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Abstract

Recently, Cho et al. [Y. J. Cho, R. Saadati, S. H. Wang, Common fixed point theorems on generalized
distance in ordered cone metric spaces, Comput. Math. Appl. 61 (2011) 1254-1260] defined the
concept of the c-distance in a cone metric space and proved some fixed point theorems on c-distance.
In this paper, we prove some new fixed point and common fixed point theorems by using the distance
in ordered cone metric spaces.
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1 Introduction

T
he Banach contraction principle is the most
celebrated fixed point theorem [6]. Af-

terward, some various definitions of contractive
mappings were introduced by other researchers
and several fixed and common fixed point theo-
rems were considered in [7, 10, 17, 19, 24]. Huang
and Zhang [13] have introduced the concept of
the cone metric space, replacing the set of real
numbers by an ordered Banach space, and they
showed some fixed point theorems of contractive
type mappings on cone metric spaces. Then, sev-
eral fixed and common fixed point results in cone
metric spaces were introduced in [2, 3, 9, 15, 23]
and the references contained therein. Recently,
also, the existence of fixed and common fixed
points in partially ordered cone metric spaces was
studied in [4, 5, 26].

In 1996, Kada et al. [18] defined the concept of
w-distance in complete metric space. Later, many
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authors proved some fixed point theorems in com-
plete metric spaces (see [1, 20, 21, 22]). Also, note
that Saadati et al. [25] introduced a probabilis-
tic version of the w-distance of Kada et al. in
a Menger probabilistic metric space. Recently,
Cho et al. [8], and Wang and Guo [28] defined a
concept of the c-distance in a cone metric space,
which is a cone version of the w-distance of Kada
et al. and proved some fixed point theorems in or-
dered cone metric spaces. Then, Sintunavarat et
al. [27] generalized the Banach contraction the-
orem on c-distance of Cho et al. [8]. Also, note
that Dordević et al. in [12] proved some fixed
point and common fixed point theorems under
c-distance for contractive mappings in tvs-cone
metric spaces.
The purpose of this work is to extend the Banach
contraction principal [6] and Chatterjea contrac-
tion theorem [7] on c-distance of Cho et al. [8],
and to prove some fixed point and common fixed
point theorems in ordered cone metric spaces.

2 Preliminaries

First let us start by defining some basic defini-
tions.
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Definition 2.1 ([11, 13]) Let E be a real Ba-
nach space and 0 denote the zero element in E.
A subset P of E is named a cone if and only if
(a) P is closed, non-empty and P ̸= {0};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply that ax+by ∈
P ;
(c) if x ∈ P and −x ∈ P , then x = 0.

Given a cone P ⊂ E, we define a partial ordering
⪯ with respect to P by

x ⪯ y ⇐⇒ y − x ∈ P.

We shall write x ≺ y if x ⪯ y and x ̸= y. Also,
we write x≪ y if and only if y−x ∈ intP (where
intP is interior of P ). If intP ̸= ∅, the cone P
is called solid. The cone P is named normal if
there is a number k > 0 such that for all x, y ∈ E,

0 ⪯ x ⪯ y =⇒ ∥x∥≤ k∥y∥.

The least positive number satisfying the above is
called the normal constant of P .

Definition 2.2 ([13]) Let X be a nonempty set
and E be a real Banach space equipped with the
partial ordering ⪯ with respect to the cone P ⊂
E. Suppose that the mapping d : X × X → E
satisfies:
(d1) 0 ⪯ d(x, y) for all x, y ∈ X and d(x, y) = 0
if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ⪯ d(x, z) + d(z, y) for all x, y, z ∈ X.
Then, d is called a cone metric on X and (X, d)
is called a cone metric space.

Definition 2.3 ([13]) Let (X, d) be a cone met-
ric space, {xn} a sequence in X and x ∈ X.
(i) {xn} converges to x if for every c ∈ E with
0 ≪ c there exist n0 ∈ N such that d(xn, x) ≪ c
for all n > n0, and we write limn→∞ d(xn, x) = 0.
(ii) {xn} is called a Cauchy sequence if for every
c ∈ E with 0 ≪ c there exist n0 ∈ N such that
d(xn, xm) ≪ c for all m,n > n0, and we write
limn,m→∞ d(xn, xm) = 0.
(iii) If every Cauchy sequence in X is convergent,
then X is called a complete cone metric space.

