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Abstract

The water wave generation by wave paddle and a freely falling rigid body are examined by using an
Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure
was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the
projection scheme and the source term of pressure Poisson equation contains both of divergence free
velocity field and density invariance condition. Here, the fluid-structure interaction is introduced in
free surface flows and the structure is taken as a rigid body motion. In this study, we generated the
water waves using the Scott Russell wave generator, in which the heavy box sinking vertically into
water. Also, the solitary wave is generated by using the wave paddle and the generated solitary wave
profiles are compared with the available results with a good agreement. Free falling of torpedo over
the water in tank was simulated by using 3D-ISPH method.
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1 Introduction

T
he water entry of a body is an interesting
topic in the naval hydrodynamics and the

interaction of solitary wave and marine structures
are considering a fundamental problem in ocean
engineering. Numerous experimental, theoretical
and numerical studies have been performed to
study the water entry problems. Greenhow and
Lin [1] conducted a series of experiments to show
the considerable differences in the free surface
deformation for the entry and exit of a circular
cylinder. Zhao et al. [2] used both the experi-
ment and the potential flow theory to investigate
the water entry of a falling wedge. Kleefsman
et al. [3] and Panahi et al. [4] computed the
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water entry of a cylinder by solving the NS
equation with a volume-of-fluid surface tracking
using a finite volume formulation. Lin [5] used
the concept of a locally relative stationary in
his Reynolds-averaged NS (RANS) modeling to
study the water entry of a circular cylinder with
prescribed falling velocity. Most of the previous
techniques are capturing the free-surface on grid
system. However, there is a different approach
without grid system, the so-called particle
methods, which provides a robust numerical
tool to simulate the complicated interactions
between the flow and a solid body. Owing to the
mesh-free nature, the breakup and reconnection
of the free surfaces can be easily realized in a
particle method without the sophisticated mesh
management as required in a grid method.

The smoothed particle hydrodynamic (SPH)
method was originally proposed by Lucy [6] and
further developed by Gingold and Monaghan [7]
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for treating astrophysical problems. The basic
idea of SPH is to use the collective motions of
large number of particles to represent a flow in
a Lagrangian way rather than Eulerian way. In
a particle approach, the governing equations are
discretized and solved with respect to the indi-
vidual particles filled within the computational
domain. Its main advantage is the absence of a
computational grid or mesh since it is spatially
discretized into Lagrangian moving particles.
This allows the possibility of easily modeling
flows with a complex geometry or flows where
large deformations or the appearance of a free
surface occurs. Oger et al. [8] employed the 2D
SPH model with a fluidsolid coupling technique
to study the water entry of a wedge with different
degrees of freedom. The numerical model used a
highly robust spatially varying particle resolution
to improve the computational accuracy and effi-
ciency. Recently, Liu et al. [9] implemented the
two phase SPH model to simulate water entry
of a wedge. A two-dimensional SPH model is
implemented to study the water entry problem of
a wedge entering the free surface as Kai et al. [10].

The SPH is originally developed in compress-
ible flow, and then some special treatment is re-
quired to satisfy the incompressible condition. A
divergence-free condition in projection based in-
compressible SPH was initially proposed by Cum-
mins and Rudman [11]. Shao and Lo [12] intro-
duced an incompressible version of the SPH. In
incompressible SPH method, the pressure is im-
plicitly calculated by solving a discretized pres-
sure Poisson equation at every time step. Re-
cently, an incompressible SPH model had been
widely used to simulate free surface flows for in-
compressible fluids [13, 14, 15, 16, 17, 18, 19, 20].
Lee et al. [14] presented comparisons of a semi-
implicit and truly incompressible SPH (ISPH)
algorithm with the classical WCSPH method,
showing how some of the problems encountered
in WCSPH have been resolved by using ISPH
to simulate incompressible flows. Khayyer et al.
[15, 16] proposed a corrected incompressible SPH
method (CISPH) derived based on a vibrational
approach to ensure the angular momentum con-
servation of ISPH formulations. In the incom-
pressible SPH approach, some progress has been
made through correcting the kernel function or
employing a higher order PPE source term, e.g.,

