | 104.85 | 91.41 88 85.6 72.72 10
1 200 109.72 | 55.43 35.03 | 30.15 29 25.05 10
1.5 200 98.41 37.49 14.66 9.34 9.14 10.05 10
2 200 94.52 32.08 8.91 3.6 3.73 6.15 10
2.5 200 90.42 29.66 7.9 3.03 3.23 5.75 10
3 200 74.96 24.62 8.65 5.24 5.37 7.08 10
3.5 200 10 10 10 10 10 10 10

We see that the solution of a PDE is dependent on the selection of the derivative:
whether it is (i)-differentiable or (ii)-differentiable. In this example, the solution of a PDE
is of the case(1) type.

5 Conclusion

In this paper, we proposed a numerical method for solving a two-dimensional heat equa-
tion. This numerical method is based on the definition of the strongly generalized deriva-

tive.
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