Lemma 2.1 ([13, 23]) Let (X, d) be a cone
metric space and P be a normal cone with normal
constant k. Also, let {xn} and {yn} be sequences
in X and x, y ∈ X. Then the following hold:
(c1) {xn} converges to x if and only if d(xn, x) →
0 as n→ ∞.

(c2) If {xn} converges to x and {xn} converges to
y, then x = y.
(c3) If {xn} converges to x, then {xn} is a Cauchy
sequence.
(c4) If xn → x and yn → y as n → ∞, then
d(xn, yn) → d(x, y) as n→ ∞.
(c5) {xn} is a Cauchy sequence if and only if
d(xn, xm) → 0 as n,m→ ∞.

Lemma 2.2 ([4, 14]) Let E be a real Banach
space with a cone P in E. Then, for all
u, v, w, c ∈ E, the following hold:
(p1) If u ⪯ v and v ≪ w, then u≪ w.
(p2) If 0 ⪯ u≪ c for each c ∈ intP , then u = 0.
(p3) If u ⪯ λu where u ∈ P and 0 < λ < 1, then
u = 0.
(p4) Let xn → 0 in E, 0 ⪯ xn and 0 ≪ c. Then
there exists positive integer n0 such that xn ≪ c
for each n > n0.
(p5) If 0 ⪯ u ⪯ v and k is a nonnegative real
number, then 0 ⪯ ku ⪯ kv.
(p6) If 0 ⪯ un ⪯ vn for all n ∈ N and un → u,
un → u as n→ ∞, then 0 ⪯ u ⪯ v.

Definition 2.4 ([8, 28]) Let (X, d) be a cone
metric space. A function q : X×X → E is called
a c-distance on X if the following are satisfied:
(q1) 0 ⪯ q(x, y) for all x, y ∈ X;
(q2) q(x, z) ⪯ q(x, y) + q(y, z) for all x, y, z ∈ X;
(q3) for all n ≥ 1 and x ∈ X, if q(x, yn) ⪯ u for
some u = ux, then q(x, y) ⪯ u whenever {yn} is
a sequence in X converging to a point y ∈ X;
(q4) for all c ∈ E with 0 ≪ c, there exists e ∈ E
with 0 ≪ e such that q(z, x) ≪ e and q(z, y) ≪ e
imply d(x, y) ≪ c.

Remark 2.1 ([8, 28]) Each w-distance q in a
metric space (X, d) is a c-distance (with E = R+

and P = [0,∞)). But the converse does not hold.
Therefore, the c-distance is a generalization of the
w-distance.

Example 2.1 ([8, 27, 28]) (1) Let (X, d) be a
cone metric space and P be a normal cone. Put
q(x, y) = d(x, y) for all x, y ∈ X. Then q is a
c-distance.
(2) Let E = R, X = [0,∞) and

P = {x ∈ E : x ≥ 0}.

Define a mapping d : X × X → E by d(x, y) =
|x − y| for all x, y ∈ X. Then (X, d) is a cone
metric space. Define a mapping q : X ×X → E
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by q(x, y) = y for all x, y ∈ X. Then q is a c-
distance.
(3) Let E = C1

R[0, 1] with the norm

∥x∥= ∥x∥∞+∥x′∥∞
and consider the cone

P = {x ∈ E : x(t) ≥ 0 on [0, 1]}.

Also, let X = [0,∞) and define a mapping d :
X×X → E by d(x, y) = |x−y|ψ for all x, y ∈ X,
where ψ : [0, 1] → R such that ψ(t) = 2t. Then
(X, d) is a cone metric space. Define a mapping
q : X × X → E by q(x, y) = (x + y)ψ for all
x, y ∈ X. Then q is c-distance.
(4) Let (X, d) be a cone metric space and P be a
normal cone. Put q(x, y) = d(w, y) for all x, y ∈
X, where w ∈ X is a fixed point. Then q is a
c-distance.