Khayyer et al. [16]. A stabilized incompressible
SPH method by relaxing the density invariance
condition is proposed by Asai et al. [18]. In
addition, Aly et al. [19, 20] applied the stabi-
lized version of ISPH method to simulate both
of fluid-fluid interactions and fluid-structure in-
teractions. More recently, Liu et al. [25] devel-
oped an incompressible smoothed particle hydro-
dynamics (ISPH) model for simulation of fluid-
structure coupling problems, especially for mov-
ing structures. In their model, the mirror particle
method is employed for a moving boundary. The
surface force integration and force-motion algo-
rithms are presented to solve the translation and
rotation of structure body. In the most recent
work of Koh et al. [26], the consistent particle
method was proposed to eliminate pressure fluc-
tuation in solving large-amplitude, free-surface
motion. In this method, which is accompanied
with an alternating of the kernel function by the
Taylor series expansion-based partial differential
operators, a zero-density-variation condition and
a velocity-divergence-free condition are also com-
bined in a source term of PPE to enforce fluid
incompressibility.
In this study, ISPH method is introduced to sim-
ulate wave generation by using both of the Scott
Russell wave generator and wave paddle gener-
ator. The generated solitary wave by using the
wave paddle is compared with the available re-
sults corresponding to Maiti and Sen [24]. Free
falling of torpedo over water in tank is simulated
using the current ISPH method, in which both of
the torpedo and fluid are modeled by using ISPH
method.

2 MATHEMATICAL ANALY-
SIS

2.1 Governing equations

The mass and momentum equations of the flows
are presented as:

Dρ

Dt
+ ρ∇ · u = 0, (2.1)

Du

Dt
= −1

ρ
∇P + ν0∇2u+ g, (2.2)

where, ρ and ν0 are density and kinematic viscos-
ity of the fluid, u and P are the velocity vector
and pressure of fluid respectively, t indicates time.
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In the most general incompressible flow approach,
the density is assumed by a constant value with
its initial value ρ0. The main concept in an in-
compressible SPH method is solving a discretized
pressure Poisson equation at every time step to
get the pressure value. In this paper, we used the
following equation:

< ∇2P
n+1
i >=

ρ∗

∆t
< ∇ · u∗

i > +α
ρ0− < ρni >

(∆t)2

(2.3)
where, α is relaxation coefficient, u∗ is temporal
velocity, triangle bracket <> means SPH approx-
imation and subscript i means particle index.

2.2 SPH formulation

The fundamental basis of the SPH method is
the interpolation theory. The method allows any
function to be expressed in terms of its values
at a set of disordered points representing particle
positions using kernel function. A physical scalar
function A(r) at a certain position r can be rep-
resented by the following integral form:

A (r) =

∫
V
A
(
r′
)
W
(
r − r′, h

)
dr′, (2.4)

where, V represents the solution space and the
smoothing length h represents the effective width
of the kernel. The properties of the kernel func-
tion should satisfy the following two conditions
for mass and energy conservation:∫

V
W
(
r − r′, h

)
dr′ = 1, (2.5)

lim
h→0

W
(
r − r′, h

)
= δ(r − r′), (2.6)

For SPH numerical analysis, the integral Eq. 2.4
is approximated by a summation of contributions
from neighbor particles in the support domain as:

A (ri) ≈< Ai >=
∑
j

mj

ρj
W (rij , h)Aj (rij) ,

(2.7)
where, the subscripts i and j indicate positions
of labeled particle, and mj means representative
mass related to particle j. The density < ρni > in
SPH form is defined by:

ρ (xi) ≈< ρi >=
∑
j

mjW (rij , h) , (2.8)

The gradient of the scalar function can be as-
sumed by using the above defined SPH approxi-
mation as follows:

∇A (ri) ≈< ∇Ai >=

1

ρi

∑
j

mj (Aj −Ai)∇W (rij , h) , (2.9)

Also, the other expression for the gradient can be
represented by:

∇A (ri) ≈< ∇Ai >=

ρi
∑
j

mj

(
Aj

ρ2j
+

Ai

ρ2i

)
∇W (rij , h) , (2.10)

In this paper, quintic spline function is utilized
as a kernel function.