Remark 2.2 ([8, 27, 28]) From Example 2.1
(1, 2, 4), we have three important results
(i) Each cone metric d on X with a normal cone
is a c-distance q on X.
(ii) For c-distance q, q(x, y) = 0 is not necessar-
ily equivalent to x = y for all x, y ∈ X.
(iii) For c-distance q, q(x, y) = q(y, x) does not
necessarily hold for all x, y ∈ X.

Lemma 2.3 ([8, 27, 28]) Let (X, d) be a cone
metric space and let q be a c-distance on X. Also,
let {xn} and {yn} be sequences in X and x, y, z ∈
X. Suppose that {un} and {vn} are two sequences
in P converging to 0. Then the following hold:
(qp1) If q(xn, y) ⪯ un and q(xn, z) ⪯ vn for n ∈
N, then y = z. Specifically, if q(x, y) = 0 and
q(x, z) = 0, then y = z.
(qp2) If q(xn, yn) ⪯ un and q(xn, z) ⪯ vn for n ∈
N, then {yn} converges to z.
(qp3) If q(xn, xm) ⪯ un for m > n, then {xn} is
a Cauchy sequence in X.
(qp4) If q(y, xn) ⪯ un for n ∈ N, then {xn} is a
Cauchy sequence in X.

Remark 2.3 Note that Dordević et al. [12]
proved this theorem for a tvs-cone metric space,
where tvs is a real Hausdorff topological vector
space. Also, in Lemma 2.3 (qp1) and (qp2), set
un = vn for n ∈ N. Then, we get Lemma 2.12 of
[8].

Definition 2.5 ([4, 8]) Let (X,⊑) be a par-
tially ordered set. Two mappings f, g : X → X
are said to be weakly increasing if fx ⊑ gfx and
gx ⊑ fgx hold for all x ∈ X.

3 Main results

Our first result is the following theorem of Chat-
terjea type (see [7]) for c-distance in a cone metric
space without normality condition of cone.

Theorem 3.1 Let (X,⊑) be a partially ordered
set and (X, d) be a complete cone metric space.
Also, let q be a c-distance on X and f : X → X
be a continuous and nondecreasing mapping with
respect to ⊑. Suppose that there exist mappings
α, β, γ : X → [0, 1) such that the following four
conditions hold:
(t1) α(fx) ≤ α(x), β(fx) ≤ β(x) and γ(fx) ≤
γ(x) for all x ∈ X;
(t2) (α+ 2β + 2γ)(x) < 1 for all x ∈ X;
(t3) for all x, y ∈ X with x ⊑ y,

q(fx, fy) ⪯ α(x)q(x, y) + β(x)q(x, fy)

+ γ(x)q(y, fx);

(t4) for all x, y ∈ X with x ⊑ y,

q(fy, fx) ⪯ α(x)q(y, x) + β(x)q(fy, x)

+ γ(x)q(fx, y).

If there exists x0 ∈ X such that x0 ⊑ fx0, then
f has a fixed point. Moreover, if fz = z, then
q(z, z) = 0.

Proof. If fx0 = x0, then x0 is a fixed point of
f and the proof is finished. Now, suppose that
fx0 ̸= x0. Since f is nondecreasing with respect
to ⊑ and x0 ⊑ fx0, we obtain by induction that

x0 ⊑ fx0 ⊑ · · · ⊑ fnxo ⊑ fn+1x0 ⊑ · · · ,

where xn = fxn−1 = fnx0. Now, set x = xn and
y = xn−1 in (t3), we have

q(xn+1, xn) (3.1)

= q(fxn, fxn−1)

⪯ α(xn)q(xn, xn−1) + β(xn)q(xn, xn)

+ γ(xn)q(xn−1, xn+1)

⪯ α(fxn−1)q(xn, xn−1)

+ β(fxn−1)[q(xn, xn+1) + q(xn+1, xn)]

+ γ(fxn−1)[q(xn−1, xn) + q(xn, xn+1)]

⪯ α(xn−1)q(xn, xn−1)

+ (β + γ)(xn−1)q(xn, xn+1)

+ β(xn−1)q(xn+1, xn) + γ(xn−1)q(xn−1, xn)

⪯ · · · ⪯ α(x0)q(xn, xn−1)

+ (β + γ)(x0)q(xn, xn+1)

+ β(x0)q(xn+1, xn) + γ(x0)q(xn−1, xn).
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Similarly, set x = xn and y = xn−1 in (t4), we
have

q(xn, xn+1) (3.2)

⪯ α(x0)q(xn−1, xn) + β(x0)q(xn, xn+1)

+ (β + γ)(x0)q(xn+1, xn)

+ γ(x0)q(xn, xn−1).

Adding up (3.1) and (3.2), we have

q(xn+1, xn) + q(xn, xn+1)

⪯ (α+ γ)(x0)[q(xn, xn−1) + q(xn−1, xn)]

+ (2β + γ)(x0)[q(xn+1, xn) + q(xn, xn+1)].

Set vn = q(xn+1, xn) + q(xn, xn+1). We get that

vn ⪯ (α+ γ)(x0)vn−1 + (2β + γ)(x0)vn.

Thus, we have vn ⪯ λvn−1, where

λ =
(α+ γ)(x0)

1− (2β + γ)(x0)
< 1

by (t2). By repeating the procedure, we get vn ⪯
λnv0 for all n ∈ N. Thus,

q(xn, xn+1) ⪯ vn ⪯ λn[q(x1, x0) + q(x0, x1)].
(3.3)

Let m > n, then it follows from (3.3) and λ ∈
[0, 1) that

q(xn, xm)

⪯ q(xn, xn+1) + q(xn+1, xn+2) + · · ·
+ q(xm−1, xm)

⪯ (λn + · · ·+ λm−1)[q(x1, x0) + q(x0, x1)]

⪯ λn

1− λ
[q(x1, x0) + q(x0, x1)].

Lemma 2.3 implies that {xn} is a Cauchy se-
quence in X. Since X is complete, there exists
a point x′ ∈ X such that xn → x′ as n → ∞.
Continuity of f implies that xn+1 = fxn → fx′

as n → ∞ and since the limit of a sequence is
unique (by Lemma 2.1(c2)), we get that fx

′ = x′.
Thus, x′ is a fixed point of f .
Now, suppose that fz = z. Then, (t3) implies
that

q(z, z) = q(fz, fz)

⪯ α(z)q(z, z) + β(z)q(z, fz)

+ γ(z)q(z, fz)

= (α+ β + γ)(z)q(z, z).

Since (α+β+ γ)(z) < (α+2β+2γ)(z) and (α+
2β+2γ)(z) < 1 (by (t2)), we get that q(z, z) = 0
by Lemma 2.2(p3). This completes the proof.□

Corollary 3.1 Let (X,⊑) be a partially ordered
set and (X, d) be a complete cone metric space.
Also, let q be a c-distance on X and f : X → X
be a continuous and nondecreasing mapping with
respect to ⊑. Suppose that there exists α, β, γ > 0
such that the following three conditions hold:
(t1) α+ 2β + 2γ < 1;
(t2) for all x, y ∈ X with x ⊑ y,

q(fx, fy) ⪯ αq(x, y) + βq(x, fy) + γq(y, fx);

(t3) for all x, y ∈ X with x ⊑ y,

q(fy, fx) ⪯ αq(y, x) + βq(fy, x) + γq(fx, y).

If there exists x0 ∈ X such that x0 ⊑ fx0, then
f has a fixed point. Moreover, if fz = z, then
q(z, z) = 0.

Proof. We can prove this result by apply Theo-
rem 3.1 with α(x) = α, β(x) = β and γ(x) = γ.□

Our second result is the following theorem of
Chatterjea type (see [7]) for c-distance in a cone
metric space with a normal cone.