W (R, h) = αd
(3−R)5 − 6(2−R)5 + 15(1−R)5 0 ⪯ R ≺ 1
(3−R)5 − 6(2−R)5 1 ⪯ R ≺ 2
(3−R)5 2 ⪯ R ≺ 3
0 R ⪰ 3

(2.11)

where, αd is 120/h, 7/478πh2 and 3/359πh3,
in one, two and three dimensions, respectively.
Here, from our checked results, the smoothing
kernel function h is chosen around (1.2 ∼ 1.3)do,
where do is the initial particle distance. In the
current incompressible SPH method, the gradi-
ent of pressure and the divergence of velocity are
approximated as follow:

∇P (ri) ≈< ∇Pi

>= ρi
∑
j

mj

(
Pj

ρ2j
+

Pi

ρ2i

)
∇W (rij , h) , (2.12)

∇ · u (ri) ≈< ∇ · ui >

=
1

ρi

∑
j

mj (uj − ui) · ∇W (rij , h) , (2.13)

Although the Laplacian could be derived directly
from the original SPH approximation of a func-
tion in Eq. 2.13, this approach may lead to a loss
of resolution. Then, second order approximation
for the Laplacian terms in this research is utilized
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as.

∇ · (ν∇ · u)(ri) ≈< ∇ · (ν∇ · ui) >=∑
j

mj

(ρiνi + ρjνj
ρiρj

rij · ∇W (|ri − rj |, h)
r2ij + η2

)
uij ,

(2.14)

where η is a parameter to avoid a zero dominator,
and its value is usually given by η2 = 0.0001h2.
For the case of νi = νj and ρi = ρj , the Laplacian
term is simplified as:

< ∇ · (ν∇ · ui) >=

2νi
ρi

∑
j

mj

(rij · ∇W (|ri − rj |, h)
r2ij + η2

)
uij , (2.15)

Similarly, the Laplacian of pressure in pressure
Poisson equation (PPE) is given by:

∇2P (ri) ≈< ∇2Pi) >=

2

ρi

∑
j

mj

(Pijrij · ∇W (|ri − rj |, h)
r2ij + η2

)
. (2.16)

The PPE after SPH interpolation is solved by a
preconditioned (diagonal scaling) Conjugate Gra-
dient (PCG) method with a convergence toler-
ance (= 1.010− 9).

2.3 Treatment of moving rigid body

Koshizuka et al. [21] proposed a passively
moving-solid model to describe the motion of
rigid body in a fluid. Firstly, both of fluid and
solid particles are solved with the same calcula-
tion procedures. Secondly, an additional proce-
dure is applied to solid particles as follows: As-
suming that, the number of solid particles is n
with location rk for each particle, the center of
the solid object at rc, the relative coordinate of a
solid particle to the center qk and the moment of
inertia I of the solid object are calculated by:

rc =
1

n

n∑
k=1

rk, (2.17)

qk = rk − rc, (2.18)

I =

n∑
k=1

|qk|
2 , (2.19)

The translational velocity T and rotational ve-
locity R of solid object are calculated by:

T =
1

n

n∑
k=1

uk, (2.20)

R =
1

I

n∑
k=1

uk × qk, (2.21)

Finally, the velocity of each particle in the solid
body is replaced by:

uk = T+ qk ×R, (2.22)

From the above rigid body corrections, the
motion of free moving object can be tracked as
a complete rigid body. Gotoh and Sakai [22]
showed that the previous treatment works very
well in a stable computation where the Courant
condition is satisfied. In addition, Shao [23] in-
vestigated the water entry of a free falling wedge
using an incompressible smoothed particles hy-
drodynamics (Incom-SPH).

2.4 Treatment of boundary condition

The boundary condition on the rigid bodies has
an important role to prevent penetration and to
reduce error related to truncation of the ker-
nel function. In the current research, we imple-
mented dummy boundary particles technique to
prevent penetration and reduce the error related
to the truncated kernel. The dummy particles are
regularly distributed at the initial state with zero
velocity.

3 RESULTS AND DISCUS-
SION

In this section, we simulated the solitary wave
generation using the vertical wave paddle. The
solitary wave profiles are compared with the avail-
able results and it showed a good agreement. In
the second simulation, the Scott Russell water
generator was proposed initially to create a soli-
tary wave by dropping a weighted box vertically
at the one end of a long rectangular box. In ad-
dition, water entry of circular cylinder in three
dimensions has been studied numerically using
ISPH method.
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3.1 Wave paddle generator