Theorem 3.2 Let (X,⊑) be a partially ordered
set, (X, d) be a complete cone metric space and
P be normal cone with normal constant k. Also,
let q be a c-distance on X and f : X → X be
a nondecreasing mapping with respect to ⊑. Sup-
pose that there exist mappings α, β, γ : X → [0, 1)
such that the following five conditions hold:
(t1) α(fx) ≤ α(x), β(fx) ≤ β(x) and γ(fx) ≤
γ(x) for all x ∈ X;
(t2) (α+ 2β + 2γ)(x) < 1 for all x ∈ X;
(t3) for all x, y ∈ X with x ⊑ y,

q(fx, fy) ⪯ α(x)q(x, y) + β(x)q(x, fy)

+ γ(x)q(y, fx);

(t4) for all x, y ∈ X with x ⊑ y,

q(fy, fx) ⪯ α(x)q(y, x) + β(x)q(fy, x)

+ γ(x)q(fx, y);

(t5) inf{∥q(x, y)∥+∥q(x, fx)∥: x ∈ X} > 0 for all
y ∈ X with y ̸= fy.

If there exists x0 ∈ X such that x0 ⊑ fx0, then
f has a fixed point. Moreover, if fz = z, then
q(z, z) = 0.

Proof. If fx0 = x0, then x0 is a fixed point of
f and the proof is finished. Now, suppose that
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fx0 ̸= x0. As in the proof of Theorem 3.1, we
have

x0 ⊑ fx0 ⊑ · · · ⊑ fnxo ⊑ fn+1x0 ⊑ · · · ,

where xn = fxn−1 = fnx0. Moreover, {xn} con-
verges to a point x′ ∈ X and

q(xn, xm) ⪯ λn

1− λ
[q(x1, x0) + q(x0, x1)]

for all positive numbers with m > n ≥ 1, where

λ =
(α+ γ)(x0)

1− (2β + γ)(x0)
< 1.

By (q3), we get that

q(xn, x
′) ⪯ λn

1− λ
[q(x1, x0) + q(x0, x1)]

for all n ≥ 1. Since P is a normal cone with
normal constant k, we have

∥q(xn, xm)∥≤ k(
λn

1− λ
)∥q(x1, x0) + q(x0, x1)∥

for all m > n ≥ 1. In particular, we have

∥q(xn, xn+1)∥≤ k(
λn

1− λ
)∥q(x1, x0) + q(x0, x1)∥

(3.4)
for all n ≥ 1. Also, we have

∥q(xn, x′)∥≤ k(
λn

1− λ
)∥q(x1, x0) + q(x0, x1)∥

(3.5)
for all n ≥ 1. Suppose that x′ ̸= fx′. Then by
hypothesis, (3.4) and (3.5), we have

0 < inf{∥q(x, x′)∥+∥q(x, fx)∥: x ∈ X}
≤ inf{∥q(xn, x′)∥+∥q(xn, fxn)∥: n ≥ 1}
= inf{∥q(xn, x′)∥+∥q(xn, xn+1)∥: n ≥ 1}

≤ inf
{
k(

λn

1− λ
)∥q(x1, x0) + q(x0, x1)∥

+ k(
λn

1− λ
)∥q(x1, x0) + q(x0, x1)∥: n ≥ 1

}
= 0.

which is a contradiction. Hence x′ = fx′. More-
over, suppose that fz = z. Then, we have
q(z, z) = 0 by the final part of the proof of The-
orem 3.1. This completes the proof.□

Corollary 3.2 Let (X,⊑) be a partially ordered
set, (X, d) be a complete cone metric space and P
be normal cone with normal constant k. Also, let

q be a c-distance on X and f : X → X be a non-
decreasing mapping with respect to ⊑. Suppose
that there exist α, β, γ > 0 such that the following
four conditions hold:
(t1) α+ 2β + 2γ < 1;
(t2) for all x, y ∈ X with x ⊑ y,

q(fx, fy) ⪯ αq(x, y) + βq(x, fy) + γq(y, fx);

(t3) for all x, y ∈ X with x ⊑ y,

q(fy, fx) ⪯ αq(y, x) + βq(fy, x) + γq(fx, y);

(t4) inf{∥q(x, y)∥+∥q(x, fx)∥: x ∈ X} > 0 for all
y ∈ X with y ̸= fy.

If there exists x0 ∈ X such that x0 ⊑ fx0, then
f has a fixed point. Moreover, if fz = z, then
q(z, z) = 0.

Proof. We can prove this result by apply Theo-
rem 3.2 with α(x) = α, β(x) = β and γ(x) = γ.□

Our third result including two mappings and
the existence of their common fixed point for c-
distance in a cone metric space without normality
condition of cone.

Theorem 3.3 Let (X,⊑) be a partially ordered
set and (X, d) be a complete cone metric space.
Also, let q be a c-distance on X and f, g : X → X
be two continuous and weakly increasing map-
pings with respect to ⊑. Suppose that there exist
mappings α, β, γ : X → [0, 1) such that the fol-
lowing five conditions hold:
(t1) α(fx) ≤ α(x), β(fx) ≤ β(x) and γ(fx) ≤
γ(x) for all x ∈ X;
(t2) α(gx) ≤ α(x), β(gx) ≤ β(x) and γ(gx) ≤
γ(x) for all x ∈ X;
(t3) (α+ 2β + 2γ)(x) < 1 for all x ∈ X;
(t4) for all comparable x, y ∈ X,

q(fx, gy) ⪯ α(x)q(x, y) + β(x)q(x, gy)

+ γ(x)q(y, fx);

(t5) for all comparable x, y ∈ X,

q(gy, fx) ⪯ α(x)q(y, x) + β(x)q(gy, x)

+ γ(x)q(fx, y).

Then f and g have a common fixed point.
Moreover, if fz = gz = z, then q(z, z) = 0.

Proof. Let x0 be an arbitrary point in X. We
construct the sequence {xn} in X as follow:

x2n+1 = fx2n , x2n+2 = gx2n+1.
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Since f and g are weakly increasing mappings,
there exist x1, x2, x3 ∈ X such that

x1 = fx0 ⊑ gfx0 = gx1 = x2,

x2 = gx1 ⊑ fgx1 = fx2 = x3.

If we continue in this manner, then there exist
x2n+1 ∈ X

x2n+1 = fx2n ⊑ gfx2n = gx2n+1 = x2n+2

and x2n+2 ∈ X

x2n+2 = gx2n+1 ⊑ fgx2n+1 = fx2n+2 = x2n+3

for n = 0, 1, · · ·. Thus,

x1 ⊑ x2 ⊑ · · · ⊑ xn ⊑ xn+1 ⊑ · · ·

for all n ≥ 1, that is {xn} is a nondecreasing
sequence. Since x2n ⊑ x2n+1 for all n ≥ 1 and by
using (t4) for x = x2n and y = x2n+1, we have

q(x2n+1, x2n+2)

= q(fx2n, gx2n+1)

⪯ α(x2n)q(x2n, x2n+1)

+ β(x2n)q(x2n, gx2n+1)

+ γ(x2n)q(x2n+1, fx2n)

= α(gx2n−1)q(x2n, x2n+1)

+ β(gx2n−1)q(x2n, x2n+2)

+ γ(gx2n−1)q(x2n+1, x2n+1)

⪯ α(x2n−1)q(x2n, x2n+1)

+ β(x2n−1)[q(x2n, x2n+1)

+ q(x2n+1, x2n+2)]

+ γ(x2n−1)[q(x2n+1, x2n+2)

+ q(x2n+2, x2n+1)]

= α(fx2n−2)q(x2n, x2n+1)

+ (β + γ)(fx2n−2)q(x2n+1, x2n+2)

+ β(fx2n−2)q(x2n, x2n+1)

+ γ(fx2n−2)q(x2n+2, x2n+1)

⪯ · · · ⪯ (α+ β)(x0)q(x2n, x2n+1)

+ (β + γ)(x0)q(x2n+1, x2n+2)

+ γ(x0)q(x2n+2, x2n+1).

Similarly, by using (t5) for x = x2n and y =
x2n+1, we have

q(x2n+2, x2n+1) ⪯ (α+ β)(x0)q(x2n+1, x2n)

+ (β + γ)(x0)q(x2n+2, x2n+1)

+ γ(x0)q(x2n+1, x2n+2).