In the first model based on the Maiti and Sen
[24] experiment, the length and flat length of the
wave tank, water depth and slope of the right
side of the tank were considered to be 10m, 9.7m,
0.3m and 45 deg, respectively. The motion of the
wave paddle are considered for several height ra-
tios H/d = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7. Fig.
1 show the solitary wave profiles for wave height
H/d = 0.1 to 0.7. It is clear that, the soli-
tary wave velocity and profile are increase as the
wave height ratio increases. The snapshots of the
pressure distribution for solitary wave profiles at
height H/d=0.1, 0.4 and 0.7, respectively have
been shown in figure 2. In this figure, the snap-
shots show clearly the wave profiles with smooth-
ness pressure distributions. In addition, the com-
parison of the solitary wave between the current
ISPH results and Maiti and Sen [24] for the height
H/d = 0.6 and 0.7, respectively is introduced in
figure 3 and 4. The comparison shows a good
agreement for the two cases of solitary wave pro-
files at height ratios H/d = 0.6 and 0.7.
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Figure 1: Solitary wave profiles for wave height
H/d = 0.1 to 0.7. The propagation times are:
H/d = 0.1, 5.68s; 0.2, 4.80s; 0.3, 4.34s; 0.4, 4.04s;
0.5, 3.82s; 0.6, 3.62s; 0.7, 3.47s, respectively.

3.2 Scott Russell wave generator

In the second simulation, the Scott Russell wave
generator was proposed initially to create a soli-
tary wave by dropping a weighted box verti-
cally at the one end of a long rectangular box.
Fig. 5 shows the Scott Russell wave generator
within several rigid bodies motion over the wa-
ter waves. Here, Scott Russell wave generator

H/d=0.4

H/d=0.1

H/d=0.7

Figure 2: Snapshots of the pressure distribution
for solitary wave profiles at height H/d = 0.1, 0.4
and 0.7, respectively.
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Figure 3: Comparison of solitary wave between
the current ISPH results and Maiti and Sen [24]
for the height H/d = 0.6.

formed a solitary wave and a reverse plunging
wave which quickly collapse down with producing
a cavity as shown in figure 5. Here, the heavy box,
rigid bodies and the fluid are modeled by using
ISPH method and the pressure Poisson equation
is solved for all solid, fluid and dummy boundary
particles. The rigid body motion over the solitary
wave is introduced with density ratio between the
rigid body and the fluid around 0.5 and with this
low density the rigid body is still floating dur-
ing the whole simulation over the generated soli-
tary wave. Fig. 6 shows the time histories of the
pressure distribution for the Scott Russell wave
generator. It is observed that, as the heavy box
released over the water in tank, the reverse plung-
ing wave is formed directly and also it quickly
collapses down with producing a cavity. Also, in
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Figure 4: Comparison of solitary wave between
the current ISPH results and Maiti and Sen [24]
for the height 0.7.

these snapshots, the formation of solitary wave
and its movements have been shown clearly with
pressure distribution.
Finally, free falling of the circular cylinder over

Figure 5: Scott Russell wave generator within
several rigid bodies motion over the water waves.

water in tank has been introduced in three di-
mensions using ISPH method.

3.3 Free falling 3D circular cylinder

Here, we predicted numerically the free falling
of torpedo over wave in tank using 3D-ISPH
method. The torpedo is taken as a rigid body for
simplicity and it modeled by 3D-ISPH method.
The snapshots for water entry of freely falling 3D
circular cylindrical body over water in tank has
been shown in figure 7. In this figure, after the
circular cylinder impacts the water, high pressure
was generated at the head region of the body and

Time=0.3 sec

Time=0.4 sec

Time=0.6 sec

Time=0.8 sec

Time=1.2 sec

Time=1.8 sec

Figure 6: shows the time histories of the pressure
distribution for the Scott Russell wave generator.

splashes with highly nonlinear free surface profile
were observed.

Time=0.3 sec

Time=0.35 sec

Time=0.5 sec

Figure 7: Time histories for water entry of freely
falling 3D circular cylindrical body over water in
tank.

4 Conclusion

Numerical simulations for three models of nonlin-
ear free surface flows, which are wave paddle gen-
erator, Scott Russells wave generator and water
entry model of free falling 3D circular cylindri-
cal body, were conducted by using Incompress-
ible Smoothed Particle Hydrodynamics(ISPH)
method. The generated solitary wave by using
the wave paddle is compared with the available
results with a good agreement. Scott Russell wa-
ter generator was proposed initially to create a
solitary wave by dropping a weighted box verti-
cally at the one end of a long rectangular box.
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Free falling of torpedo over water in tank is sim-
ulated using the current ISPH method, in which
both of the torpedo and fluid are modeled by us-
ing ISPH method. The current ISPH method can
model the complicated free surface flow with low
computational cost and reasonable accuracy.
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