Adding up two previous relations, we have

q(x2n+2, x2n+1) + q(x2n+1, x2n+2)

⪯ (α+ β)(x0)[q(x2n+1, x2n) + q(x2n, x2n+1)]

+ (β + 2γ)(x0)[q(x2n+2, x2n+1)

+ q(x2n+1, x2n+2)].

Set vn = q(x2n+1, x2n) + q(x2n, x2n+1) and un =
q(x2n+2, x2n+1) + q(x2n+1, x2n+2), we get that

un ⪯ (α+ β)(x0)vn + (β + 2γ)(x0)un.

Thus, we have

un ⪯ λvn, (3.6)

where

λ =
(α+ β)(x0)

1− (β + 2γ)(x0)
∈ [0, 1)

by (t3). By a similar procedure, starting with
x = x2n+2 and y = x2n+1, we have

vn+1 ⪯ λun. (3.7)

From (3.6) and (3.7), we get that

vn+1 ⪯ λ2vn , un ⪯ λ2un−1,

for all n ∈ N. Thus, {un} and {vn} are two
sequences converging to 0. Also, we have that
q(x2n, x2n+1) ⪯ vn and q(x2n+1, x2n+2) ⪯ un
and it follows that q(xn, xn+1) ⪯ vn + un. On
the other hand, it is easy to show that if {un}
and {vn} are two sequence in E converging to
0, then {un + vn} is a sequence converging to
0 (see [8, 12]). Lemma 2.3 implies that {xn} is
a Cauchy sequence in X. Since X is complete,
there exists a point x′ ∈ X such that xn → x′

as n → ∞. Continuity of f and g implies that
x2n+1 = fx2n → fx′ and x2n+2 = gx2n+1 → gx′

as n → ∞ and since the limit of a sequence is
unique (by Lemma 2.1(c2)), we get that fx′ = x′

and gx′ = x′. Thus, x′ is a common fixed point
of f and g.
Suppose that z ∈ X is any point satisfying fz =
gz = z. Then, (t4) implies that

q(z, z) = q(fz, gz)

⪯ α(z)q(z, z) + β(z)q(z, gz)

+ γ(z)q(z, fz)

⪯ (α+ β + γ)(z)q(z, z).

Since (α + β + γ)(z) < (α + 2β + 2γ)(z) and
(α+2β+2γ)(z) < 1 for all z ∈ X by (t3), we get
q(z, z) = 0 by property (p3). This completes the
proof.□
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Corollary 3.3 Let (X,⊑) be a partially ordered
set and (X, d) be a complete cone metric space.
Also, let q be a c-distance on X and f, g : X → X
be two continuous and weakly increasing map-
pings with respect to ⊑. Suppose that there exist
α, β, γ > 0 such that the following three condi-
tions hold:
(t1) (α+ 2β + 2γ) < 1;
(t2) for all comparable x, y ∈ X,

q(fx, gy) ⪯ αq(x, y) + βq(x, gy) + γq(y, fx);

(t3) for all comparable x, y ∈ X,

q(gy, fx) ⪯ αq(y, x) + βq(gy, x) + γq(fx, y).

Then f and g have a common fixed point.
Moreover, if fz = gz = z, then q(z, z) = 0.

Proof. We can prove this result by apply Theo-
rem 3.3 with α(x) = α, β(x) = β and γ(x) = γ.□

The next result including two mappings and
the existence of their common fixed point for c-
distance in a cone metric space with a normal
cone.

Theorem 3.4 Let (X,⊑) be a partially ordered
set, (X, d) be a complete cone metric space and
P be normal cone with normal constant k. Also,
let q be a c-distance on X and f, g : X → X
be two weakly increasing mappings with respect
to ⊑. Suppose that there exist mappings α, β, γ :
X → [0, 1) such that the following seven condi-
tions hold:
(t1) α(fx) ≤ α(x), β(fx) ≤ β(x) and γ(fx) ≤
γ(x) for all x ∈ X;
(t2) α(gx) ≤ α(x), β(gx) ≤ β(x) and γ(gx) ≤
γ(x) for all x ∈ X;
(t3) (α+ 2β + 2γ)(x) < 1 for all x ∈ X;
(t4) for all comparable x, y ∈ X,

q(fx, gy) ⪯ α(x)q(x, y) + β(x)q(x, gy)

+ γ(x)q(y, fx);

(t5) for all comparable x, y ∈ X,

q(gy, fx) ⪯ α(x)q(y, x) + β(x)q(gy, x)

+ γ(x)q(fx, y)

(t6) inf{∥q(x, y)∥+∥q(x, fx)∥: x ∈ X} > 0 for all
y ∈ X with y ̸= fy;
(t7) inf{∥q(x, y)∥+∥q(x, gx)∥: x ∈ X} > 0 for all
y ∈ X with y ̸= gy.

Then f and g have a common fixed point.
Moreover, if fz = gz = z, then q(z, z) = 0.

Proof. The proof is similar to the Theorem 3.2.
One can prove this theorem by using the Theo-
rems 3.2 and 3.3.

Corollary 3.4 Let (X,⊑) be a partially ordered
set, (X, d) be a complete cone metric space and
P be normal cone with normal constant k. Also,
let q be a c-distance on X and f, g : X → X
be two weakly increasing mapping with respect to
⊑. Suppose that there exist mappings α, β, γ > 0
such that the following five conditions hold:
(t1) α+ 2β + 2γ < 1;
(t2) for all comparable x, y ∈ X,

q(fx, gy) ⪯ αq(x, y) + βq(x, gy) + γq(y, fx);

(t3) for all comparable x, y ∈ X,

q(gy, fx) ⪯ αq(y, x) + βq(gy, x) + γq(fx, y);

(t4) inf{∥q(x, y)∥+∥q(x, fx)∥: x ∈ X} > 0 for all
y ∈ X with y ̸= fy;
(t5) inf{∥q(x, y)∥+∥q(x, gx)∥: x ∈ X} > 0 for all
y ∈ X with y ̸= gy.

Then f and g have a common fixed point.
Moreover, if fz = gz = z, then q(z, z) = 0.

Proof. We can prove this result by apply Theo-
rem 3.4 with α(x) = α, β(x) = β and γ(x) = γ.

Example 3.1 Let E = R and P = {x ∈ E : x ≥
0}. Also, let X = [0, 1] and define a mapping
d : X ×X → E by

d(x, y) = |x− y|

for all x, y ∈ X. Then (X, d) is a cone metric
space. Define a function q : X × X → E by
q(x, y) = d(x, y) for all x, y ∈ X. Then q is c-
distance (by example 2.1). Let an order relation
⊑ defined by

x ⊑ y ⇐⇒ x ≤ y.

Also, let a mapping f : X → X defined by f(x) =
x2

4 for all x ∈ X.
Take mapping α(x) = x+1

4 , β(x) = x
8 and γ(x) =

0 for all x ∈ X. Observe that:

(1) α(fx) = 1
4

(
x2

4 + 1
)
≤ 1

4

(
x2 + 1

)
≤ α(x) for

all x ∈ X.
(2) β(fx) = x2

32 ≤ x2

8 ≤ x
8 = β(x) for all x ∈ X.

(3) γ(fx) = 0 ≤ 0 = γ(x) for all x ∈ X.
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(4) (α + 2β + 2γ)(x) = x+1
4 + 2x

8 = 2x+1
4 < 1 for

all x ∈ X.
(5) For all comparable x, y ∈ X with x ⊑ y, we
get

q(fx, fy) =
∣∣∣x2
4

− y2

4

∣∣∣ ≤ |x+ y||x− y|
4

=
(x+ y

4

)
|x− y|

≤
(x+ 1

4

)
|x− y|

≤ α(x)q(x, y) + β(x)q(x, fy)

+ γ(x)q(y, fx)

(6) Similarly, we have

q(fy, fx) ≤ α(x)q(y, x) + β(x)q(fy, x)

+ γ(x)q(fx, y)

for all x, y ∈ X.
Moreover, f is a nondecreasing and continuous
mapping with respect to ⊑. Therefore, all the con-
ditions of Theorem 3.2 are satisfied. Thus, f has
a fixed point x = 0 and q(0, 0) = 0.
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